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1 TAQ homology

Let A be a commutative S-algebra; this is
equivalent to A being an E., ring spectrum.
For a commutative A-algebra A — B, we
write B/A. For such a pair B/A there is a
B-module Q4 (B) which is well defined in the
homotopy category h.#p and characterised by
the natural isomorphism

h6s/B(B,BV M) = ht3(Qa(B), M).

Here h6'4 /B denotes the derived category of
commutative A-algebras over B. If

M = Q4(B), then the identity map
corresponds to a morphism B — BV Q4(B)
which projects onto the universal derivation
5B/A S E%A(B,QA(B))

Associated to a sequence of morphisms of
commutative S-algebras A — B — (C'is a
natural cofibre sequence of C-modules

QA(B> A C — QA(C) — QB(C)
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Q4(B) is defined in h.#g by
QA(B) = LQBRIB(BC ANa B),

where (—)¢ is a cofibrant replacement functor,
RIp is the right derived functor of the
augmentation ideal Ig of the category of
B-algebras. The target of Iz and RIp is the
category of B-nucas (non-unital B-algebras).
L@ g is the left derived functor of (Qp which is
defined by the following strict pushout diagram
in the category of B-modules.

N/\BN—>>|<

|

N Qp(N)

The topological André-Quillen homology of
B/A with coefficients in a B-module M is

TAQ, (B, A; M) = 7, (Qa(B) Ap M).

Associated to maps A — B — C as above, is
a natural long exact transitivity sequence

-+ — TAQ,(B, A; M) — TAQ,(C, A; M)
— TAQ,(C, B; M) — TAQ_; (B, 4; M)

H...

We are interested in the situation where A and
B are connective and the map p: A — B
induces an isomorphism Ag =, By and we write
k = Ay = By. There is an Eilenberg-Mac Lane
object Hk, which can be taken to be a CW
commutative A-algebra or B-algebra.
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The ordinary topological André-Quillen
homology of B/A is

HAQ, (B, A) = TAQ, (B, A; HK)
= W*(QA(B) AB Hﬂ{)

We introduce coefficients in a k-module M by

HAQ, (B, A; M) = TAQ, (B, A; HM)
= 7.(Qu(B) Ap HM).

When Cy = k, the transitivity sequence gives

- — HAQ, (B, A) — HAQ,(C, A)
— HAQ,(C,B) — HAQ, (B, A) — ---

Two fundamental results are due to Maria
Basterra [3].

Lemma 1.1. Let p: A — B be an
n-equivalence between connective commutative
S-algebras, where n > 1. Then Q4 (B) is
n-connected and there is a map of A-modules
7: Cp —> Qa(B) for which

Tet Tnt1 Cop = Tn+1824(B).

Corollary 1.2 (Hurewicz theorem). The map
T induces isomorphisms

7o Cp — HAQ, (B, A)  (k<n+1).

Using dp, 4 we can define a Hurewicz

homomorphism
0: m.B — HAQ,(B, A)

which factors through the usual Hurewicz
homomorphism. There are versions of the
Hurewicz theorem for 6. Also, for a morphism
of connective S-algebras ¢: A — B with

Ag = By = Z, ¢ is a weak equivalence if and
only if p.: HAQ,(A,S) — HAQ,(B,S) is an

isomorphism.
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To calculate HAQ we need to know about its
values on certain basic objects. For any
A-module X, there is a free commutative
A-algebra on X, PAX = \/,50 X /5. If

A — A’ is a morphism of commutative
S-algebras, then

Pa(AAg X) 2 A AgPAX.

The A-algebra map P4 X — P4*x = A induced
by collapsing X to a point makes A into an

P4 X-algebra and there is a cofibration
sequence of P 4 X-modules

PLX — PyX — Pyx = A,

where P X = Vis1 X (@ /5. For the A-sphere
S™ = 8% (n > 0) we get the commutative
A-algebra P4S™ with augmentation

P4S™ — A, we may view an A-module or
algebra as a P 4S5™-module or algebra.

Proposition 1.3. Let X be a cell A-module,
so PaX is a g-cofibrant A-algebra. Then

QA(]P)AX) =P4X Aa X.
Hence

TAQ,(PaX, A; M) =7 (X Aa M).
In particular, when A is connective and k = Ay,

k ifr=mn,
HAQ,(P4S™, A) =
0 otherwise.

A CW S-algebra A is a colimit of S-algebras
A"l where A0 = S and A"t is the pushout
of a diagram

Ps K,
A[n] ]PSCKn

where K, is a wedge of n-spheres. Since
CK,, ~ %, we also have PsCK,, ~ S. In fact,

A — Al A e PoCK,.
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Properties of the transitivity sequence now give
a long exact sequence of the form

o — Hy (B2K,) — HAQ, (A, 8) —
HAQ, (A" 8) — H(ZK,) — ---

where Hy(XK,) is only nonzero if k =n + 1.

So for a CW S-algebra, HAQ, (4, S) behaves
like cellular homology for CW complexes. Of
course, we can take any coefficient group in
place of Z.

Boustfield localisations can be carried out on
S-algebras and their modules. In particular, we
can also localise at a prime p. So we could
work with the p-local sphere in place of S and
with p-local CW algebras.

2 Minimal atomic

S-algebras

Assumptions From now on, we work p-locally.
S denotes the p-local sphere. All S-algebras A
are commutative and connective with Ao = Zp)

and all homotopy groups f.g. over Zy).

A is atomic if every S-algebra self map
A — A is a weak equivalence.

A is irreducible if every S-algebra map
B — A inducing a mono on 7, (—) is a weak
equivalence.

An atomic A is minimal atomic if every
S-algebra map B — A inducing a mono on
7« (—) and with B atomic is a weak equivalence.

A CW S-algebra is minimal if for every n,
HAQ, (A", S;F,) — HAQ, (A1, S;F,)

is an isomorphism.
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We use an important general fact (remember
our assumptions above).

Lemma 2.1. For every S-algebra A, there is a
weak equivalence B — A with B a minimal
CW S-algebra.

Theorem 2.2. Let A be an S-algebra. Then

the following are equivalent.
e A is minimal atomic.
e A is irreducible.

e For all k > 0, the Hurewicz homomorphism
0: myA — HAQ(A, S;F,) is trivial.

The proofs are described in Helen Gilmour’s
thesis and are parallel to those of [2] for spectra
and simply connected spaces, but using HAQ
in place of ordinary homology.

3 Some examples

If A is a commutative S-algebra that is
minimal atomic as an S-module, the usual
Hurewicz homomorphism 7 A — Hy(A;F,) is
trivial for k > 0. So ku, ko, HZ, HZ/p" are all
minimal atomic p-locally. If BP were a
commutative S-algebra it would be too, but
this is still not known.

Many Thom spectra are amenable to study
using a result of Basterra & Mandell [4].
Theorem 3.1. Let f: X — BSF be an
infinite loop map with associated Thom
spectrum M f. Then Qs(Mf)=Mf AKX,
where X is the spectrum with zeroth space X.
Hence

HAQ, (M f/S) = H.(X)

and the Hurewicz homomorphism 0 is

T M [ — Ho(Mf) =20 H(X) < Ho(X),

where ev annihilates decomposables in H,(X).
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MU p-locally: H,(MU;F,) =TF,[b, : r > 1]
and

HAQ, (MU, S;F,) = Ho(X?ku; Fp,) C A(p) o
For p odd,

s if r = 87
0(b,) — (& ifr=p
0 otherwise,
while if p =2
2 ifr =29,
0(b,) = & itr

0 otherwise.

So MU is never minimal atomic.

M Sp/U 2-locally: The fibration

Sp/U — BU — BSp has an associated map
of Thom spectra M Sp/U — MU and the
induced maps in homology and homotopy are
injective. In fact,

where yo,—1 = ba—1 (mod decomp). This time,
Sp/U = ¥2ko and 0 is trivial here. So M Sp/U

is minimal atomic and is a core of MU.

M Sp 2-locally: By a result of Floyd,
im[M Sp, — MO,] C (MO,)®),
so it follows that
im[M Sp, — H,(MSp;F,)]
C H.(MSp;F)"?,

and so 6 is trivial and therefore M Sp is

minimal atomic.
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4 Periodic S-algebras

We can identify Qg(KU) using Snaith’s result
that the localization of X°>°CPS° with respect
to the generator 3; € mpX*°CPS° is equivalent
to the periodic K-theory spectrum KU. This
result can be rigidified to give an equivalence of
commutative S-algebras S°CPX[8; '] ~ KU.
Proposition 4.1. We have

Qs(S*°CPY) = E*°CPY AX’HZ,
Qs(KU) = KU ANY*HZ ~ KUQ.
Proof. By [4],
Qg(E®CPY) = E°CPY A S?HZ.

The functor Q4(—) commutes with smashing
localizations, hence

Qs(E°CP[B7Y]) = S°CPF (B~ A X2 HZ.
O

Let p be a prime and let K(1) be the first
Morava K-theory at p.

Corollary 4.2. In the category of K(1)-local
KU-modules, Qs(KU) ~ .

Proof. Since Qg(KU) is already KU-local, its
K (1)-localization agrees with its p-completion,
and this is trivial since Qg(KU) is rationally a
wedge of suspensions of HQ. O

For the Lubin-Tate spectrum F,,, we have

Proposition 4.3. In the category of
K (n)-local E,-modules, Qg(Ey,) ~ *.

Proof. This uses an argument of Rognes to
show that (even after Bousfield localization)

B ~ THH?(B) = Q4(B) ~ *.

We can use a spectral sequence to show that
K(n). THH®(E,)) = K (n).E,, hence
E, — THH®(E,) is a K (n)-equivalence.  [J
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5 TAQ-étale algebras

Let A — B be a morphism of commutative
S-algebras. Then B/A is formally TAQ-étale if

QA(B) ~ ok,

and it is TAQ-étale if it is also dualizable as an
A-module.

Theorem 5.1. For FEilenberg-Mac Lane
spectra, a morphism HR;, — HRy is
(formally) TAQ-étale if and only if it is
induced by a (formally) étale ring
homomorphism Ry — Rs.

Theorem 5.2. Let R be a commutative ring
and let HR — A be a formally TAQ-étale
morphism of commutative S-algebras, where
A/HR is and A is (—1)-connected. Then

A~ HS for some commutative ring S and the
associated morphism HR — HS is induced by
a separable ring homomorphism R — S. By
the above

Proof. There is a model structure on € due to
Toén and Vezzosi [6], in which the cofibrations
are TAQ-étale morphisms and weak
equivalences are as usual. The natural map

A — HmgA factors as

TAQ-étale acyclic fibration

A B H’]T()A

so there is a composite cofibration HR — B,
where B is an EM spectrum weakly equivalent
to H?TQA.

Now the cofibration A — B is 1-connected
and an easy inductive argument using
Basterra’s Lemma 1.1 shows that m,, A = 0 for
n > 0. Hence A is also EM. O
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