Topological André-Quillen homology and some applications

Slide 1

Andrew Baker (Glasgow) joint with H. Gilmour & P. Reinhard

BTop24 – Leicester 2009

[14/09/2009]

1 TAQ homology

Let A be a commutative S-algebra; this is equivalent to A being an E_{∞} ring spectrum. For a commutative A-algebra $A \longrightarrow B$, we write B/A. For such a pair B/A there is a B-module $\Omega_A(B)$ which is well defined in the homotopy category $\overline{h}\mathcal{M}_B$ and characterised by the natural isomorphism

Slide 1

Here $\overline{h}\mathscr{C}_A/B$ denotes the derived category of commutative A-algebras over B. If $M = \Omega_A(B)$, then the identity map corresponds to a morphism $B \longrightarrow B \lor \Omega_A(B)$ which projects onto the universal derivation

 $\overline{h}\mathscr{C}_A/B(B, B \vee M) \cong \overline{h}\mathscr{M}_B(\Omega_A(B), M).$

 $\delta_{B/A} \in \overline{h}\mathscr{M}_A(B,\Omega_A(B)).$

Associated to a sequence of morphisms of commutative S-algebras $A \longrightarrow B \longrightarrow C$ is a natural cofibre sequence of C-modules

 $\Omega_A(B) \wedge_B C \longrightarrow \Omega_A(C) \longrightarrow \Omega_B(C).$

 $\Omega_A(B)$ is defined in $\overline{h}\mathscr{M}_B$ by

 $\Omega_A(B) = \mathrm{L}Q_B \mathrm{R}I_B(B^c \wedge_A B),$

where $(-)^c$ is a cofibrant replacement functor, $\mathrm{R}I_B$ is the right derived functor of the augmentation ideal I_B of the category of B-algebras. The target of I_B and $\mathrm{R}I_B$ is the category of B-nucas (non-unital B-algebras). $\mathrm{L}Q_B$ is the left derived functor of Q_B which is defined by the following strict pushout diagram in the category of B-modules.

The topological André-Quillen homology of B/A with coefficients in a B-module M is

 $\mathrm{TAQ}_*(B,A;M) = \pi_*(\Omega_A(B) \wedge_B M).$

Associated to maps $A \longrightarrow B \longrightarrow C$ as above, is a natural long exact *transitivity sequence*

$$\cdots \longrightarrow \operatorname{TAQ}_{k}(B,A;M) \longrightarrow \operatorname{TAQ}_{k}(C,A;M)$$
$$\longrightarrow \operatorname{TAQ}_{k}(C,B;M) \longrightarrow \operatorname{TAQ}_{k-1}(B,A;M)$$
$$\longrightarrow \cdots$$

We are interested in the situation where A and B are connective and the map $\varphi \colon A \longrightarrow B$ induces an isomorphism $A_0 \xrightarrow{\cong} B_0$ and we write $\Bbbk = A_0 = B_0$. There is an Eilenberg-Mac Lane object $H\Bbbk$, which can be taken to be a CW commutative A-algebra or B-algebra.

Slide 2

Slide 3

The ordinary topological André-Quillen homology of B/A is $\mathrm{HAQ}_*(B, A) = \mathrm{TAQ}_*(B, A; H\Bbbk)$ $= \pi_*(\Omega_A(B) \wedge_B H\Bbbk).$ We introduce coefficients in a \Bbbk -module M by $\mathrm{HAQ}_*(B, A; M) = \mathrm{TAQ}_*(B, A; HM)$

Slide 4

 $= \pi_*(\Omega_A(B) \wedge_B HM).$

When $C_0 = \mathbb{k}$, the transitivity sequence gives

 $\begin{array}{c} \cdots \longrightarrow \mathrm{HAQ}_k(B,A) \longrightarrow \mathrm{HAQ}_k(C,A) \\ \longrightarrow \mathrm{HAQ}_k(C,B) \longrightarrow \mathrm{HAQ}_{k-1}(B,A) \longrightarrow \cdots \end{array}$

Two fundamental results are due to Maria Basterra [3].

Lemma 1.1. Let $\varphi \colon A \longrightarrow B$ be an *n*-equivalence between connective commutative *S*-algebras, where $n \ge 1$. Then $\Omega_A(B)$ is *n*-connected and there is a map of *A*-modules $\tau \colon C_{\varphi} \longrightarrow \Omega_A(B)$ for which

 $\tau_* \colon \pi_{n+1} \operatorname{C}_{\varphi} \xrightarrow{\cong} \pi_{n+1} \Omega_A(B).$

Corollary 1.2 (Hurewicz theorem). The map τ induces isomorphisms

 $\tau_* \colon \pi_k \operatorname{C}_{\varphi} \xrightarrow{\cong} \operatorname{HAQ}_k(B, A) \quad (k \leqslant n+1).$

Slide 5

Using $\delta_{B,A}$ we can define a Hurewicz homomorphism

 $\theta \colon \pi_* B \longrightarrow \operatorname{HAQ}_*(B, A)$

which factors through the usual Hurewicz homomorphism. There are versions of the Hurewicz theorem for θ . Also, for a morphism of connective S-algebras $\varphi \colon A \longrightarrow B$ with $A_0 = B_0 = \mathbb{Z}, \varphi$ is a weak equivalence if and only if $\varphi_* \colon \operatorname{HAQ}_*(A, S) \longrightarrow \operatorname{HAQ}_*(B, S)$ is an isomorphism. To calculate HAQ we need to know about its values on certain basic objects. For any *A*-module *X*, there is a free commutative *A*-algebra on *X*, $\mathbb{P}_A X = \bigvee_{i \ge 0} X^{(i)} / \Sigma_i$. If *A* \longrightarrow *A'* is a morphism of commutative *S*-algebras, then

 $\mathbb{P}_{A'}(A' \wedge_A X) \cong A' \wedge_A \mathbb{P}_A X.$

Slide 6

The A-algebra map $\mathbb{P}_A X \longrightarrow \mathbb{P}_A * = A$ induced by collapsing X to a point makes A into an $\mathbb{P}_A X$ -algebra and there is a cofibration sequence of $\mathbb{P}_A X$ -modules

$$\mathbb{P}_A^+ X \longrightarrow \mathbb{P}_A X \longrightarrow \mathbb{P}_A * = A,$$

where $\mathbb{P}^+_A X = \bigvee_{i \ge 1} X^{(i)} / \Sigma_i$. For the A-sphere $S^n = S^n_A \ (n > 0)$ we get the commutative A-algebra $\mathbb{P}_A S^n$ with augmentation $\mathbb{P}_A S^n \longrightarrow A$, we may view an A-module or algebra as a $\mathbb{P}_A S^n$ -module or algebra.

Proposition 1.3. Let X be a cell A-module, so $\mathbb{P}_A X$ is a q-cofibrant A-algebra. Then

 $\Omega_A(\mathbb{P}_A X) = \mathbb{P}_A X \wedge_A X.$

Hence

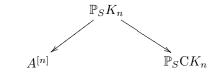
 $\mathrm{TAQ}_*(\mathbb{P}_A X, A; M) = \pi_*(X \wedge_A M).$

In particular, when A is connective and $\mathbb{k} = A_0$,

$$\operatorname{HAQ}_{r}(\mathbb{P}_{A}S^{n}, A) = \begin{cases} \mathbb{k} & \text{if } r = n, \\ 0 & \text{otherwise.} \end{cases}$$

Slide 7

A CW S-algebra A is a colimit of S-algebras $A^{[n]}$, where $A^{[0]} = S$ and $A^{[n+1]}$ is the pushout of a diagram



where K_n is a wedge of *n*-spheres. Since $CK_n \sim *$, we also have $\mathbb{P}_S CK_n \sim S$. In fact,

 $A^{[n+1]} = A^{[n]} \wedge_{\mathbb{P}_S K_n} \mathbb{P}_S \mathcal{C} K_n.$

Properties of the transitivity sequence now give a long exact sequence of the form

$$\cdots \longrightarrow H_{k+1}(\Sigma K_n) \longrightarrow \operatorname{HAQ}_k(A^{[n]}, S) \longrightarrow$$
$$\operatorname{HAQ}_k(A^{[n+1]}, S) \longrightarrow H_k(\Sigma K_n) \longrightarrow \cdots$$

where $H_k(\Sigma K_n)$ is only nonzero if k = n + 1.

Slide 8

Slide 9

So for a CW S-algebra, $\operatorname{HAQ}_*(A, S)$ behaves like cellular homology for CW complexes. Of course, we can take any coefficient group in place of \mathbb{Z} .

Bousfield localisations can be carried out on S-algebras and their modules. In particular, we can also localise at a prime p. So we could work with the p-local sphere in place of S and with p-local CW algebras.

2 Minimal atomic S-algebras

Assumptions From now on, we work p-locally. S denotes the p-local sphere. All S-algebras A are commutative and connective with $A_0 = \mathbb{Z}_{(p)}$ and all homotopy groups f.g. over $\mathbb{Z}_{(p)}$.

A is *atomic* if every S-algebra self map $A \longrightarrow A$ is a weak equivalence.

A is *irreducible* if every S-algebra map $B \longrightarrow A$ inducing a mono on $\pi_*(-)$ is a weak equivalence.

An atomic A is minimal atomic if every S-algebra map $B \longrightarrow A$ inducing a mono on $\pi_*(-)$ and with B atomic is a weak equivalence.

A CW S-algebra is minimal if for every n,

 $\mathrm{HAQ}_n(A^{[n]},S;\mathbb{F}_p) \longrightarrow \mathrm{HAQ}_n(A^{[n+1]},S;\mathbb{F}_p)$

is an isomorphism.

	We use an important general fact (remember our assumptions above). Lemma 2.1. For every S-algebra A, there is a weak equivalence $B \longrightarrow A$ with B a minimal CW S-algebra. Theorem 2.2. Let A be an S-algebra. Then the following are equivalent.
Slide 10	 A is minimal atomic. A is irreducible.
	• For all $k > 0$, the Hurewicz homomorphism $\theta \colon \pi_k A \longrightarrow \operatorname{HAQ}_k(A, S; \mathbb{F}_p)$ is trivial.
	The proofs are described in Helen Gilmour's thesis and are parallel to those of [2] for spectra and simply connected spaces, but using HAQ in place of ordinary homology.

3 Some examples

If A is a commutative S-algebra that is minimal atomic as an S-module, the usual Hurewicz homomorphism $\pi_k A \longrightarrow H_k(A; \mathbb{F}_p)$ is trivial for k > 0. So ku, ko, $H\mathbb{Z}$, $H\mathbb{Z}/p^n$ are all minimal atomic p-locally. If BP were a commutative S-algebra it would be too, but this is still not known.

Slide 11

Many Thom spectra are amenable to study using a result of Basterra & Mandell [4]. **Theorem 3.1.** Let $f: X \longrightarrow BSF$ be an infinite loop map with associated Thom spectrum Mf. Then $\Omega_S(Mf) = Mf \wedge \underline{X}$, where \underline{X} is the spectrum with zeroth space X. Hence

 $\operatorname{HAQ}_*(Mf/S) = H_*(\underline{X})$

and the Hurewicz homomorphism $\boldsymbol{\theta}$ is

$$\pi_*Mf \longrightarrow H_*(Mf) \xrightarrow{\text{Thom}} H_*(X) \xrightarrow{\text{ev}} H_*(\underline{X}),$$

where ev annihilates decomposables in $H_*(X)$.

 $\begin{array}{l} MU \ p\text{-locally:} \ H_*(MU;\mathbb{F}_p) = \mathbb{F}_p[b_r:r \geqslant 1] \\ \text{and} \\ \text{HAQ}_*(MU,S;\mathbb{F}_p) = H_*(\Sigma^2 ku;\mathbb{F}_p) \subseteq A(p)_{*-2}. \\ \text{For } p \ \text{odd}, \\ \\ \theta(b_r) = \begin{cases} \xi_s & \text{if } r = p^s, \\ 0 & \text{otherwise}, \end{cases} \\ \text{while if } p = 2 \\ \\ \theta(b_r) = \begin{cases} \xi_s^2 & \text{if } r = 2^s, \\ 0 & \text{otherwise}. \end{cases} \\ \text{So } MU \text{ is never minimal atomic.} \\ MSp/U 2\text{-locally: The fibration} \\ Sp/U \longrightarrow BU \longrightarrow BSp \text{ has an associated map} \\ \text{of Thom spectra } MSp/U \longrightarrow MU \text{ and the} \\ \text{induced maps in homology and homotopy are} \\ \text{injective. In fact,} \\ \\ H_*(MSp/U) = \mathbb{Z}_{(2)}[y_{2r-1}:r \geqslant 1] \subseteq H_*(MU) \end{array}$

Slide 12

where $y_{2r-1} \equiv b_{2r-1} \pmod{\text{decomp}}$. This time, $\underline{Sp/U} = \Sigma^2 ko \text{ and } \theta$ is trivial here. So MSp/U is minimal atomic and is a core of MU.

MSp 2-locally: By a result of Floyd,

 $\operatorname{im}[MSp_* \longrightarrow MO_*] \subseteq (MO_*)^{(2)},$

so it follows that

 $\operatorname{im}[MSp_* \longrightarrow H_*(MSp; \mathbb{F}_2)]$

 $\subseteq H_*(MSp; \mathbb{F}_2)^{(2)},$

and so θ is trivial and therefore MSp is minimal atomic.

Slide 13

4 Periodic S-algebras

We can identify $\Omega_S(KU)$ using Snaith's result that the localization of $\Sigma^{\infty} \mathbb{CP}^{\infty}_+$ with respect to the generator $\beta_1 \in \pi_2 \Sigma^{\infty} \mathbb{CP}^{\infty}_+$ is equivalent to the periodic K-theory spectrum KU. This result can be rigidified to give an equivalence of commutative S-algebras $\Sigma^{\infty} \mathbb{CP}^{\infty}_+[\beta_1^{-1}] \simeq KU$. **Proposition 4.1.** We have

Slide 14

 $\Omega_S(\Sigma^{\infty} \mathbb{C} \mathbb{P}^{\infty}_+) = \Sigma^{\infty} \mathbb{C} \mathbb{P}^{\infty}_+ \wedge \Sigma^2 H \mathbb{Z},$ $\Omega_S(KU) = KU \wedge \Sigma^2 H \mathbb{Z} \simeq KU \mathbb{Q}.$

Proof. By [4],

 $\Omega_S(\Sigma^{\infty} \mathbb{C} \mathbb{P}^{\infty}_+) = \Sigma^{\infty} \mathbb{C} \mathbb{P}^{\infty}_+ \wedge \Sigma^2 H \mathbb{Z}.$

The functor $\Omega_A(-)$ commutes with smashing localizations, hence

$$\Omega_S(\Sigma^{\infty} \mathbb{C}\mathrm{P}^{\infty}_+[\beta^{-1}]) = \Sigma^{\infty} \mathbb{C}\mathrm{P}^{\infty}_+[\beta^{-1}] \wedge \Sigma^2 H\mathbb{Z}.$$

Let p be a prime and let K(1) be the first Morava K-theory at p. Corollary 4.2. In the category of K(1)-local KU-modules, $\Omega_S(KU) \simeq *$.

Proof. Since $\Omega_S(KU)$ is already KU-local, its K(1)-localization agrees with its *p*-completion, and this is trivial since $\Omega_S(KU)$ is rationally a wedge of suspensions of $H\mathbb{Q}$.

Slide 15 For the Lubin-Tate spectrum E_n , we have **Proposition 4.3.** In the category of K(n)-local E_n -modules, $\Omega_S(E_n) \simeq *$.

Proof. This uses an argument of Rognes to show that (even after Bousfield localization)

 $B \simeq \operatorname{THH}^{A}(B) \Longrightarrow \Omega_{A}(B) \simeq *.$

We can use a spectral sequence to show that $K(n)_* \operatorname{THH}^S(E_n) = K(n)_* E_n$, hence $E_n \longrightarrow \operatorname{THH}^S(E_n)$ is a K(n)-equivalence. \Box

TAQ-étale algebras $\mathbf{5}$ Let $A \longrightarrow B$ be a morphism of commutative S-algebras. Then B/A is formally TAQ-étale if $\Omega_A(B) \sim *,$ and it is TAQ-étale if it is also dualizable as an A-module. Theorem 5.1. For Eilenberg-Mac Lane spectra, a morphism $HR_1 \longrightarrow HR_2$ is (formally) TAQ-étale if and only if it is induced by a (formally) étale ring homomorphism $R_1 \longrightarrow R_2$. **Theorem 5.2.** Let R be a commutative ring and let $HR \longrightarrow A$ be a formally TAQ-étale morphism of commutative S-algebras, where A/HR is and A is (-1)-connected. Then $A \sim HS$ for some commutative ring S and the associated morphism $HR \longrightarrow HS$ is induced by a separable ring homomorphism $R \longrightarrow S$. By the above

Proof. There is a model structure on \mathscr{C}_S due to Toën and Vezzosi [6], in which the cofibrations are TAQ-étale morphisms and weak equivalences are as usual. The natural map $A \longrightarrow H\pi_0 A$ factors as

 $A \xrightarrow{\text{TAQ-\acute{e}tale}} B \xrightarrow{\text{acyclic fibration}} H\pi_0 A$

Slide 17

Slide 16

so there is a composite cofibration $HR \longrightarrow B$, where B is an EM spectrum weakly equivalent to $H\pi_0 A$.

Now the cofibration $A \longrightarrow B$ is 1-connected and an easy inductive argument using Basterra's Lemma 1.1 shows that $\pi_n A = 0$ for n > 0. Hence A is also EM.

	References
	 A. Baker, H. Gilmour & P. Reinhard, Topological André-Quillen homology for cellular commutative S-algebras, Abhand. Math. Sem. Univ. Hamburg 78 (2008), 27–50.
	[2] A. J. Baker & J. P. May, Minimal atomic complexes, Topology 43.
ölide 18	 [3] M. Basterra, André-Quillen cohomology of commutative S-algebras, J. Pure Appl. Algebra, 144.
	[4] M. Basterra & M. Mandell, Homology and cohomology of E_{∞} ring spectra, Math. Z. 249 .
	[5] P. Hu, I. Kriz & J. P. May, Cores of spaces, spectra and E_{∞} ring spectra, Homology, Homotopy and App. 3 .
	 [6] B. Toën & G. Vezzosi, Homotopical algebraic geometry. I: Topos theory, Adv. Math. 193 (2005), 257–372.

\mathbf{S}