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Recollections on Galois extensions of commutative rings

Let R, S be commutative rings with a ring monomorphism
R −→ S making S an R-algebra, which we indicate by writing
S/R. Suppose also that a finite group G acts faithfully on S by
R-algebra automorphisms. Then S/R is a G -Galois extension if

◮ SG = R;
◮ the unramified condition holds: the adjoint of the

multiplication map induces a ring isomorphism

S ⊗R S
∼=−−→ Map(G ,S) ∼=

∏
G

S .

The unramified condition implies that S is
◮ a finitely generated projective R-module,
◮ a separable (in fact étale) R-algebra,
◮ a faithfully flat R-module, i.e.,

S ⊗R M = 0 ⇐⇒ M = 0.
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Some history

This version of Galois theory was developed by Auslander, Chase,
Goldman, Harrison and Rosenburg in the 1960s. Much of the
theory for fields has analogues, although there are some interesting
differences.
For example, there is a trivial G -Galois extension

∏
G R which is

almost never a field. For G abelian the isomorphism classes of
G -Galois extensions for an abelian group, and even when R is a
field, the product of field extensions need not be a field.
The topological version of Galois theory is mainly due to John
Rognes and we will discuss this next.
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Moving to topology: good categories of spectra

◮ We must work in a good category of spectra with strictly
associative and unital smash product before passage to its
derived category. The category of S-modules MS has this
property. Both MS and the derived category DS are
symmetric monoidal under ∧ = ∧S with S as unit.

◮ Since S is not cofibrant in MS , to define cellular objects we
use use free objects FSn as cofibrant spheres. We write X for
FX , and if Y is a space, write FY for FΣ∞Y .

◮ A monoid R in MS is an S-algebra, and a commutative
monoid is a commutative S-algebra. An S-algebra gives a
monoid in DS , traditionally called a ring spectrum.

◮ For a commutative S-algebra R we can also define R-modules
and a symmetric monoidal category MR with a smash
product ∧R . A monoid A in MR is an R-algebra, and when
commutative it is a commutative R-algebra. The category of
commutative R-algebras CR is also a model category.
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Galois extensions for commutative S-algebras

An extension of commutative S-algebras A −→ B with a finite
group G of automorphisms is a Galois extension if it satisfies the
conditions

◮ the natural map A −→ BhG is a weak equivalence, where the
target is the homotopy fixed point spectrum of the G -action,
BhG = F (EG+,B)

G ;

◮ the adjoint of the action map on the right hand factor induces
a weak equivalence

B ∧A B −→ F (G+,B) ∼=
∏
G

B.

The extension is faithful if B is a faithful A-module, i.e., for any
A-module M,

B ∧A M ∼ ∗ =⇒ M ∼ ∗.
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Some examples of Galois extensions

◮ Let T/R be a G -Galois extension of commutative rings. Then
there is a G -Galois extension HT/HR (Eilenberg-Mac Lane
embedding).

◮ The morphism of commutative S-algebras KO −→ KU
induced from complexification of bundles makes KU/KO a
faithful C2-Galois extension. This example shows that for a
topological G -Galois extension B/A, it may not be true that
π∗B/π∗A need not be G -Galois. For example, π∗KU is not a
projective π∗KO-module.

◮ Let p be a prime. John Rognes proved that for any finite
group G which acts nilpotently on Fp[G ],

F (BG+,HFp) −→ F (EG+,HFp) ∼ HFp

is a G -Galois extension; in particular this is true for nilpotent
groups which include p-groups.
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Here is one way to produce topological Galois extensions. Start
with a commutative S-algebra A. Then A∗ = π∗A is a
commutative (graded) ring. Now let B∗/A∗ be an algebraic
G -Galois extension.

Theorem
There is an essentially unique realization of this as π∗B/A∗, where
A −→ B is a faithful G-Galois extension of commutative
S-algebras.
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Some non-faithful Galois extensions

Ben Wieland observed that the C2-Galois extension

F (BC2+,HF2) −→ F (EC2+,HF2) ∼ HF2

which is not faithful. This depends on the algebraic fact that

π∗(F (BC2+,HF2)) = H−∗(BC2;F2)

is a polynomial algebra and so it is a regular ring. For the Tate
spectrum tC2HF2 � ∗ we have

HF2 ∧F (BC2+,HF2) tC2HF2 ∼ ∗.

This can be shown using the Künneth spectral sequence which is
trivial because

π∗F (BC2+,HF2) = F2[z ], π∗tC2HF2 = F2[z , z
−1],

Tor
F2[z]
∗,∗ (F2,F2[z , z−1]) = 0.

Analogous arguments work for Cp for any odd prime p.
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Lubin-Tate and Morava K -theory spectra

If p is a prime and 1 6 n <∞, there is a Lubin-Tate spectrum En

which is a commutative S-algebra in an essentially unique way.
The associated Morava K -theory spectrum Kn is an En-algebra.
These spectra are 2-periodic and have homotopy rings

π∗En = WFpnJu1, . . . , un−1K[u, u−1],

π∗Kn = Fpn [u, u−1].

It is useful to think of Kn as a residue skew-field of En (it is not
even homotopy commutative when p = 2).
n = 1: E1 = KUp, p-adic complex K -theory, K1 = KU/p, mod p
complex K -theory.
n = 2: E2 is related to elliptic cohomology and topological
modular forms.
These theories are central in modern day stable homotopy and
capture the chromatic periodicity. Working with Kn-local spectra,
there is a Galois theory diagram capturing information in the n-th
monochromatic layer of p-local-homotopy theory of S .
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Ẑ

EnCn

ww
ww
ww
w

Sn

88
88

88
88

88
88

88
8

Gn

Mn

��
��
��
��
��
��
��
��
��
��
��

E hCn
n

EhSn
n

Gn

��
��
��
��
��
��
��
�

EOn

HH
HH

HH
H

SKn

Andrew Baker (based on joint work with Birgit Richter) Morava K -theory of BG : the good, the bad and the MacKey



Warning: In this diagram most of the groups are not finite but
profinite. Also, Cn = Gal(Fpn/Fp), Gal(Fp/Fp) = Ẑ, and Mn 6 Gn

is a maximal finite subgroup.
The Galois extension Enr

n /En is obtained by adjoining roots of unity
of order prime to p. Then π0(E

nr
n )/π0(En) is a maximal unramified

extension with Galois group nẐ = Gal(Fp/Fpn) 6 Gal(Fp/Fp).

Theorem
There are no non-trivial connected Galois extensions of Enr

n . Hence
Enr
n is the separable closure of SKn .
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Lubin-Tate and Morava theory for classifying spaces

Let G be a finite group. It is known that K ∗
n (BG+) is a finite

dimensional K ∗
n -vector space, and also a local ring, thus it is an

Artinian local K ∗
n -algebra. It follows that E

∗
n (BG+) is a finitely

generated E ∗
n -module. If K odd

n (BG+) = 0, then E odd
n (BG+) = 0

and E ∗
n (BG+) is a finitely generated free E ∗

n -module.
The spectra EBG

n = F (BG+,En) and KBG
n = F (BG+,Kn) are

Kn-local En-algebras, with F (BG+,En) commutative.
The extension

EBG
n = F (BG+,En) −→ F (EG+,En) ∼ En

is a candidate for being a G -Galois extension. We will consider this
in the Kn-local setting. First we will consider faithfulness.
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Finite groups and faithfulness

Let G be a finite group with a p-Sylow subgroup G ′ 6 G . The
transfer map associated with BG ′ −→ BG induces retractions

EBG ′
Tr∗ ))

EBGoo KBG ′
Tr∗ ))

KBGoo

therefore we can often focus on p-groups.
From now on we set E = En and K = Kn. As E -algebras,

KBG ∼= K ∧E EBG .

Lemma
For any EBG -module M, there is isomorphism of K-modules

K ∧EBG M ∼= (K ∧E E ) ∧K∧EEBG (K ∧E M).

In particular,
K ∧EBG E ∼= K ∧KBG K .

Andrew Baker (based on joint work with Birgit Richter) Morava K -theory of BG : the good, the bad and the MacKey



Theorem
Let G be a finite group. Then E and K are faithful K-local
EBG -modules.

The Lemma allows reduction to the case of KBG -modules, so it
suffices to show that K is a faithful KBG -module. For these we use
some algebraic theory for modules over Artinian algebras, and a
topological version of the socle series of a finitely generated
module.
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Algebraic recollections

If R is an Artinian local ring then its Jacobson radical radR is
maximal and nilpotent, say (radR)e−1 ̸= 0 = (radR)e , and
R/ radR is a division ring.
For a non-trivial left R-module M, the socle series

0  soc1M  soc2M  · · ·  soce M = M.

is defined recursively by

soc1M = socM = {x ∈ M : (radR)x = 0},
and the following diagram with exact rows.

0→ sock−1M //

��

sock M //

��

soc(M/ sock−1M)→ 0

��
0→ sock−1M // M // M/ sock−1M → 0

Here each quotient sock M/ sock−1M is a vector space over the
division ring R/ radR.
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A topological analogue

Suppose that A is an S-algebra so that A∗ = π∗(A) is a local
Artinian graded ring and M is an finitely generated A-module. If
we can realize the quotient A∗/ radA∗ as π∗(D) for some
A-module D, then we can define a topological socle series

soc1M −→ soc2M −→ · · · −→ soce M = M

so that
π∗(soc

k M) = sock π∗(M).

Here sock M is well-defined up to isomorphism in the homotopy
category DA.
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For the case of A = KBG the residue ring is realized by K , so any
KBG -module M has a socle series.
There is a commutative diagram of S-algebras

K
= //

!!D
DD

DD
DD

D K

KBG

==zzzzzzzz

and K is a left and right module over each of these algebras, so on
smashing two copies over this diagram we obtain another

K ∧K K
= //

&&MM
MMM

MMM
MMM

K ∧K K

K ∧KBG K

88qqqqqqqqqqq

from which it follows that K ∧KBG K � ∗.
Now for a arbitrary KBG -module with π∗M ̸= 0, the socle series
can be used to show that K ∧KBG M � ∗, hence K is a faithful
KBG -module.
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Theorem
For any finite group G,

F (BG+,E ) −→ F (EG+,E ) ∼ E

is a faithful extension of K-local commutative E-algebras.

Now we consider the unramified condition which says that there is
a weak equivalence

Θ: F (BG+,E ) ∧EBG F (BG+,E ) −→ F (G+,E )

and therefore a weak equivalence

E ∧EBG E
∼−−→

∏
G

E .

In particular, π∗(E ∧EBG E ) is concentrated in even degrees. We
will call such an extension ramified if it is not unramified.
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Theorem
For each r > 1, the extension

EBCpr = F (BCpr+,E ) −→ F (ECpr+,E )

is ramified and hence it is not Cpr -Galois.

Sketch of proof: Recall that

(EBCpr )∗ = E ∗[[y ]]/([pr ]y),

where y ∈ (EBCpr )0 = E 0(BCpr+). The p-series [p]y satisfies

[p]y ≡ yp
n

mod m,

and for each r > 1 the pr -series is inductively given by

[pr ]y = [p]([pr−1]y) = pry + · · ·+ yp
rn
+ · · · ≡ yp

rn
mod m.
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By the Weierstrass preparation theorem, there is a polynomial

⟨pr ⟩ y = pr + · · ·+ yp
rn−1 ≡ yp

rn−1 mod m

for which [pr ]y = y ⟨pr ⟩ y(1 + yfr (y)) for some fr (y) ∈ E ∗[[y ]].
Then

(EBCpr )∗ = E ∗[[y ]]/(y ⟨pr ⟩ y).
The (EBCpr )∗-module E∗ has the periodic minimal free resolution

0← E∗ ←− (EBCpr )∗
y←− (EBCpr )∗

⟨pr ⟩y←−−− (EBCpr )∗
y←− · · ·

so Tor
(E

BCpr )∗
∗,∗ (E∗,E∗) is the homology of the complex

0← E∗ ⊗(E
BCpr )∗

(EBCpr )∗
1⊗y←−−− E∗ ⊗(E

BCpr )∗
(EBCpr )∗

1⊗⟨pr ⟩y←−−−−− E∗ ⊗(E
BCpr )∗

(EBCpr )∗
1⊗y←−−− · · ·

which is equivalent to

0← E∗
0←− E∗

pr←− E∗
0←− E∗

pr←− E∗ ←−− · · · .
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Since E∗ is torsion-free, for s > 0 we get

Tor
(E

BCpr )∗
s,∗ (E∗,E∗) =


E∗ if s = 0,

E∗/p
rE∗ if s is odd,

0 otherwise.

Thus in the Künneth spectral sequence

E2
s,t = Tor

(E
BCpr )∗

s,t (E∗,E∗) =⇒ πs+t(E ∧EBCpr E )

there can be no non-trivial differentials since for degree reasons the
only possibilities involve E∗-module homomorphisms of the form

d2k−1 : E2
2k−1,t = Et/p

rEt −→ E2
0,t+2k−2 = Et+2k−2,

with torsion-free target. This shows that the odd degree terms in
π∗(E ∧EBCpr E ) are non-zero, contradicting the unramified
condition for a Galois extension.
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We can extend this Theorem to arbitrary p-groups.

Theorem
Let G be a non-trivial p-group. Then the extension

F (BG+,E ) −→ F (EG+,E )

is ramified, hence it is not G-Galois.

Sketch of proof: Choose a non-trivial epimorphism G −→ Cp.
For some k > 1 there is a factorization

Cpk
// //

(( ((
G // // Cp

inducing morphisms between the associated Künneth spectral
sequences

Er
∗∗(Cp) −→ Er

∗∗(G ) −→ Er
∗∗(Cpk ).
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As in the proof of the Theorem above, the two outer spectral
sequences have trivial differentials. We will analyze the composite
morphism E2

∗∗(Cp) −→ E2
∗∗(Cpk ). On choosing generators

appropriately, the canonical epimorphism Cpk −→ Cp induces the
E∗-algebra monomorphism

(EBCp)∗ = E∗[[y ]]/([p]y) −→ (EBC
pk )∗ = E∗[[y ]]/([p

k ]y);

y 7→ [pk−1]y ,

so the induced map between the two resolutions of the form seen
earlier is

(EBCp)∗

ρ0
��

(EBCp)∗
yoo

ρ1
��

(EBCp)∗
⟨p⟩yoo

ρ2
��

· · ·yoo

(EBC
pk )∗ (EBC

pk )∗
yoo (EBC

pk )∗
⟨pk⟩y

oo · · ·yoo

where the vertical maps are given by

ρ2s : g(y) 7→ g([pk−1]y), ρ2s−1 : h(y) 7→ h([pk−1]y)
⟨
pk−1

⟩
y .
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Applying E∗ ⊗(E
BCpr )∗

(−) with r = 1, k, we obtain a map of chain

complexes

0 E∗oo

ρ′0=

��

E∗
0oo

ρ′1=pk−1·
��

E∗
poo

ρ′2=

��

· · ·0oo

0 E∗oo E∗
0oo E∗

pkoo · · ·0oo

where
ρ′2s = id, ρ′2s−1 = pk−1 · .

Applying this to the odd degree terms found in the proof of the
previous Theorem we see that the induced map

E∗/pE∗
pk−1·−−−−→ E∗/p

kE∗

is always a monomorphism, so the first of the induced morphisms

E2
∗∗(Cp) −→ Er

∗∗(G ) −→ Er
∗∗(Cpk )

is a monomorphism. There can be no higher differentials killing
elements in its image because they map to non-trivial elements of
E2
∗∗(Cpk ) which survive the right hand spectral sequence.
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This shows that E∞
∗∗(G ) contains elements of odd degree, and as in

the cyclic group case this is incompatible with the unramified
condition.
We can extend this result to the class of p-nilpotent groups. A
finite group G is p-nilpotent if each p-Sylow subgroup P 6 G has
a normal p-complement, i.e., there is a normal subgroup N ▹ G
with p - |N| and G = PN = P n N.

Corollary

If G is a p-nilpotent group for which p divides |G |, then the
extension

F (BG+,E ) −→ F (EG+,E )

is ramified and so is not G-Galois.
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Sketch of proof: By a result of John Tate, G being p-nilpotent is
equivalent to the restriction homomorphism giving an isomorphism

H∗(BG ;Fp)
∼=−−→ H∗(BP;Fp),

and it is sufficient that this holds in degree 1. Comparison of the
Serre spectral sequences for K ∗(BG+) and K ∗(BP+) shows that

K ∗(BG+)
∼=−−→ K ∗(BP+).

It now follows that

E ∗(BG+)
∼=−−→ E ∗(BP+).

and the result can be deduced from our second Theorem.
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Implications for Eilenberg-Moore spectral sequences

Our results show that the E -theory Eilenberg-Moore spectral
sequence with E 2-term

L-TE2
s,t = Tor(E

BCpr )∗(E∗,E∗)

does not converge to its expected target π∗(
∏

Cpr
E ). This is also

true for any non-trivial p-group with K ∗(BG+) concentrated in
even degrees. Tilman Bauer has shown that the analogue based on
Morava K -theory does converge correctly, at least when G = Cp.
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K ∗(B(−)) as a Green functor

We will discuss the functor which assigns K ∗(BG ) to each finite
group G . Since K ∗(BG ) = K ∗ if and only if p - |G |, this is a
globally defined Green functor for the pair X ,Y, where X consists
of all finite groups and Y consists of all groups with p - |G |. This
means that for every group homomorphism f : G −→ H there is a
homomorphism of K ∗-algebras f ∗ : K ∗(BH) −→ K ∗(BG ), and if
ker f ∈ Y there is a K ∗(BH)-module homomorphism
f∗ : K

∗(BG ) −→ K ∗(BH). These should satisfy the conditions of a
Mackey functor, and then the module homomorphism property of
f∗ makes it a (graded) Green functor.
It is convenient to regarded the grading as a Z/2-grading.
Note that if p is an odd prime then K ∗(BG ) is a commutative
graded K ∗-algebra; when p = 2 it is quasi-commutative, so for u, v
of odd degree,

uv − vu = Q(u)Q(v),

where Q is a certain operation.
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Green functor properties

We’ll set K(G ) = K ∗(BG ), k = K ∗, and consider the main
properties of K(−). Actually there are two different structures to
consider, namely the contravariant functor (K(−), (−)∗), and the
covariant (K(−), (−)∗) where f∗ is only defined when p - | ker f |.
We also have K({1}) = k.
A) (K(−), (−)∗, (−)∗) is a Green functor with values in k-algebras.
B) K(G ) is a finite dimensional local k-algebra. Hence K(G ) is
Artinian and dim socK(G ) = 1.
C) K(G ) is a Frobenius algebra.
D) Let i : {1} −→ G be the unit for any finite group G . Then
i∗1 ̸= 0.
E) (K(−), (−)∗) is a Künneth functor.
F) For a finite abelian group A, K(A) is a bicommutative Hopf
algebra. The finite group schemes SpecK(Cpr ) (r > 1) with
homomorphisms induced by canonical inclusions and quotients
induces a p-divisible group.
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Implications of these properties

The above properties imply the following.

1) If H 6 K and p - |K : H|, then inc∗(1) ∈ K(K )× and
inc∗ : K(K ) −→ K(H) is split monic.
2) For any group, i : {1} −→ G has 0 ̸= i∗1 ∈ socK(G ), so i∗1 is a
basis for socK(G ), and a linear form λ : K(G ) −→ k is a Frobenius
form if and only if λ(i∗1) ̸= 0.
3) If K ▹ G and p - |K |, then the canonical quotient
q : G −→ G/K indices and isomorphism q∗ : K(G/K ) −→ K(G ).
Hence K(G ) = k if and only if p - |G |.
4) For any p-group G , every epimorphism q : G −→ A onto an
abelian group induces a monomorphism q∗ : K(A) −→ K(G ).
Every monomorphism j : B −→ C of finite abelian groups induces
an epimorphism j∗ : K(C ) −→ K(B)
5) For a finite group G , the Mackey functor obtained by restricting
K(−) to the subgroups of G is projective with respect to the
p-subgroups. This implies versions of the stable elements formula.
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