
Mathematics 2Q – Solutions for Chapter 3

3.1. The vectors

u = (0, 2, 1)− (1, 1,−2) = (−1, 1, 3), v = (1,−1, 2)− (1, 1,−2) = (0,−2, 4),

are parallel to P and linearly independent. Their vector product is

w = u× v = (10, 4, 2)

and this vector is normal to P. Then an implicit equation for P is

w · x = w · (1, 1,−2) = 10 + 4− 4 = 10

since A(1, 1,−2) is in P. This gives

10x + 4y + 2z = 10.

For a parametric form we have

x = su + tv + (1, 1,−2) (s, t ∈ R)

which is equivalent to

(x, y, z) = (−s + t + 1, s− 2t + 1, 3s + 4t− 2) (s, t ∈ R).

Of course, the vectors u,v,w could all be replaced by suitable unit vectors.

3.2. (a) Let the matrix be R. It is easily checked that R is orthogonal, i.e., RT R = I3 = RRT .

Then expanding along the third row we have
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So there must be a plane of reflection. Consider the equation Au = −u or the equivalent

equation (I3 + A)u = 0. Writing u = (u1, u2, u3), we have
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and solving by row reduction the general solution turns out to be

u = t(
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Thus the reflecting plane is u · x = 0.

(b) Let S be the matrix. This time we find that S is orthogonal and detS = 1 so there must be

a line of rotation. To find this solve the equation Sx = x, or equivalently (S − I3)x = 0. The

general solution turns out to be
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which is the line of rotation in parametric form.

3.3. First we need to check that

det S =
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so (S | 0) does correspond to a reflection in a plane through the origin. Now look for vectors

satisfying Sx = −x or equivalently (I + S)x = 0. Setting x = (x, y, z) we have
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whose solution is x = −t, y = t, z = t (t ∈ R). Taking t = −1/
√

3 we obtain the unit vector

w = (1/
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normal to the reflecting plane which has implicit equation x− y − z = 0.

For the translation vector we have (1, 0, 1) ·w = 0, hence t is parallel to the reflecting plane

of (S | 0). Therefore,

(S | t) = (I3 | (1, 0, 1))(S | 0),

the composition of reflection in x− y− z = 0 with translation by (1, 0, 1) parallel to this plane.

3.4. We have

detR =
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so (R | 0) represents a rotation. Notice that
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hence (R | 0) corresponds to a rotation about the y-axis. If we take the vectors

v1 = (0, 1, 0), v2 = (0, 0, 1), v3 = (1, 0, 0),

these form a right handed orthonormal system and we find that
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so we have

R(x′1v1 + x′2v2 + x′3v3) =
[
v1 v2 v3

]
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From Equation 3.3, the angle of rotation is θ = cos−1(−1/2) since sin θ =
√

3/2 > 0, so

θ = 2π/3.

We also have

t = (1, 1, 0) = v1 + v3 = v1 + 0v2 + v3.

We need to find the vector c = c2v2 + c3v3 for which (I3 − R)c = v3. From the Notes, this is

given by
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So the axis of rotation is the line parallel to the y-axis which contain the point

c = (0, 0,−
√

3/6) + (1/2, 0, 0) = (1/2, 0,−
√

3/6),

i.e., the line with parametric equation

x = t(0, 1, 0) + (1/2, 0,−
√

3/6) = (1/2, t,−
√

3/6) (t ∈ R).

The translation vector parallel to this axis of rotation is v1 = (0, 1, 0).


