Characteristics for E_{∞} ring spectra

Andrew Baker (University of Glasgow/MSRI)

University of Chicago 27th May 2014

last updated 11/08/2016

Andrew Baker (University of Glasgow/MSRI) Characteristics for E_{∞} ring spectra

For any (not necessarily commutative) ring with unity $1 \neq 0$ there is a *unit* or *characteristic* ring homomorphism $\eta : \mathbb{Z} \to R$. Then ker $\eta \triangleleft \mathbb{Z}$ is a proper ideal and there is a monomorphism $\overline{\eta} : \mathbb{Z} / \ker \eta \to R$ identifying $\mathbb{Z} / \ker \eta$ with the subring $\eta \mathbb{Z} \subset R$. The *characteristic* of R, char R, is the unique non-negative integer such that ker $\eta = (\operatorname{char} R) \triangleleft \mathbb{Z}$. This generalises to unital k-algebras over a commutative ring k. For the unit $\eta : \mathbb{k} \to A$ of such an algebra, there is an ideal ker $\eta \triangleleft \mathbb{k}$ and quotient homomorphism $\mathbb{k} / \ker \eta \to A$ whose image is the *characteristic subalgebra* of A. Problem: How can we generalise this to derived rings?

Topological examples: E_{∞} ring spectra = commutative S-algebras.

N.B. In this setting ideals and quotients objects may not exist.

Some desirable properties of characteristics

- ► A characteristic of a commutative S-algebra R will involve a factorisation of its unit $S \to R_0 \xrightarrow{\chi_R} R$.
- Homotopically well defined.
- Functorial (at least homotopically).

We may assume that R_0 is connective even if R isn't, so can replace R by its connective cover.

Our definition is for p-local commutative S-algebras, but there should be a resulting global notion in terms of local data.

If X is an S-module then the free commutative S-algebra on X is

$$\mathbb{P}X = \mathbb{P}_{S}X = \bigvee_{r \ge 0} X^{(r)} / \Sigma_{r}$$

 $\mathbb{P}: \mathscr{M}_S \to \mathscr{C}_S$ is left adjoint to the forgetful functor, so it preserves pushouts, and creates the model structure on \mathscr{C}_S . Commutative *S*-algebras can be characterised as the algebras over the monad $\mathbb{P}(-)$ on \mathscr{M}_S . When *X* is cofibrant, there is a weak equivalence

$$\bigvee_{r\geq 0} D_r X \xrightarrow{\sim} \mathbb{P} X.$$

Basic observation: For a $\mathbb{P}X$ -module E, TAQ_{*}($\mathbb{P}X, S; E$) $\cong E_*(X)$. This leads to a cellular interpretation of TAQ_{*}(A, S; HM) for a CW commutative S-algebra A where M is a $\pi_0(A)$ -module.

Reduced free commutative S-algebras

Let $S^0 \to S$ be the functorial cofibrant replacement in \mathcal{M}_S . If X is an S-module under S^0 , $S^0 \to X$, then $\widetilde{\mathbb{P}}X$ is defined to be the pushout in

where we use $S^0 \to S$ to define the left hand map. Here $\widetilde{\mathbb{P}}: S^0/\mathscr{M}_S \to \mathscr{C}_S$ is left adjoint to the functor which sends an S-algebra A to $S^0 \to S \to A$, so it preserves pushouts and creates the model structure on the category of commutative S-algebras \mathscr{C}_S .

Observation: For a $\widetilde{\mathbb{P}}X$ -module E, TAQ_{*}($\widetilde{\mathbb{P}}X, S; E$) $\cong E_*(X/S^0)$.

Attaching cells the E_{∞} way

Let *E* be a commutative *S*-algebra, and let $f: \bigvee_i S^n \to E$ be a map from a finite wedge of *n*-spheres. There is a unique extension of *f* to a morphism $\tilde{f}: \mathbb{P}(\bigvee_i S^n) \to E$ in \mathscr{C}_S . The pushout diagram in \mathscr{C}_S

defines E//f, and we say it is obtained from E by attaching E_{∞} (n+1)-cells. In fact,

$$E//f \cong \mathbb{P}(\bigvee_{i} D^{n+1}) \wedge_{\mathbb{P}(\bigvee_{i} S^{n})} E,$$

where $\mathbb{P}(\bigvee_i D^{n+1})$ and E are viewed as $\mathbb{P}(\bigvee_i S^n)$ -algebras. If f is homotopic to g, then E//f is weakly equivalent to E//g, so we write $E//\alpha$ where α is the homotopy class of f. Throughout we work with connective finite type p-local commutative S-algebras.

Definition

A characteristic for R is a nuclear CW commutative S-algebra $j^0: S \to T$ for which there is a characteristic morphism $j: T \to R$, where the E_{∞} skeleta $T^{\langle n \rangle}$ $(n \ge 1)$ are defined inductively using E_{∞} attaching maps induced from maps

$$f^n\colon \bigvee_i S^n \to S \to T^{\langle n \rangle},$$

which factor through the unit of $\mathcal{T}^{\langle n \rangle}$ and satisfy

$$\operatorname{\mathsf{im}} f^n_* = \operatorname{\mathsf{im}}[j^0_* \colon \pi_n(S) \to \pi_n(T^{\langle n \rangle})] \\ \cap \operatorname{\mathsf{ker}}[j^{\langle n \rangle}_* \colon \pi_n(T^{\langle n \rangle}) \to \pi_n(R)].$$

This definition begs the question of whether characteristics are in any sense unique. Notice also that the attaching maps of the E_{∞} cells originate as maps into the sphere spectrum S.

Theorem

Characteristics exist, and enjoy the following properties.

- Suppose that T and T' are characteristics for R and R' respectively. If there is a morphism $R \rightarrow R'$, then there is a morphism $T \rightarrow T'$.
- Suppose that T₁ and T₂ are two characteristics for R. Then there is a homotopy equivalence of commutative S-algebras T₁ → T₂. Therefore characteristics are unique up to homotopy equivalence.
- Let h: R → R' be a weak equivalence and let k: T → R' be a characteristic morphism. Then there is a morphism j: T → R such that g ∘ j ≃ k and j is a characteristic morphism for R.

Suppose that p > 0 is a prime. We work with connective *p*-local commutative *S*-modules and *S*-algebras, where *S* is the *p*-local sphere spectrum.

A connective CW commutative S-algebra A is *nuclear* if it is defined by requiring that its (n + 1)-cells are attached so that for each $n \ge 0$,

$$\ker[\pi_n(\bigvee_i S^n) \to \pi_n(A^{\langle n \rangle})] \subseteq p \, \pi_n(\bigvee_i S^n).$$

Nuclear algebras are *minimal atomic*, and in turn these are characterised by the property that their positive degree homotopy is not detected by the Hurewicz homomorphism in TAQ_{*}($-, S; \mathbb{F}_p$).

There is a similar notion of nuclear CW S-module under S^0 .

Let R be a connective p-local commutative S-algebra.

Theorem

Form a nuclear complex X by inductively attaching cells to S^0 so as to kill

$$\operatorname{im}[\pi_n(S) \to \pi_n(X^{[n]})] \cap \operatorname{ker}[\pi_n(X^{[n]}) \to \pi_n R].$$

Then there is a an morphism of commutative S-algebras $\widetilde{\mathbb{P}}X \to R$; furthermore, if $\widetilde{\mathbb{P}}X$ is minimal atomic, this is a homotopy equivalence.

Remark: In general for a CW complex $S^0 \to Y$, $\mathbb{P}Y$ minimal atomic implies Y minimal atomic, but the converse need not be true. For p = 2, an example is provided by $Y = \Sigma^{-2} \Sigma^{\infty} \mathbb{CP}^{\infty}$.

The homology of extended powers has been studied extensively. In particular, life is simple rationally.

Proposition For $n \in \mathbb{N}$, let $x_m \in H_m(\mathbb{P}S^m; \mathbb{Q})$ be the image of the homology generator of $H_m(S^m; \mathbb{Q})$. Then $H_*(\mathbb{P}S^{2n-1}; \mathbb{Q}) = \Lambda_{\mathbb{Q}}(x_{2n-1}), \quad H_*(\mathbb{P}S^{2n}; \mathbb{Q}) = \mathbb{Q}[x_{2n}].$

In positive characteristic, the next result is fundamental.

Theorem

If X is connective then for a prime p, $H_*(\mathbb{P}X; \mathbb{F}_p)$ is the free commutative graded \mathbb{F}_p -algebra generated by elements $Q^I x_j$, where x_j for $j \in J$ gives a basis for $H_*(X; \mathbb{F}_p)$, and $I = (\varepsilon_1, i_1, \varepsilon_2, \ldots, \varepsilon_\ell, i_\ell)$ is admissible with excess $(I) + \varepsilon_1 > |x_j|$. So for p = 2, $I = (i_1, i_2, \dots, i_\ell)$ and we have

$$H_*(\mathbb{P}X;\mathbb{F}_2) = \mathbb{F}_2[Q^I x_j : j \in J, \operatorname{excess}(I) > |x_j|].$$

Theorem

Assume that X is p-local, connective and that $\pi_0(X)$ is a cyclic $\mathbb{Z}_{(p)}$ -module, and let $S^0 \to X$ give a generator of $\pi_0(X)$. Then $H_*(\widetilde{\mathbb{P}}X; \mathbb{F}_p)$ is the free commutative graded \mathbb{F}_p -algebra generated by elements $Q^I x_j$, where x_j for $j \in J$ gives a basis for $H^+_*(X; \mathbb{F}_p)$, and $I = (\varepsilon_1, i_1, \varepsilon_2, \ldots, \varepsilon_\ell, i_\ell)$ is admissible with excess $(I) + \varepsilon_1 > |x_j|$.

The idea here is that the generator $x_0 \in H_*(\mathbb{P}X; \mathbb{F}_p)$ coming from the bottom cell has been identified with 1.

Examples

Markus Syzmik: Let p be a prime. Then for any p-local commutative S-algebra R for which $\pi_0(R)$ is an \mathbb{F}_{p} -algebra, there is a morphism $S//p \to R$ which is in fact a characteristic. The proof depends on a result of Mark Steinberger.

Theorem If A is a commutative S-algebra for which $\pi_0(A)$ is an \mathbb{F}_p -algebra, then A is a wedge of suspensions of $H\mathbb{F}_p$.

The theorem applies to S//p itself, so it is a wedge of suspensions of $H\mathbb{F}_p$. Hence $\pi_*(S) \to \pi_*(S//p)$ is trivial in positive degrees as well as p itself. A morphism $S//p \to R$ so that $S \to S//p \to R$ kills all positive degree homotopy. **Generalisation:** Replace p by p^r for r > 1. Steinberger showed that if char $\pi_0(A) = p^r$ and $\beta \mathcal{P}^1$ (Sq^3 if p = 2) acts non-trivially on $H^0(A)$ then A is a wedge of suspensions of $H\mathbb{Z}/p^s$ for $1 \leq s \leq r$.

To ensure this condition holds we need to form $S//p^r$, α_1 , v_1 ($S//2^r$, η , v_1 if p = 2).

Conjecture: For p an odd prime, $S//p^r$, α_1 is a characteristic for $H\mathbb{Z}/p^r$.

For p = 2, $S//2^r$, η , σ is a characteristic for $H\mathbb{Z}/2^r$.

Let *p* be an odd prime. What should $S//\alpha_1$ be a characteristic of? There is a morphism $S//\alpha_1 \to \ell$ (the Adams summand of $ku_{(p)}$). This induces an epimorphism $\pi_*(S//\alpha_1) \to \pi_*(\ell)$ whose kernel is torsion; it does not induce an epimorphism in $H_*(-)$. If $\pi_n(S) \to \pi_n(S//\alpha_1)$ is trivial for all n > 0 then $S//\alpha_1 \to \ell$ is a characteristic morphism. Could replace ℓ by $MU_{(p)}$ or $H\mathbb{Z}_{(p)}$. The prime p = 2. The Hopf invariant elements η, ν, σ are analogous to α_1 . The unit $S \to S//\eta$ induces $\pi_3(S) \to \pi_3(S//\eta)$ which kills ν because of the exact sequence

$$\pi_3(S^1) \xrightarrow{\eta} \pi_3(S^0) o \pi_3(C_\eta) o \pi_2(S^1) \xrightarrow{\eta} \pi_2(S^0)$$

together with $Sq_*^4(x_2^2) = 1$ in $H_*(S//\eta; \mathbb{F}_2)$. This means that there is a morphism $S//\nu \to S//\eta$. John Rognes: $\pi_7(S) \to \pi_7(S//\eta)$ does not kill σ . So it makes sense to form $S//\eta, \sigma$. **Conjecture:** For n > 0, $\pi_n(S) \to \pi_n(S//\eta, \sigma)$ is trivial, hence $S//\eta, \sigma$ is a characteristic for $ku_{(2)}$, $H\mathbb{Z}_{(2)}$, etc. If we consider $S//\nu$, then σ does not die in $\pi_7(S//\nu)$. This is harder to see since although in $H_*(S//\nu; \mathbb{F}_2)$ we have $Sq_*^8(x_4^2) = 1$, there is an exact sequence

$$0 o \pi_7(S) o \pi_7(C_
u) o \pi_7(S^4) \xrightarrow{
u} \pi_7(S^1) o 0$$

and $\pi_7(\mathcal{C}_{\nu}) \cong \mathbb{Z}/8 \ \sigma \oplus \mathbb{Z}/4 \ \widetilde{2\nu}$.

Peter Eccles: The cell of the homology class x_4^2 is attached to C_{ν} by $\sigma + 2\nu$, hence $\sigma \neq 0$ in $\pi_7(S//\nu)$.

Consequence: There is a morphism $S//\nu, \sigma \rightarrow MSp_{(2)}$ which is an 8-equivalence.

Can calculate

$$\begin{aligned} \mathsf{TAQ}_*(S/\!/\nu,\sigma,S;\mathbb{F}_2) &= H_*(S^4 \vee S^8;\mathbb{F}_2), \\ \mathsf{TAQ}_*(MSp,S;\mathbb{F}_2) &= H_*(\Sigma^4 \operatorname{\textit{ko}};\mathbb{F}_2) = \Sigma^4 \mathbb{F}_2[\zeta_1^4,\zeta_2^2,\zeta_3,\ldots], \end{aligned}$$

and the above morphism induces

$$x_4 \mapsto \Sigma^4 1, \quad x_8 \mapsto \Sigma^4 \zeta_1^4.$$

N.B. $MSp_{(2)}$ is minimal atomic so it is equivalent to a nuclear CW S-algebra.

What about $S//\nu, \sigma \to ko_{(2)}$? A Toda bracket argument shows that this induces an epimorphism on $\pi_*(-)$.

Conjecture: In positive degrees,

$$\ker[\pi_*(S) \to \pi_*(S/\!/\nu, \sigma)] = \ker[\pi_*(S) \to \pi_*(kO)]$$
$$= \ker[\pi_*(S) \to \pi_*(MSp)].$$

So the image of $\pi_*(S) \to \pi_*(S//\nu, \sigma)$ maps isomorphically to the image of $\pi_*(S) \to \pi_*(kO)$, i.e., the image of the μ -family. This would show that $S//\nu, \sigma$ is a characteristic for kO and MSp. Stan Kochman proved the second equality.

There is a morphism $S//\sigma \rightarrow tmf$. Conjecture:

$$\mathsf{ker}[\pi_*(\mathcal{S}) o \pi_*(\mathcal{S}/\!/\sigma)] = \mathsf{ker}[\pi_*(\mathcal{S}) o \pi_*(\mathit{tmf})]$$

therefore $S//\sigma \rightarrow tmf$ is a characteristic of tmf.

- ▶ The natural maps $S//\eta, \sigma \to kU, S//\nu, \sigma \to kO$, and $S//\sigma \to tmf$ cannot split as maps of spectra since they do not induce epimorphisms in $H_*(-)$.
- The first non-trivial homotopy in the fibre of $S//\eta \to kU$ is a $\mathbb{Z}/4$ in degree 5 detected by $Q^3 x_2$.
- Working K(1)-locally, $S//\eta$ is equivalent to a wedge of copies of kU.
- Does $S//\sigma \rightarrow tmf$ induce an epimorphism on $\pi_*(-)$?