## Approaching BP as a commutative S-algebra

Andrew Baker

### Bergen Topology Seminar 15th June 2010

Andrew Baker Approaching BP as a commutative S-algebra

## What is *BP*?

For each prime p, there is a p-local spectrum BP whose cohomology as an  $\mathcal{A}^*$ -module is the quotient

$$H^*(BP; \mathbb{F}_p) = \mathcal{A}^*/(\beta)$$

(where  $\beta = Sq^1$  when p = 2), or equivalently, when p is odd

 $H_*(BP;\mathbb{F}_p)=\mathbb{F}_p[\zeta_r:r\geqslant 1]\subset \mathbb{F}_p[\zeta_r:r\geqslant 1]\otimes \Lambda( au_s:s\geqslant 0)=\mathcal{A}_*,$ 

and when p = 2

$$H_*(BP;\mathbb{F}_2) = \mathbb{F}_2[\zeta_r^2 : r \ge 1] \subset \mathbb{F}_p[\zeta_r : r \ge 1] = \mathcal{A}_*.$$

These spectra are important since Milnor showed that as an  $\mathcal{A}^*$ -module,  $H^*(MU; \mathbb{F}_p)$  is a coproduct of suspensions of  $\mathcal{A}^*/(\beta)$ , so then  $MU_{(p)}$  is a wedge of suspensions of BP provided such a spectrum exists.

Brown and Peterson constructed BP by ad hoc methods, so Milnor's result showed that there was a topological splitting of  $MU_{(p)}$ .

In fact there is a canonical construction due to Quillen, who showed how to define an idempotent map of commutative ring spectra  $\varepsilon \colon MU_{(p)} \longrightarrow MU_{(p)}$  which splits off BP as a retract of  $MU_{(p)}$ . There are resulting maps of ring spectra  $BP \longrightarrow MU_{(p)} \longrightarrow BP$ whose composition is the identity. This construction depends on the algebraic universality of  $MU_*$  for formal group laws and the idempotent corresponds to a functorial *p*-typification operation.

### Further structure

Since MU is an  $E_{\infty}$  ring spectrum, or equivalently a commutative *S*-algebra, it is natural to ask whether *BP* also has such structure. A stronger form of this question asks whether the natural maps

$$BP \longrightarrow MU_{(p)} \longrightarrow BP$$

are morphisms of commutative S-algebras, or of  $H_{\infty}$  ring spectra. McClure and AB both worked unsuccessfully on resolving on this in the early 1980s. Recently it has been shown by Johnson & Noel that the map  $MU_{(p)} \longrightarrow BP$  is not  $H_{\infty}$  for small primes p. Hu, Kriz & May showed that for all primes  $BP \longrightarrow MU_{(p)}$  is not  $H_{\infty}$ . Kriz gave a sketch of a proof that BP is  $E_{\infty}$  based on TAQ, but that is widely believed to be incorrect. Other work by Basterra & Mandell, and Richter have shown that BP supports some partial approximations to  $E_{\infty}$  structures.

The difficulties stem from the fact that BP has no known 'geometric' description, and the failure of  $E_{\infty}$  obstruction theory methods.

Around 1980, Priddy gave a cellular construction of *BP*. Ideas in this were later resurrected by Hu, Kriz & May, then AJB & JPM et al, so that *BP* is minimal atomic and any map  $BP \longrightarrow MU_{(p)}$ which induces an isomorphism on  $\pi_0(-)$  gives a monomorphism on  $\pi_*(-)$ , *i.e.*, this map is a core for  $MU_{(p)}$ . Priddy constructs a CW *p*-local spectrum *X* so that the skeleta satisfy  $X^{[0]} = S_{(p)}$ ,  $X^{[2n]} = X^{[2n+1]}$  and  $X^{[2m+2]}$  is obtained from  $X^{[2m]}$  by attaching (2m + 2)-cells to kill a minimal generating set of  $\pi_{2m+1}X^{[2m]}$ .

Obstruction theory arguments imply there are maps

$$X \longrightarrow MU_{(p)} \longrightarrow X$$

extending the identity on the 0-cell. By Milnor's calculations, X has the correct cohomology as an  $A^*$ -module.

For the prime p = 2, Hu, Kriz & May identified a core of  $MU_{(2)}$  in the homotopy category of 2-local commutative *S*-algebras, namely  $(MSp/U)_{(2)} \longrightarrow MU_{(2)}$ , where MSp/U is the Thom spectrum over the fibre in the fibration sequence of infinite loop spaces

 $Sp/U \longrightarrow BU \longrightarrow BSp.$ 

# Commutative S-algebras and $E_\infty$ ring spectra

Commutative S-algebras are essentially the same thing as  $E_{\infty}$  ring spectra, and to describe these we need to use the extended power functors. For a spectrum X,

$$D_n X = E \Sigma_n \ltimes_{\Sigma_n} X^{(n)}.$$

When  $X = \Sigma^{\infty} Z_+$ ,

$$D_n \Sigma^{\infty} Z_+ = \Sigma^{\infty} (E \Sigma_n \times_{\Sigma_n} Z^n)_+$$

Then *E* is an  $E_{\infty}$  ring spectrum if there are suitably compatible maps  $\mu_n: D_n E \longrightarrow E$  extending a product map

$$\mu\colon E^{(2)}\longrightarrow D_2E\xrightarrow{\mu_2}E.$$

It turns out that such an  $E_{\infty}$  ring structure is equivalent to the product  $\mu$  making E into a commutative S-algebra.

## Power operations and the Adams spectral sequence

We will work 2-locally from now on. However, most of what we discuss has analogues for other primes.

Given an  $E_{\infty}$  ring spectrum E, there are various types of power operations that can be defined. We will use operations based on  $D_2E$ , but relations between these depend on the  $D_nE$  for n > 2. Given  $\alpha \in \pi_k D_2 S^n$  (so we can realise  $\alpha$  as a map  $S^k \longrightarrow D_2 S^n$ ) there is an operation  $\alpha^* \colon \pi_n E \longrightarrow \pi_k E$  which for  $x \colon S^n \longrightarrow E$  is given by

$$\alpha^* x \colon S^k \xrightarrow{\alpha} D_2 S^n \xrightarrow{D_2 x} D_2 E \xrightarrow{\mu_2} E.$$

To understand elements of  $\pi_* D_2 S^n$  it helps to notice that

$$D_2 S^n \sim \Sigma^n \mathbb{R}P_n^{\infty} \sim \Sigma^n$$
 (Thom spectrum of  $n\rho_1 \downarrow \mathbb{R}P^{\infty}$ ).

The cell structure of this is simple, with one cell in each degree from 2n up. The Steenrod module structure for  $H^*D_2S^n$  can be found using the Wu fomulae. Although  $n \in \mathbb{Z}$  makes sense in this context, we will assume that E is connective.

#### Theorem

Suppose that E is a connective commutative S-algebra for which  $0 = \eta 1 \in \pi_1 E$ . Then for  $k \ge 1$ , the operation  $\mathcal{P}^{2^{k+1}-1}$  is defined on  $\pi_{2^{k+1}-2}E$ , giving a map

$$\mathcal{P}^{2^{k+1}-1} \colon \pi_{2^{k+1}-2}E \longrightarrow \pi_{2^{k+2}-3}E.$$

Moreover, the indeterminacy is trivial and the operation  $2\mathcal{P}^{2^{k+1}-1}$  is trivial.

The next result shows how this works in the mod 2 Adams spectral sequence converging to  $\pi_*E$  in good situations.

#### Lemma

With same assumptions, if  $w \in \pi_{2^{k+1}-2}E$  is detected in the 1-line of the ASS by  $W \in \operatorname{Ext}_{\mathcal{A}(2)_*}^{1,2^{k+1}-1}(\mathbb{F}_2, H_*E)$ , then  $\mathcal{P}^{2^{k+1}-1}w$  is detected in the 1-line by

$$\mathcal{P}^{2^{k+1}-1}W\in \mathsf{Ext}_{\mathcal{A}_*}^{1,2^{k+2}-2}(\mathbb{F}_2,H_*E),$$

where  $\mathcal{P}^{2^{k+1}-1}$  is the algebraic Steenrod operation of May et al.

# Killing homotopy the $E_{\infty}$ way

Suppose that R is a commutative S-algebra and that  $f: Z \longrightarrow R$ is a map. There is a unique extension to a map of commutative S-algebras  $\tilde{f}: \mathbb{P}Z \longrightarrow R$ , where  $\mathbb{P}(-)$  is the free commutative S-algebra functor. We can form a pushout diagram of commutative S-algebras



where the left hand arrow is induced by the inclusion of Z into the cone CZ. In fact,

$$R//f = R \wedge_{\mathbb{P}Z} \mathbb{P}CZ.$$

When Z is an *m*-sphere or wedge of *m*-spheres, R//f is said to be obtained from R by attaching  $E_{\infty}$  (m+1)-cells to kill the homotopy class of f.

If *R* is connective then we can build a CW commutative *S*-algebra R' and a weak equivalence  $R' \longrightarrow R$  by inductively attaching  $E_{\infty}$  cells starting with the unit map  $S \longrightarrow R$ .

Now we proceed to inductively construct a sequence of 2-local connective commutative S-algebras

$$S = R(0) \longrightarrow R(1) \longrightarrow \cdots \longrightarrow R(n-1) \longrightarrow R(n) \longrightarrow \cdots$$

where R(n) is obtained from by R(n-1) by attaching a single  $E_{\infty}$   $(2^{n+1}-2)$ -cell.

The first step involves killing the generator  $\eta \in \pi_1 S$ , and taking  $R(1) = S//\eta$ . Then in the ASS with standard cobar complex notation,  $\eta$  is represented by

$$[\zeta_1^2\otimes 1]\in \mathsf{Ext}_{\mathcal{A}_*}^{1,2}(\mathbb{F}_2,\mathbb{F}_2).$$

# Homological calculations

We will write  $H_*(-)$  for mod 2 ordinary homology. Suppose that R is a 2-local connective commutative S-algebra and that  $\alpha \in \pi_{2n-1}R$  is non-trivial and has Adams filtration 1. Let its representative in the ASS be  $[w] \in \operatorname{Ext}_{\mathcal{A}_*}^{1,2}(\mathbb{F}_2, H_*R)$ .

#### Theorem

The homology of  ${\sf R}/\!/lpha$  has the form

 $H_*(R//\alpha) = H_*R[Q^Is: I \text{ is admissible with excess } e(I) > 2n],$ 

for a generator  $s \in H_{2n}(R//\alpha)$  with coaction  $\psi s = 1 \otimes s + w$ . The rational homology is

$$H_*(R/\!/\alpha;\mathbb{Q})=H_*(R;\mathbb{Q})[S],$$

where S is the image of a lift of s to integral homology  $H_*(R//\alpha; \mathbb{Z}_{(2)})$ .

## The inductive construction

Now we proceed to build the R(n) starting with R(0) = S and  $\eta$  to give  $R(1) = R//\eta$ . By the last Theorem, the homology of R(1). Since  $\eta$  has order 2, there is a commutative diagram of S-modules



in which the dashed arrow provides a homotopy class  $u_1 \in \pi_2 R(1)$  of infinite order. The representative of this element is

$$[\zeta_1\otimes s+\zeta_2\otimes 1]\in \operatorname{Ext}_{\mathcal{A}_*}^{1,3}(\mathbb{F}_2,H_*R(1)).$$

We can use the power operation  $\mathcal{P}^3$  to obtain a homotopy element  $\mathcal{P}^3 u_1 \in \pi_5 R(1)$  of order 2 and represented in the ASS by

$$[\zeta_1^2\otimes s^2+\zeta_2^2\otimes 1]\in \mathsf{Ext}^{1,6}(\mathbb{F}_2,H_*R(1)).$$

Now we can iterate. At each stage we have R(n) with an infinite order element  $u_n \in \pi_{2^{n+1}-2}R(n)$  and an element  $w_n = \mathcal{P}^{2^{n+1}-1}u_n \in \pi_{2^{n+2}-3}R(n)$  of order 2. We can form  $R(n+1) = R(n)//w_n$ , and rationally we have

$$H_*(R(n);\mathbb{Q}) = \mathbb{Q}[S_1,\ldots,S_n]$$

where  $S_r$  is a lift of a certain homology element  $s_r \in H_{2^{r+1}-2}R(n)$ . Making the maps  $R(n) \longrightarrow R(n+1)$  into cofibrations we can form the limit  $R(\infty) = \operatorname{colim}_n R(n)$  so that

$$\pi_*R(\infty)=\operatorname{colim}_n\pi_*R(n).$$

Explicit formulae can be found for representatives of these homotopy elements in the ASS:

$$u_{n} = [\zeta_{1} \otimes s_{n} + \zeta_{2} \otimes s_{n-1}^{2} + \zeta_{3} \otimes s_{n-2}^{2^{2}} + \dots + \zeta_{r} \otimes s_{n-r+1}^{2^{r-1}} + \dots + \zeta_{n+1} \otimes 1]$$
$$w_{n} = [\zeta_{1}^{2} \otimes s_{n-1}^{2} + \zeta_{2}^{4} \otimes s_{n-2}^{2} + \zeta_{3}^{3} \otimes s_{n-3}^{2^{2}} + \dots + \zeta_{r}^{2} \otimes s_{n-r}^{2^{r-1}} + \dots + \zeta_{n}^{2} \otimes 1]$$

The commutative S-algebra MU has torsion-free homotopy, so there is a morphism  $R(\infty) \longrightarrow MU$ . The natural map  $MU \longrightarrow BP$  is a map of ring spectra.

#### Lemma

The composition  $R(\infty) \longrightarrow MU \longrightarrow BP$  induces a surjection on  $H_*(-)$  and is a rational equivalence.

Now we could proceed to kill the torsion in  $\pi_* R(\infty)$  by attaching  $E_{\infty}$  cells. But in order to preserve the rational homotopy type, instead we use an idea of Tyler Lawson and attach  $E_{\infty}$  cones on Moore spectra  $S^m \cup_{p^k} D^{m+1}$  to kill elements of order  $p^k$ . The resulting spectrum R has torsion-free homotopy and comes equipped with a map of commutative S-algebras  $R(\infty) \longrightarrow R$  and a map of commutative ring spectra  $BP \longrightarrow R$ , both of which are rational equivalences. It is even true that  $H_*(BP; \mathbb{Z}_{(2)}) \longrightarrow H_*(R; \mathbb{Z}_{(2)})$  is a split monomorphism. But it is not clear whether there is a map of ring spectra  $R \longrightarrow BP$ . If such a map were to exist then  $R \sim BP$  so BP would have an  $E_{\infty}$ structure.

In the other direction the following holds.

### Theorem

If BP is a commutative S-algebra then there is a weak equivalence of commutative S-algebras  $R \longrightarrow BP$ .

Here is another construction that gives a close approximation to *BP*. Start with the minimal atomic commutative *S*-algebra MSp/U. Then there are generators  $x_{2k-1} \in \pi_{4k-2}MSp/U$  for which

$$\pi_* MSp/U = \mathbb{Z}_{(2)}[x_{2k-1} : k \ge 1].$$

We can inductively kill the generators  $x_{2k-1}$  for  $k \neq 2^s$  to obtain a commutative *S*-algebra  $T(\infty)$ . Killing the torsion we get *T* with

$$\pi_*T\otimes\mathbb{Q}\cong\pi_*BP\otimes\mathbb{Q}.$$

Again it is not clear if there is a map of ring spectra  $T \longrightarrow BP$ , but there is a map  $BP \longrightarrow T$  which is a rational equivalence.

### Theorem

If BP is a commutative S-algebra then there is a weak equivalence of commutative S-algebras  $T \longrightarrow BP$ .