Frobenius algebras

Andrew Baker

November 2010

Let R be a ring and write $_{R}\mathcal{M}$, \mathcal{M}_{R} for the categories of left and right R-modules. More generally, for a second ring S, write $_{R}\mathcal{M}_{S}$ for the category of R - S-bimodules.

A left *R*-module *P* is *projective* if every diagram of solid arrows in ${}_{R}\mathcal{M}$

with exact row extends to a diagram of the form shown.

It is standard that every free module $F \cong \bigoplus_i R$ is projective. In fact, P is projective if and only if P is a retract of a free module, *i.e.*, for some $Q, P \oplus Q$ is free.

The category $_{R}\mathcal{M}$ has enough projectives, i.e., for any left R-module M there is an epimorphism $P \rightarrow M$ with P projective.

There are similar notions for right *R*-modules and R - S-bimodules. Dually, A left *R*-module *I* is *injective* if every diagram of solid arrows in $_{R}\mathcal{M}$

with exact row extends to a diagram of the form shown.

It is not immediately obvious what injectives there are. For $R = \mathbb{Z}$ (or more generally any pid) a module is injective if and only if it is divisible. Thus \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective \mathbb{Z} -modules. In fact $_R \mathscr{M}$ has enough injectives, *i.e.*,for any left *R*-module *M* there is a monomorphism $M \rightarrow I$ with *I* injective.

Given a ring homomorphism $S \to R$, R becomes a left S-module, and if J is an injective left S-module then $\text{Hom}_S(R, J)$ is an injective left R-module. A ring R is left/right *self-injective* if it is an injective left/right R-module.

Example: For any $n \ge 2$, \mathbb{Z}/n is self-injective.

A ring R is quasi-Frobenius (QF) if it is left Noetherian and right self-injective, or equivalently right Noetherian and left self-injective.

Theorem *R* is *QF* if and only if for each *R*-module *M*,

M projective $\iff M$ injective.

Frobenius algebras

Let \Bbbk be a field and let A be a finite dimensional \Bbbk -algebra. The \Bbbk -linear dual of A, $A^* = \operatorname{Hom}_{\Bbbk}(A, \Bbbk)$, is a left A-module with scalar multiplication \cdot given by

$$a \cdot f(x) = f(xa) \quad (a, x \in A, \ f \in A^*).$$

Equally it is a right A-module with scalar multiplication

$$(f \cdot a)(x) = f(ax) \quad (a, x \in A, f \in A^*).$$

It is immediate that

- A is Artinian and Noetherian;
- ► *A*^{*} is an injective left/right *A*-module.

The pair (A, Φ) is a *Frobenius algebra* over \Bbbk if

$$A \xrightarrow{\Phi} A^*$$

is an isomorphism of left A-modules. When Φ is understood, we sometimes say that A is a Frobenius algebra, although this can be ambiguous.

Since $A \cong A^*$ where the latter is injective, A is self-injective, giving

Theorem

Every Frobenius algebra is a QF ring.

The Frobenius isomorphism Φ is not unique, but two such isomorphisms differ by a unit of A. Associated to Φ there is a distinguished linear map, the *counit* $\varepsilon \colon A \to \Bbbk$, namely $\varepsilon = \Phi(1)$. Suppose that $z \in A$ and $\varepsilon(z) = 0$; then

$$\varepsilon(az) = 0 \text{ for all } a \in A \quad \iff \quad z \cdot \varepsilon(a) = 0 \text{ for all } a \in A$$
$$\iff \quad \Phi(z) = z \cdot \varepsilon = 0.$$

Thus $\ker \varepsilon$ contains no left ideals.

There is a k-bilinear form $A \otimes_{\Bbbk} A \to \Bbbk$ given by

$$\langle x|y\rangle = \varepsilon(xy).$$

This is non-degenerate in the sense that the k-linear maps $A \to A^*$ with $a \mapsto \langle a | - \rangle$ and $a \mapsto \langle - | a \rangle$ are isomorphisms. It also satisfies the *Frobenius associativity relation*:

$$\langle xy|z\rangle = \langle x|yz\rangle \quad (x,y,z\in A).$$

Given such a pairing $\langle -|-\rangle$, there are corresponding ε and Φ are given by $\varepsilon(x) = \langle 1|x\rangle = \langle x|1\rangle$ and $\Phi(x) = \varepsilon(x)$. This leads to three equivalent ways to define a Frobenius algebra namely as a \Bbbk -algebra together with a piece of extra structure.

- (A, Φ) , where $\Phi \colon A \xrightarrow{\cong} A^*$ is an isomorphism of left/right *A*-modules.
- (A, ε), where ε: A → k is k-linear and ker ε contains no non-zero left, or equivalently right, ideals.
- (A, ⟨-|−⟩), where ⟨-|−⟩: A ⊗_k A → k is a non-degenerate k-linear pairing which satisfies the Frobenius associativity condition.

A Frobenius algebra is *symmetric* if the pairing $\langle -|-\rangle$ is symmetric, *i.e.*, $\langle x|y \rangle = \langle y|x \rangle$ for all $x, y \in A$. This applies when A is commutative but also in other cases such as $n \times n$ matrices over a field with the usual trace map.

Some examples of Frobenius algebras

Let \Bbbk be a field and G a finite group. Then the group algebra $\Bbbk[G]$ and the dual group algebra

$$\Bbbk[G]^* = \mathsf{Hom}_{\Bbbk}(\Bbbk[G], \Bbbk) = \mathsf{Map}(G, \Bbbk)$$

are both Frobenius algebras. Note that $\Bbbk[G]$ is commutative if and only if G is, while $\Bbbk[G]^*$ is always commutative. As choices of ε we have

$$arepsilon: \Bbbk[G] o \Bbbk; \quad arepsilon(\sum_{g \in G} t_g g) = t_1,$$

 $arepsilon: \Bbbk[G]^* o \Bbbk; \quad arepsilon(f) = \sum_{g \in G} f(g).$

More generally, if *H* is any finite dimensional Hopf algebra over \Bbbk , then *H* is a Frobenius algebra by the Larson-Sweedler theorem, as is its dual H^* .

For a field \Bbbk , the $n \times n$ matrices form a \Bbbk -algebra $M_n(\Bbbk)$ with trace map tr: $M_n(\Bbbk) \longrightarrow \Bbbk$ giving a Frobenius form. This also works with $M_n(D)$ for a division algebra D which is finite dimensional over its centre \Bbbk , using the composition (redtr: $D \rightarrow \Bbbk$ is the reduced trace)

$$M_n(D) \xrightarrow{\operatorname{tr}} D \xrightarrow{\operatorname{redtr}} \Bbbk.$$

Any finite dimensional separable k-algebra has a trace map with which it becomes a Frobenius algebra. In particular, any finite dimensional field extension separable field extension has such a trace map. In fact for any finite dimensional field extension L of k, any k-linear map $L \rightarrow k$ maps L into a Frobenius algebra since L has no non-trivial proper ideals.

For an *n*-dimensional oriented compact connected manifold M and for any field coefficients \Bbbk , the cohomology $H^*(M; \Bbbk)$ is a (graded) commutative Frobenius algebra with bilinear pairing given by cup product and evaluation on the fundamental class, $\langle x|y \rangle = xy[M]$. When $\Bbbk = \mathbb{R}$ or $\Bbbk = \mathbb{C}$, can be taken to be de Rham cohomology, and this formula can be interpreted in terms of integrals of forms. Let A be a Frobenius algebra over \Bbbk with structure maps Φ ,... as above. It is useful to represent the various structure maps and their relations with *cobordism diagrams*. Here a circle always represents a copy of A, two circles represents $A \otimes_{\Bbbk} A$, and so on. An empty circle represents $A^0 = \Bbbk$. Here are the interpretations of the basic diagrams.

00	identity function	$\operatorname{id} \colon A \longrightarrow A$
\sum	multiplication/product	$\varphi \colon A \otimes A \to A$
\square	unit	$\eta \colon \Bbbk \to A$
\leq	comultiplication/coproduct	$\psi \colon \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$
\bigcirc	counit	$\varepsilon \colon \mathcal{A} \to \Bbbk$
\mathbb{S}	bilinear pairing	$\langle - - angle: {\mathcal A}\otimes_{\Bbbk} {\mathcal A} o {\Bbbk}$

Here are some examples of diagrammatic representations of algebraic identities.

Associativity

 $\varphi(\varphi \otimes \mathrm{id}) = \varphi(\mathrm{id} \otimes \varphi)$

Frobenius associativity

 $\langle \varphi | \mathrm{id} \rangle = \langle \mathrm{id} | \varphi \rangle$

Consequences of duality

From now on set $\otimes = \otimes_{\Bbbk}$ and Hom = Hom_k. By standard linear algebra, the non-degenerate bilinear form $\langle -|-\rangle$ implies the existence of a unique *coform* $\gamma \colon \Bbbk \to A \otimes_{\Bbbk} A \subseteq$ making the following diagram commute.

These relations are captured in following cobordism diagrams and are sometimes known as the *Snake relations*.

We will define a *coproduct* $\psi \colon A \to A \otimes A \leq \mathcal{C}$ with ε as its counit. It is useful to introduce the *three point function* $\theta \colon \varepsilon(\varphi \otimes \mathrm{id}) = \varepsilon(\mathrm{id} \otimes \varphi) \colon A \otimes A \otimes A \to \Bbbk$ suggested by the Frobenius associativity relation.

We define ψ as a function suggested by the diagram

which represents the following composition.

$$A \xrightarrow{\cong} \Bbbk \otimes A \otimes \Bbbk \xrightarrow{\gamma \otimes \mathrm{id} \otimes \gamma} A \otimes A \otimes A \otimes A \otimes A \xrightarrow{\mathrm{id} \otimes \theta \otimes \mathrm{id}} A \otimes \Bbbk \otimes A \xrightarrow{\cong} A \otimes A$$

It is useful to note the following consequences of the Snake relations.

The counit condition for ε now follows from

Coassociativity can also be proved using diagrams. There is also the important *Frobenius relation/condition*

which says that the following diagram commutes.

Some examples

Take $A = \Bbbk[G]$, the group algebra of a finite group. The bilinear pairing on $g, h \in G$ is given by

$$\langle g | h
angle = egin{cases} 1 & ext{if } h = g^{-1}, \ 0 & ext{otherwise}. \end{cases}$$

The isomorphism $\Phi \colon \Bbbk[G] \to \Bbbk[G]^*$ is given by

$$\Phi(g) = \langle -|g \rangle$$

which is a left $\Bbbk[G]$ -module homomorphism since

$$\Phi(hg) = \langle -|hg \rangle = \langle (-)h|g \rangle.$$

The Frobenius coproduct is given by: for $g \in G$,

$$\psi(g) = \sum_{h \in G} h \otimes h^{-1}g.$$

For the Frobenius relation, notice that for $g, h \in G$,

$$(\mathrm{id}\otimes arphi)(\psi(g)\otimes h) = \sum_{k\in G} k^{-1}\otimes kgh$$

= $\psi(gh),$

while

$$(\varphi \otimes \mathrm{id})(\mathrm{id} \otimes \psi)(g \otimes h) = \sum_{\ell \in G} g\ell \otimes \ell^{-1}h$$

$$= \sum_{\ell \in G} g\ell \otimes \ell^{-1}g^{-1}gh$$
$$= \sum_{k \in G} k \otimes k^{-1}gh$$
$$= \psi(gh).$$

The Nakayama automorphism

Let $(A, \langle -|-\rangle)$ be a Frobenius algebra over \Bbbk , where $\langle -|-\rangle$ is the non-degenerate associative bilinear form. Note that there are two \Bbbk -linear isomorphisms $A \xrightarrow{\cong} A^*$, namely

$$a\mapsto \left\langle a|-
ight
angle ,\quad a\mapsto \left\langle -|a
ight
angle .$$

So for $a \in A$, the function $\langle a | - \rangle : A \longrightarrow \Bbbk$ can also be represented as $\langle -|a' \rangle : A \longrightarrow \Bbbk$ for some $a' \in A$. This defines a \Bbbk -linear automorphism $\sigma : A \xrightarrow{\cong} A$ with $\sigma(a) = a'$ and so $\langle a | - \rangle = \langle -|\sigma(a) \rangle$. Viewed as a linear operator on A, right multiplication by $\sigma(a)$ is the *adjoint* of a with respect to $\langle -|-\rangle$. Then for $x \in A$,

$$\langle ax|1 \rangle = \langle a|x \rangle = \langle x|\sigma(a) \rangle = \langle x\sigma(a)|1 \rangle.$$

We also find that for $b \in A$,

$$\langle abx|1
angle = \langle x\sigma(ab)|1
angle = \langle x\sigma(a)\sigma(b)|1
angle$$
,

giving $\sigma(ab) = \sigma(a)\sigma(b)$. So σ is a k-algebra automorphism, called the *Nakayama automorphism* of *A*.

The choice of $\langle -|-\rangle$ affects the definition of $\sigma,$ however

Theorem

The Nakayama automorphism is well-defined up to inner automorphisms. In particular, if A is commutative then the Nakayama automorphism is independent of the choice of bilinear form.

What about symmetric Frobenius algebras, where $\langle x|y \rangle = \langle y|x \rangle$?

Theorem

A Frobenius algebra is symmetric if and only if its Nakayama automorphism for any choice of bilinear form is an inner automorphism.