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The notion of an E, ring spectrum arose over thirty years ago, and
was studied in depth by many people including Peter May et al;
later it was reinterpreted in the framework of EKMM as equivalent
to that of a commutative S-algebra. A great deal of work on the
existence of E,, structures using various obstruction theories has
led to a considerable increase in the number of known examples.
Despite this, there are some gaps in our knowledge. The question
that is a major motivation for this talk is

» Does the Brown-Peterson spectrum BP for a prime p admit
an E ring structure?

This has been recognized as an important outstanding problem for
almost four decades, surviving various attempts to answer it.
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What is BP?

For each prime p, there is a p-local spectrum BP whose
cohomology as an A* = A(p)*-module is the cyclic quotient

H*(BP;Fp) = A"/(B)
(where 8 = Sq' when p = 2), or equivalently, when p is odd
Hy(BP;Fp) = Fpl¢, i r > 1] CFplC, : r > 1]@A(Ts - s > 0) = A,
and when p =2
Hi(BP;F2) =TFo[(2 i r 2 1] CFp[¢: r > 1] = A,

These spectra have been important since Milnor showed that as an
A*-module, H*(MU;F,) is a coproduct of suspensions of .A*/(3),
so then MU, is a wedge of suspensions of BP provided such a
spectrum exists. Later Brown and Peterson constructed BP by ad
hoc methods, showing that such a topological splitting of MUy
does exist.
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There is a more concrete construction due to Quillen, who showed
how to define an idempotent map of commutative ring spectra

e: MUip) —> MU,y which splits off BP as a retract of MUy.
There are associated maps of ring spectra

BP — MU, — BP

whose composition is the identity. This construction depends on
the algebraic universality of MU, for formal group laws and the
idempotent corresponds to a functorial p-typification operation.
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Further structure

Since MU is an E, ring spectrum, or equivalently a commutative
S-algebra, it is natural to ask whether BP also has such structure.
A stronger form of this question asks whether the natural maps

BP — MU, — BP

are morphisms of commutative S-algebras (or more weakly, H)
ring spectra.

McClure and AB both worked unsuccessfully on resolving on this in
the early 1980s. Recently it has been shown by Johnson & Noel
that the map MU,y — BP is not Hx for small primes p.

Hu, Kriz & May showed that for each prime p, BP — MU,
cannot be H,,. Kriz sketched a proof that BP is E,, based on
TAQ), but this is widely believed to be incorrect. Further work by
Basterra & Mandell, and Richter showed that BP supports some
partial approximations to E., structures.

The difficulties stem from the fact that BP has no known
geometric description, and the failure of E,, obstruction theory.
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Priddy’s construction

Around 1980, Priddy gave a cellular construction of BP. Ideas in
this were later reworked by Hu, Kriz & May, then AJB & JPM et
al: BP is minimal atomic and any map BP — MU,y which
induces an isomorphism on 7y(—) gives a monomorphism on
m.(—), i.e., this map is a core for MU.

Priddy constructs a CW p-local spectrum X so that the skeleta
satisfy X[0 = Stp): X2l = x12n+1] 3pd X[2m+2] js obtained from
X12ml by attaching (2m 4 2)-cells to kill a minimal generating set
of 7T2m+1X[2m].

Obstruction theory arguments imply there are maps

X — MU(p) — X

extending the identity on the O-cell. By Milnor’s calculations, X
has the correct cohomology as an A*-module.
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For the prime p = 2, Hu, Kriz & May identified a core of MU(2) in
the homotopy category of 2-local commutative S-algebras, namely
(MSp/U)2) — MU(3), where MSp/U is the Thom spectrum over
the fibre in the fibration sequence of infinite loop spaces

Sp/U — BU — BSp.

For an odd prime p, the analogous core seems not to be known!
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Commutative S-algebras and E, ring spectra

Commutative S-algebras are essentially the same thing as E, ring
spectra which can be defined using extended power functors. To
make sense of this we need to work in a context such as the model
category of S-modules of EKMM. This has a symmetric monoidal
structure with smash product A = Ag. In this setting,
commutative S-algebras are the commutative monoids. Untangling
the underlying structure of the smash product leads to the
connection with the other notion of E, ring spectra.

For a spectrum X,

DX = EX, xy, X(".
When X =¥X*Z,,
D,X®Z, = ¥®(EL, x5, Z")4

Then E is an Ey, ring spectrum if there are suitably compatible
maps un: DhE — E extending a product map

pn: E® — DE 2 F
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Killing homotopy the E,, way

Now we recall the idea of attaching E,, cells to a commutative
S-algebra, and use various obstructions involving free commutative
S-algebras.

If X is an S-module then the free commutative S-algebra on X is

PX =PsX = \/ X\/x,

r=0

When X is cofibrant the natural map is a weak equivalence
DX = Ex, xy, X0 =5 x( /%,

Let E be a commutative S-algebra, and let f: \/;S” — E be a
map from a finite wedge of n-spheres. Then there is a unique

extension of f to a morphism of commutative S-algebras
f:P(\V;S") — E.
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The pushout diagram of commutative S-algebras

P(V;S") E

.
P(inc)
P(V; D" ————E//f

defines E//f which we can regard as obtained from E by attaching
E cells. In fact, we can take

E/ff =P(\/ D™) Apqy, sm) E

where P(\/; D"*1) and E are P(\/; S™)-algebras in the evident way.
Note: E//f is weakly equivalent to E//g if f is homotopic to g.
So we sometimes write E//a where « is the homotopy class of .
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The homology of extended powers has been well studied. In
particular, life is simple rationally.

Proposition

For n € N, we have

H.(PS*™ 1 Q) = Ag(xan-1), H«(PS?"; Q) = Q[x24)],

where xm € Hn(PS™; Q) is the image of the homology generator
of Hn(S™; Q).
In positive characteristic, the next result is fundamental.

Theorem

If X is connective then for a prime p, H.(PX;F,) is the free
commutative graded F,-algebra generated by elements Q' Xj,
where x; for j € J gives a basis for H,(X;F}), and

| = (e1,01,€2,...,¢€4,1¢) is admissible with excess(l) + 1 > |x;|.
So for p=2, | = (i1, f2,...,i¢) and we have

H.(PX;Fy) = Fo[Q'x; : j € J, excess(I) + iy > |x;] ].
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For ease of explanation we'll focus on the case p = 2, but the case
of odd primes is similar, although the Kiinneth spectral sequence
has a non-trivial differential dP~1.

Suppose that R is a connective 2-local commutative S-algebra and
that o € m,_1 R has Adams filtration 1 with representative

[w] € Ext'{*"(F2, Hy(R; F2)) in the ASS.

Theorem
The homology of R//a has the form

H.(R//o;F2) = Hy(R;F2)[Q's : | admissible, excess(l) > 2n],

for a generator s € Hp,(R//; F2) with coaction s =1® s+ w.
The rational homology is

H.(R//c; Q) = H.(R; Q)[S],

where S is the image of a lift of s to Hi(R//a; Z(2)).
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Power operations and the Adams spectral sequence

We will describe the 2-local case in detail. However, most of what
we discuss has analogues for other primes. We set

H.(=) = Hi(—:;F2) and H*(—) = H*(—; F,).

Given an E., ring spectrum E, there are various types of power
operations that can be defined. We will use operations based on
D> E, but relations between these depend on the D,E for n > 2.
Given a € mD,S" (so we can realise o as a map SK — D,S")
there is an operation o*: T E — TI'kE given on x: S" — E by

a*x: Sk % p,sn P2 pE 2 F
To understand elements of 7, D,S" it helps to notice that
D,S" ~ X"RPS° ~ L"(Thom spectrum of np; | RP™).

The cell structure of this is simple, with one cell in each degree
from 2n up. The A*-module structure of H*D>S" can be found
using the Wu formulae. Although n € Z makes sense here, since
we will assume that E is connective we will only need n > 0.
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Theorem

Suppose that E is a connective commutative S-algebra for which
0=mnl e mE. Then for k > 1, an operation P21 s defined on
Tok+1_oE, giving a map

2k+1_1

P . 7T2k+1_2E — 772k+2_3E.

. . . .. . k
Moreover, the indeterminacy is trivial and the operation 2P? -1

is trivial.
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The next result shows how this works in the mod 2 Adams spectral
sequence converging to m.E in good situations.

Lemma

With same assumptions, if w € Ty1_oE is detected in the 1-line
of the ASS by W € Exti{fkﬂ_l(Fg, H.E), then Pl s
detected in the 1-line by

2k+1

PPW € Ext P (Fy, HLE),

where P21 s the algebraic Steenrod operation of May et al.
We can calculate P21 on Exti{fkﬂ_l(ﬂ?z, H.E) by applying

k k . .
Sqi Q2 -1 Q2 =1 15 the cobar representatives to obtain
explicit formulae.
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The inductive construction

We will construct a sequence of connective 2-local commutative
S-algebras

$S=R0 —R1)—:--—R(0n-1)— R(n) — ---

where R(n) is obtained from by R(n — 1) by attaching a single E
(2" — 2)-cell.

We start with R(0) = S and wy = 1 to give R(1) = R//wp. In the
ASS with standard cobar complex notation, 7 is represented by

[¢2 ®1] € Ext}}’(Fa, F2).
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As 7 has order 2, there is a commutative diagram of S-modules

52

/o
/ Y

st R(0) —— G, 52

\\\l
(

R(1)

where the dashed arrow provides a homotopy class u; € mR(1) of
infinite order. The representative of this element is

[ ®s+ G ®1] € Extly (Fa, HoR(1)).

We can use the power operation 3 to obtain a homotopy element
P3u; € msR(1) of order 2 and represented in the ASS by

(2 ®s? + (3 @1] € Ext}{®(F2, HR(1)).
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Now we can proceed inductively. At each stage we have

» a commutative S-agebra R(n) with an infinite order element
up € mon1_oR(n),

ontl_q

» an element w, =P up € monr2_3R(n) of order 2,

» homology elements S, € Hor+1_5(R(n); Q) reducing to
sr € Hori1i_pR(n) so that

H.(R(n); Q) = Q[S1,. .., Sal.

We then form R(n+ 1) = R(n)//w, where R(n) — R(n+1) is a
cofibrations. So for the homotopy colimit R(c0) = colim, R(n),

T« R(00) = coLim m«R(n), Hi(R(c0);k) = coLim H.(R(n); k)

for any coefficient ring k.
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Here are some observations on these constructions.

Lemma

The element u, is in the Toda bracket (2, w,_1,1) C moni1_5R(n),
and in the Adams spectral sequence it has filtration 1 with cobar
representative

Q5+ QOS2+ GO s+ @8 + (a1 ® 1

where (; denotes the conjugate of the Milnor generator generator

&€ Ayi_q.
Here we view R(n) as a left R(n — 1)-module and treat the first
two variables of (—, —, —) as associated to R(n — 1), while the last

is associated with R(n).
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Explicit formulae can be found for representatives of these
homotopy elements in the ASS:
_ 2 22
Up=[1Qsn+(®sp_1+3BRs; o
r—1
o G @S G ©]
3
wo = [(F @55+ G ®ss 1+ G @)
oo+ 201

The latter is obtained using a Dyer-Lashof operation to evaluate an

. +1__
Adams representative for P2y, .
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The commutative S-algebra MU has torsion-free homotopy, so
there is a morphism R(c0) — MU. The natural map MU — BP
is a map of ring spectra and H.MU — H,BP — H.HF, = A,
is compatible with the Dyer-Lashof operations.

Lemma
The composition R(co) — MU — BP induces surjections on
7«(—), He(—; k), and is a rational equivalence.

Sketch proof.

It is easy to see that the map H,R(1) — H.BP sends s; to the
standard generator t; in H,BP =TF,[t, : r > 1]. Using Dyer-Lashof
operations we also see that the remaining generators t, are in the
image. It follows that

is surjective. The argument for homotopy uses the Toda brackets
to see that the Hazewinkel generators are in the image. O
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Now we could proceed to kill the torsion in m,R(c0) by attaching
Eo cells. But in order to preserve the rational homotopy type, we
use an idea of Tyler Lawson and attach E,, cones on Moore
spectra S™ Uy D™+ to kill elements of order pX. The resulting
spectrum R has torsion-free homotopy and comes equipped with a
map of commutative S-algebras R(co) — R and a map of
commutative ring spectra BP — R, both of which are rational
equivalences. But it is not clear whether there is a map of ring
spectra R — BP (or indeed any map which is an equivalence on
the bottom cell). If such a map were to exist then R ~ BP so BP
would have an E,, structure.
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In the other direction the following holds.

Theorem
If BP is a commutative S-algebra then there is a weak equivalence
of commutative S-algebras R — BP.

Idea of proof.

Assume that we have a morphism of commutative S-algebras
R’ — BP inducing an surjection on m.(—) (this is crucial to the
argument taht follows) and which is a rational equivalence. Then
the homotopy groups of the homotopy fibre are torsion. Now if
f: Sk—R'is a_map of finite order, we can factor it through a
Moore spectrum f: Sk Uy D¥F1 — R’ and then extend it to a
map

R' Uz C(S* Up D*FY) —s BP.

In fact this extends to a morphism of commutative S-algebras
R'//f — BP. Using this repeatedly we can obtain a morphism of
commutative S-algebras R — BP which is surjective on 7. (—)
and is a rational equivalence. O
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Some speculation

By construction, R(c0) is a nuclear commutative S-algebra and
hence is a minimal atomic. However is not clear if R is minimal
atomic. We can produce a core R° — R, i.e., a morphism of
commutative S-algebras with R€ nuclear and which induces a
monomorphism on 7.(—). In particular, 7m.(R€) is torsion-free.

Lemma

Let A be a connective p-local commutative S-algebra for which
7«(A) is torsion-free. Then there is a morphism of commutative
S-algebras R(co) — A. In particular, the natural morphism
R(o0) — R admits a factorisation through any core R — R.

/\

R(0c0) —= R ——=R
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As R, and more generally any core R, have torsion-free homotopy
concentrated in even degrees, standard arguments show that there
are morphisms of ring spectra BP — R and BP — R¢
associated with complex orientations with p-typical formal group
laws. Our earlier arguments show that these are rational weak
equivalences. Of course we have not shown that BP ~ R even as
(ring) spectra. One way to prove this would be to produce any
map of spectra R — BP that is an equivalence on the bottom
cell, for then the composition BP — R — BP would be a weak
equivalence, therefore so would each of the maps BP — R and

R — BP. It is tempting to conjecture that R (or equivalently
R¢) is always weak equivalent to BP but we have no hard evidence
for this beyond what we have described above.
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