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Frobenius rings

Let R be a ring and write g.#, .#r for the categories of left and
right R-modules. More generally, for a second ring S, write g.#s
for the category of R — S-bimodules.

A left R-module P is projective if every diagram of solid arrows in

/4
L

M——N——0

with exact row extends to a diagram of the form shown.

It is standard that every free module F = @B, R is projective. In
fact, P is projective if and only if P is a retract of a free module,
i.e., forsome @, P® Q is free.

The category gr.# has enough projectives, i.e., for any left
R-module M there is an epimorphism P — M with P projective.
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There are similar notions for right R-modules and R — S-bimodules.
Dually, A left R-module [ is injective if every diagram of solid
arrows in g4

U

g -

M<=——N~=—0

with exact row extends to a diagram of the form shown.

It is not immediately obvious what injectives there are. For R = Z
(or more generally any pid) a module is injective if and only if it is
divisible. Thus Q and Q/Z are injective Z-modules. In fact g.#
has enough injectives, i.e.,for any left R-module M there is a
monomorphism M — [ with | injective.

Given a ring homomorphism S — R, R becomes a left S-module,
and if J is an injective left S-module then Homgs(R, J) is an
injective left R-module. A ring R is left/right self-injective if it is
an injective left/right R-module.

Example: For any n > 2, Z/n is self-injective.
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A ring R is quasi-Frobenius (QF) if it is left Noetherian and right
self-injective, or equivalently right Noetherian and left self-injective.

Theorem
R is QF if and only if for each R-module M,

M projective <= M injective.
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Frobenius algebras

Let k be a field and let A be a finite dimensional k-algebra. The
k-linear dual of A, A* = Homy(A, k), is a left A-module with scalar

multiplication - given by
a-f(x)="f(xa) (a,x €A, feA).
Equally it is a right A-module with scalar multiplication
(f-a)(x) =f(ax) (a,x €A, f e A").

It is immediate that

» A is Artinian and Noetherian;

» A*is an injective left/right A-module.
The pair (A, ®) is a Frobenius algebra over k if

A A

is an isomorphism of left A-modules. When & is understood, we
sometimes say that A is a Frobenius algebra, although this can be
ambiguous.
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Since A = A* where the latter is injective, A is self-injective, giving
Theorem
Every Frobenius algebra is a QF ring.
The Frobenius isomorphism ® is not unique, but two such
isomorphisms differ by a unit of A. Associated to ® there is a
distinguished linear map, the counit £: A — k, namely ¢ = ®(1).
Suppose that z € A and ¢(z) = 0; then

g(az)=0forallac A <= z-g(a)=0forallacA

— P(z)=z-e=0.
Thus ker € contains no left ideals.
There is a k-bilinear form A ®x A — k given by
(x]y) = e(xy).
This is non-degenerate in the sense that the k-linear maps A — A*
with a — (a|—) and a +— (—|a) are isomorphisms. It also satisfies
the Frobenius associativity relation:
(ylz) = (xlyz)  (x,y,2 € A).



Given such a pairing (—|—), there are corresponding € and @ are
given by e(x) = (1|x) = (x|1) and ®(x) = (x). This leads to
three equivalent ways to define a Frobenius algebra namely as a
k-algebra together with a piece of extra structure.

> (A, ), where ¢: A =, A* is an isomorphism of left/right
A-modules.

» (A,e), where €: A — k is k-linear and ker ¢ contains no
non-zero left, or equivalently right, ideals.

» (A, (=]—)), where (—|—) : A®k A — k is a non-degenerate
k-linear pairing which satisfies the Frobenius associativity
condition.

A Frobenius algebra is symmetric if the pairing (—|—) is
symmetric, i.e., (x|y) = (y|x) for all x,y € A. This applies when A
is commutative but also in other cases such as n X n matrices over
a field with the usual trace map.
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Some examples of Frobenius algebras

Let k be a field and G a finite group. Then the group algebra k[G]
and the dual group algebra

k[G]* = Homy (k[G], k) = Map(G, k)

are both Frobenius algebras. Note that k[G] is commutative if and
only if G is, while k[G]* is always commutative. As choices of € we
have

e k[Gl =k () teg) =1,
gei

e k[G]" =k e(f) =) f(g)

geai

More generally, if H is any finite dimensional Hopf algebra over k,
then H is a Frobenius algebra by the Larson-Sweedler theorem, as
is its dual H*.
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For a field k, the n x n matrices form a k-algebra M,(k) with trace
map tr: My(k) — k giving a Frobenius form. This also works
with M,(D) for a division algebra D which is finite dimensional
over its centre k, using the composition (redtr: D — k is the

reduced trace)
redtr

M,(D) & D = .,
Any finite dimensional separable k-algebra has a trace map with
which it becomes a Frobenius algebra. In particular, any finite
dimensional field extension separable field extension has such a
trace map. In fact for any finite dimensional field extension L of k,
any k-linear map L — k maps L into a Frobenius algebra since L
has no non-trivial proper ideals.
For an n-dimensional oriented compact connected manifold M and
for any field coefficients k, the cohomology H*(M;k) is a (graded)
commutative Frobenius algebra with bilinear pairing given by cup
product and evaluation on the fundamental class, (x|y) = xy[M].
When k = R or k = C, can be taken to be de Rham cohomology,
and this formula can be interpreted in terms of integrals of forms.
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Cobordism diagrams

Let A be a Frobenius algebra over k with structure maps ®,... as
above. It is useful to represent the various structure maps and
their relations with cobordism diagrams. Here a circle always
represents a copy of A, two circles represents A ® A, and so on.
An empty circle represents A? = k. Here are the interpretations of

the basic diagrams.

- identity function id: A— A

@ multiplication/product 0 ARA—= A
(@) unit nk—A

Q comultiplication /coproduct P:A—>ARA

O counit e: A=k

D) bilinear pairing (—]-): Aok A =k
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Here are some examples of diagrammatic representations of
algebraic identities.
Associativity o(p ®id) = p(id ® ¢)
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Unit p(id®n) =id = p(n ®id)

TP
o

Commutativity o(switch)

e -

Frobenius associativity (plid) = (id|¢)
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Consequences of duality

From now on set ® = ®, and Hom = Homy,.

By standard linear algebra, the non-degenerate bilinear form (—|—)
implies the existence of a unique coform v: k - A®yk A

making the following diagram commute.

AQk<~—A—>k® A
= ~
AQARA id ARA®A
(—|-)@i fde(-|-)
k@A?A?A@k
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These relations are captured in following cobordism diagrams and
are sometimes known as the Snake relations.

=3

We will define a coproduct : A— AR A @ with € as its counit.
It is useful to introduce the three point function

0:e(p®id) =e(id® ¢): A® A® A — k suggested by the
Frobenius associativity relation.

-2
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The coproduct

We define 1) as a function suggested by the diagram

55

which represents the following composition.

A =5 knAgk 22 AR AR ARARA N, AskaA = ARA
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It is useful to note the following consequences of the Snake

"G5 3
S

The counit condition for £ now follows from

B, S &
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Coassociativity can also be proved using diagrams.
There is also the important Frobenius relation/condition

& o<

which says that the following diagram commutes.

AR A

=
©

ARARA A ARARA

I

AR A
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Some examples

Take A = k[G], the group algebra of a finite group. The bilinear
pairing on g, h € G is given by

1 ifh=g1,
(glh) = .
0 otherwise.

The isomorphism ®: k[G] — k[G]* is given by
o(g) = (—lg)
which is a left k[G]-module homomorphism since
®(hg) = (—|hg) = ((—)hlg) -

The Frobenius coproduct is given by: for g € G,

V(g) =) hohlg

heG
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For the Frobenius relation, notice that for g, h € G,

(d®p)(v(g) @h) = k' ©kgh
keG

= 1(gh),

while

(p@id)(idy)g@h) =) gl®lh
LeG

= ZgE @l g7 1gh
leG

=) k®k 'gh

keG

= Y (gh).
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The Nakayama automorphism

Let (A, (—|—)) be a Frobenius algebra over k, where (—|—) is the
non-degenerate associative bilinear form. Note that there are two

k-linear isomorphisms A =N A*, namely

ar— (al—), ar—(—|a).
So for a € A, the function (a|—) : A — k can also be represented
as (—|a’) : A— k for some &’ € A. This defines a k-linear
automorphism o: A — A with o(a) = a’ and so (a|]—) = (—|o(a)).
Viewed as a linear operator on A, right multiplication by o(a) is
the adjoint of a with respect to (—|—). Then for x € A,

(ax[1) = (alx) = (x|o(a)) = (xo(a)[1).
We also find that for b € A,
(abx|1) = (xo(ab)[1) = (xa(a)o(b)[1).

giving o(ab) = o(a)o(b). So o is a k-algebra automorphism,
called the Nakayama automorphism of A.

Andrew Baker Frobenius algebras



The choice of (—|—) affects the definition of o, however

Theorem

The Nakayama automorphism is well-defined up to inner
automorphisms. In particular, if A is commutative then the
Nakayama automorphism is independent of the choice of bilinear
form.

What about symmetric Frobenius algebras, where (x|y) = (y|x)?
Theorem
A Frobenius algebra is symmetric if and only if its Nakayama

automorphism for any choice of bilinear form is an inner
automorphism.
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