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What is BP?

For each prime p, there is a p-local spectrum BP whose
cohomology as an A∗-module is the quotient

H∗(BP;Fp) = A∗/(β)

(where β = Sq1 when p = 2), or equivalently, when p is odd

H∗(BP;Fp) = Fp[ζr : r > 1] ⊂ Fp[ζr : r > 1]⊗Λ(τs : s > 0) = A∗,

and when p = 2

H∗(BP;F2) = F2[ζ2
r : r > 1] ⊂ Fp[ζr : r > 1] = A∗.

These spectra are important since Milnor showed that as an
A∗-module, H∗(MU;Fp) is a coproduct of suspensions of A∗/(β),
so then MU(p) is a wedge of suspensions of BP provided such a
spectrum exists.
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Brown and Peterson constructed BP by ad hoc methods, so
Milnor’s result showed that there was a topological splitting of
MU(p).

In fact there is a canonical construction due to Quillen, who showed
how to define an idempotent map of commutative ring spectra
ε : MU(p) −→ MU(p) which splits off BP as a retract of MU(p).
There are resulting maps of ring spectra BP −→ MU(p) −→ BP
whose composition is the identity. This construction depends on
the algebraic universality of MU∗ for formal group laws and the
idempotent corresponds to a functorial p-typification operation.
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Further structure

Since MU is an E∞ ring spectrum, or equivalently a commutative
S-algebra, it is natural to ask whether BP also has such structure.
A stronger form of this question asks whether the natural maps

BP −→ MU(p) −→ BP

are morphisms of commutative S-algebras, or of H∞ ring spectra.
McClure and AB both worked unsuccessfully on resolving on this in
the early 1980s. Recently it has been shown by Johnson & Noel
that the map MU(p) −→ BP is not H∞ for small primes p.
Hu, Kriz & May showed that for all primes BP −→ MU(p) is not
H∞. Kriz gave a sketch of a proof that BP is E∞ based on TAQ,
but that is widely believed to be incorrect. Other work by Basterra
& Mandell, and Richter have shown that BP supports some partial
approximations to E∞ structures.
The difficulties stem from the fact that BP has no known
‘geometric’ description, and the failure of E∞ obstruction theory
methods.
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Priddy’s construction

Around 1980, Priddy gave a cellular construction of BP. Ideas in
this were later resurrected by Hu, Kriz & May, then AJB & JPM et
al, so that BP is minimal atomic and any map BP −→ MU(p)

which induces an isomorphism on π0(−) gives a monomorphism on
π∗(−), i.e., this map is a core for MU(p).
Priddy constructs a CW p-local spectrum X so that the skeleta
satisfy X [0] = S(p), X [2n] = X [2n+1] and X [2m+2] is obtained from

X [2m] by attaching (2m + 2)-cells to kill a minimal generating set
of π2m+1X [2m].
Obstruction theory arguments imply there are maps

X −→ MU(p) −→ X

extending the identity on the 0-cell. By Milnor’s calculations, X
has the correct cohomology as an A∗-module.
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For the prime p = 2, Hu, Kriz & May identified a core of MU(2) in
the homotopy category of 2-local commutative S-algebras, namely
(MSp/U)(2) −→ MU(2), where MSp/U is the Thom spectrum over
the fibre in the fibration sequence of infinite loop spaces

Sp/U −→ BU −→ BSp.
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Commutative S-algebras and E∞ ring spectra

Commutative S-algebras are essentially the same thing as E∞ ring
spectra, and to describe these we need to use the extended power
functors. For a spectrum X ,

DnX = E Σn nΣn X (n).

When X = Σ∞Z+,

DnΣ∞Z+ = Σ∞(E Σn ×Σn Zn)+

Then E is an E∞ ring spectrum if there are suitably compatible
maps µn : DnE −→ E extending a product map

µ : E (2) −→ D2E
µ2−→ E .

It turns out that such an E∞ ring structure is equivalent to the
product µ making E into a commutative S-algebra.
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Power operations and the Adams spectral sequence

We will work 2-locally from now on. However, most of what we
discuss has analogues for other primes.
Given an E∞ ring spectrum E , there are various types of power
operations that can be defined. We will use operations based on
D2E , but relations between these depend on the DnE for n > 2.
Given α ∈ πkD2Sn (so we can realise α as a map Sk −→ D2Sn)
there is an operation α∗ : πnE −→ πkE which for x : Sn −→ E is
given by

α∗x : Sk α−→ D2Sn D2x−−→ D2E
µ2−→ E .

To understand elements of π∗D2Sn it helps to notice that

D2Sn ∼ ΣnRP∞n ∼ Σn(Thom spectrum of nρ1 ↓ RP∞).

The cell structure of this is simple, with one cell in each degree
from 2n up. The Steenrod module structure for H∗D2Sn can be
found using the Wu fomulae. Although n ∈ Z makes sense in this
context, we will assume that E is connective.
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Theorem
Suppose that E is a connective commutative S-algebra for which
0 = η1 ∈ π1E . Then for k > 1, the operation P2k+1−1 is defined
on π2k+1−2E , giving a map

P2k+1−1 : π2k+1−2E −→ π2k+2−3E .

Moreover, the indeterminacy is trivial and the operation 2P2k+1−1

is trivial.
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The next result shows how this works in the mod 2 Adams spectral
sequence converging to π∗E in good situations.

Lemma
With same assumptions, if w ∈ π2k+1−2E is detected in the 1-line

of the ASS by W ∈ Ext1,2k+1−1
A(2)∗

(F2,H∗E ), then P2k+1−1w is
detected in the 1-line by

P2k+1−1W ∈ Ext1,2k+2−2
A∗

(F2,H∗E ),

where P2k+1−1 is the algebraic Steenrod operation of May et al.
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Killing homotopy the E∞ way

Suppose that R is a commutative S-algebra and that f : Z −→ R
is a map. There is a unique extension to a map of commutative
S-algebras f̃ : PZ −→ R, where P(−) is the free commutative
S-algebra functor. We can form a pushout diagram of
commutative S-algebras

PZ
f̃ //

��

R

��
PCZ // R//f

where the left hand arrow is induced by the inclusion of Z into the
cone CZ . In fact,

R//f = R ∧PZ PCZ .

When Z is an m-sphere or wedge of m-spheres, R//f is said to be
obtained from R by attaching E∞ (m + 1)-cells to kill the
homotopy class of f .
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If R is connective then we can build a CW commutative S-algebra
R ′ and a weak equivalence R ′ −→ R by inductively attaching E∞
cells starting with the unit map S −→ R.

Now we proceed to inductively construct a sequence of 2-local
connective commutative S-algebras

S = R(0) −→ R(1) −→ · · · −→ R(n − 1) −→ R(n) −→ · · ·

where R(n) is obtained from by R(n − 1) by attaching a single E∞
(2n+1 − 2)-cell.
The first step involves killing the generator η ∈ π1S , and taking
R(1) = S//η. Then in the ASS with standard cobar complex
notation, η is represented by

[ζ2
1 ⊗ 1] ∈ Ext1,2

A∗
(F2,F2).
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Homological calculations

We will write H∗(−) for mod 2 ordinary homology.
Suppose that R is a 2-local connective commutative S-algebra and
that α ∈ π2n−1R is non-trivial and has Adams filtration 1. Let its
representative in the ASS be [w ] ∈ Ext1,2

A∗
(F2,H∗R).

Theorem
The homology of R//α has the form

H∗(R//α) = H∗R[Q I s : I is admissible with excess e(I ) > 2n],

for a generator s ∈ H2n(R//α) with coaction ψs = 1⊗ s + w. The
rational homology is

H∗(R//α;Q) = H∗(R;Q)[S ],

where S is the image of a lift of s to integral homology
H∗(R//α;Z(2)).
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The inductive construction

Now we proceed to build the R(n) starting with R(0) = S and η to
give R(1) = R//η. By the last Theorem, the homology of R(1).
Since η has order 2, there is a commutative diagram of S-modules

S2

2

!!��

��

S1 η // R(0) // Cη //

��

S2

R(1)

in which the dashed arrow provides a homotopy class u1 ∈ π2R(1)
of infinite order. The representative of this element is

[ζ1 ⊗ s + ζ2 ⊗ 1] ∈ Ext1,3
A∗

(F2,H∗R(1)).
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We can use the power operation P3 to obtain a homotopy element
P3u1 ∈ π5R(1) of order 2 and represented in the ASS by

[ζ2
1 ⊗ s2 + ζ2

2 ⊗ 1] ∈ Ext1,6(F2,H∗R(1)).

Now we can iterate. At each stage we have R(n) with an infinite
order element un ∈ π2n+1−2R(n) and an element

wn = P2n+1−1un ∈ π2n+2−3R(n) of order 2. We can form
R(n + 1) = R(n)//wn, and rationally we have

H∗(R(n);Q) = Q[S1, . . . ,Sn]

where Sr is a lift of a certain homology element sr ∈ H2r+1−2R(n).
Making the maps R(n) −→ R(n + 1) into cofibrations we can form
the limit R(∞) = colimn R(n) so that

π∗R(∞) = colim
n

π∗R(n).
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Explicit formulae can be found for representatives of these
homotopy elements in the ASS:

un = [ζ1 ⊗ sn + ζ2 ⊗ s2
n−1 + ζ3 ⊗ s22

n−2

+ · · ·+ ζr ⊗ s2r−1

n−r+1 + · · ·+ ζn+1 ⊗ 1]

wn = [ζ2
1 ⊗ s2

n−1 + ζ4
2 ⊗ s2

n−2 + ζ3
3 ⊗ s22

n−3

+ · · ·+ ζ2
r ⊗ s2r−1

n−r + · · ·+ ζ2
n ⊗ 1]
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The commutative S-algebra MU has torsion-free homotopy, so
there is a morphism R(∞) −→ MU. The natural map
MU −→ BP is a map of ring spectra.

Lemma
The composition R(∞) −→ MU −→ BP induces a surjection on
H∗(−) and is a rational equivalence.

Now we could proceed to kill the torsion in π∗R(∞) by attaching
E∞ cells. But in order to preserve the rational homotopy type,
instead we use an idea of Tyler Lawson and attach E∞ cones on
Moore spectra Sm ∪pk Dm+1 to kill elements of order pk . The
resulting spectrum R has torsion-free homotopy and comes
equipped with a map of commutative S-algebras R(∞) −→ R and
a map of commutative ring spectra BP −→ R, both of which are
rational equivalences. It is even true that
H∗(BP;Z(2)) −→ H∗(R;Z(2)) is a split monomorphism. But it is
not clear whether there is a map of ring spectra R −→ BP. If such
a map were to exist then R ∼ BP so BP would have an E∞
structure.
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In the other direction the following holds.

Theorem
If BP is a commutative S-algebra then there is a weak equivalence
of commutative S-algebras R −→ BP.

Here is another construction that gives a close approximation to
BP. Start with the minimal atomic commutative S-algebra
MSp/U. Then there are generators x2k−1 ∈ π4k−2MSp/U for
which

π∗MSp/U = Z(2)[x2k−1 : k > 1].

We can inductively kill the generators x2k−1 for k 6= 2s to obtain a
commutative S-algebra T (∞). Killing the torsion we get T with

π∗T ⊗Q ∼= π∗BP ⊗Q.

Again it is not clear if there is a map of ring spectra T −→ BP,
but there is a map BP −→ T which is a rational equivalence.

Theorem
If BP is a commutative S-algebra then there is a weak equivalence
of commutative S-algebras T −→ BP.

Andrew Baker Approaching BP as a commutative S-algebra


