NOTES ON BASIC HOMOLOGICAL ALGEBRA

ANDREW BAKER

1. Chain complexes and their homology

Let R be a ring and Mod_{R} the category of right R-modules; a very similar discussion can be had for the category of left R-modules ${ }_{R}$ Mod also makes sense and is left to the reader. Then a sequence of R-module homomorphisms

$$
L \xrightarrow{f} M \xrightarrow{g} N
$$

is said to be exact if $\operatorname{Ker} g=\operatorname{Im} f$. Of course this implies that $g f=0$. More generally, a sequence of homomorphisms

$$
\cdots \xrightarrow{f_{n+1}} M_{n} \xrightarrow{f_{n}} M_{n-1} \xrightarrow{f_{n-1}} \cdots
$$

is exact if for each n, the sequence

$$
M_{n+1} \xrightarrow{f_{n+1}} M_{n} \xrightarrow{f_{n}} M_{n-1}
$$

is exact. An exact sequence of the form

$$
0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0
$$

is called short exact. Such a sequence is split exact if there is a homomorphism $r: M \longrightarrow L$ (or equivalently $j: N \longrightarrow M)$ so that $r f=\mathrm{id}_{L}\left(\right.$ respectively $\left.g j=\mathrm{id}_{N}\right)$.

These equivalent conditions imply that $M \cong L \oplus N$. Such homomorphisms r and g are said to be retractions, while L and N are said to be retracts of M.

A sequence of homomorphisms

$$
\cdots \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1} \xrightarrow{d_{n-1}} \cdots
$$

is called a chain complex if for each n,

$$
\begin{equation*}
d_{n} d_{n+1}=0 \tag{1.1}
\end{equation*}
$$

or equivalently,

$$
\operatorname{Im} d_{n+1} \subseteq \operatorname{Ker} d_{n}
$$

An exact or acyclic chain complex is one which each segment

$$
C_{n+1} \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1}
$$

Date: [28/02/2009].
is exact. We write $\left(C_{*}, d\right)$ for such a chain complex and refer to the d_{n} and boundary homomorphisms. We symbolically write $d^{2}=0$ to indicate that (1.1) holds for all n. For clarity we sometimes $\left(C_{*}, d^{C}\right)$ to indicate which boundary is being used.

If a chain complex is of finite length finite we often pad it out to a doubly infinite complex by adding in trivial modules and homomorphisms. In particular, if M is a R-module we can view it as the chain complex with $M_{0}=M$ and $M_{n}=0$ whenever $n \neq 0$. It is often useful to consider the null complex $\mathbf{0}=(\{0\}, 0)$.
$\left(C_{*}, d\right)$ is called bounded below if there is an n_{1} such that $C_{n}=0$ whenever $n<n_{1}$. Similarly, $\left(C_{*}, d\right)$ is called bounded above if there is an n_{2} such that $C_{n}=0$ whenever $n>n_{2} .\left(C_{*}, d\right)$ is called bounded if it is bounded both below and above.

Given a complex $\left(C_{*}, d\right)$, its homology is defined to be the complex $\left(H_{*}\left(C_{*}, d\right), 0\right)$ where

$$
H_{n}\left(C_{*}, d\right)=\operatorname{Ker} d_{n} / \operatorname{Im} d_{n+1} .
$$

The homology of a complex measures its deviation from exactness; in particular, $\left(C_{*}, d\right)$ is exact if and only if $H_{*}\left(C_{*}, d\right)=0$. Notice that there are exact sequences

$$
\begin{align*}
0 & \rightarrow \operatorname{Im} d_{n+1} \\
0 \rightarrow \operatorname{Ker} d_{n} & \longrightarrow H_{n}\left(C_{*}, d\right) \rightarrow 0, \tag{1.2}\\
& \longrightarrow C_{n}
\end{align*} \quad \operatorname{Im} d_{n} \rightarrow 0 . ~ \$
$$

Example 1.1. Consider the complex of \mathbb{Z}-modules where

$$
C_{n}=\mathbb{Z} / 4, \quad d: \mathbb{Z} / 4 \longrightarrow \mathbb{Z} / 4 ; d(\bar{t})=\overline{2 t} .
$$

Then $\operatorname{Ker} d_{n}=2 \mathbb{Z} / 4=\operatorname{Im} d_{n}$ and $H_{n}\left(C_{*}, d\right)=0$, hence $\left(C_{*}, d\right)$ is acyclic.
A homomorphism of chain complexes or chain homomorphism $h:\left(C_{*}, d^{C}\right) \longrightarrow\left(D_{*}, d^{D}\right)$ is a sequence of homomorphisms $h_{n}: C_{n} \longrightarrow D_{n}$ for which the following diagram commutes.

We often write $h: C_{*} \longrightarrow D_{*}$ when the boundary homomorphisms are clear from the context.
A chain homomorphism for which each $h_{n}: C_{n} \longrightarrow D_{n}$ is an isomorphism is called a chain isomorphism and admits an inverse chain homomorphism $D_{*} \longrightarrow C_{*}$ consisting of the inverse homomorphisms $h_{n}^{-1}: D_{*} \longrightarrow C_{*}$.
The category of chain complexes in $\mathbf{M o d}_{R}, \mathbf{C h}_{\mathbb{Z}}\left(\mathbf{M o d}_{R}\right)$, has chain complexes as its objects and chain homomorphisms as its morphisms. Like Mod_{R}, it is an abelian category.

Let $h:\left(C_{*}, d^{C}\right) \longrightarrow\left(D_{*}, d^{D}\right)$ be a chain homomorphism. If $u \in \operatorname{Ker} d_{n}^{C}$ we have

$$
d_{n}^{D}\left(h_{n}(u)\right)=h_{n}\left(d_{n}^{C}(u)\right)=0,
$$

and if $v \in C_{n+1}$,

$$
h_{n}\left(d_{n+1}^{C}(v)\right)=d_{n+1}^{D}\left(h_{n+1}(v)\right) .
$$

Together these allow us to define for each n a well-defined homomorphism

$$
h_{*}=H_{n}(h): H_{n}\left(C_{*}, d^{C}\right) \longrightarrow H_{n}\left(D_{*}, d^{D}\right) ; \quad h_{*}\left(u+\operatorname{Im} d_{n+1}^{C}\right)=h_{n}(u)+\operatorname{Im} d_{n+1}^{D} .
$$

If $g:\left(B_{*}, d^{B}\right) \longrightarrow\left(C_{*}, d^{C}\right)$ is another morphism of chain complexes, it is easy to check that

$$
(h g)_{*}=h_{*} g_{*},
$$

while for the identity morphism id: $\left(C_{*}, d^{C}\right) \longrightarrow\left(C_{*}, d^{C}\right)$ we have

$$
\mathrm{id}_{*}=\mathrm{id} .
$$

Thus each H_{n} is a covariant functor from chain complexes to R-modules.

A cochain complex is a collection of R-modules C^{n} together with coboundary homomorphisms $d^{n}: C^{n} \longrightarrow C^{n+1}$ for which $d^{n+1} d^{n}=0$; the cohomology of this complex is ($\left.H^{*}\left(C^{*}, d\right), 0\right)$ where

$$
H^{n}\left(C^{*}, d\right)=\operatorname{Ker} d^{n} / \operatorname{Im} d^{n-1} .
$$

Given a chain complex $\left(C_{n}, d\right)$ we can re-index so that $C^{n}=C_{-n}$ and form the cochain complex $\left(C^{n}, d\right)$; similarly each cochain complex gives rise to a chain complex. We then have

$$
H^{n}\left(C^{*}, d\right)=H_{-n}\left(C_{*}, d\right) .
$$

We mainly focus on chain complexes, but everything can be reworked for cochain complexes using this correspondence.

There are some useful constructions on complexes. Given $\left(C_{*}, d\right)$, for any integer t we can form $\left(C[t]_{*}, d[t]\right)$ with

$$
C[t]_{n}=C_{n+t}, \quad d[t]=(-1)^{t} d .
$$

Then

$$
H_{n}\left(C[t]_{*}, d[t]\right)=H_{n+t}\left(C_{*}, d\right) .
$$

Viewing an R-module M as a complex concentrated in degree 0 , we have a complex $M[t]$ which is a copy of M in degree t.

2. Short exact sequences of chain complexes

Given a morphism of chain complexes $h:\left(C_{*}, d\right) \longrightarrow\left(D_{*}, d\right)$ we may define two new chain complexes

$$
\operatorname{Ker} h=\left((\operatorname{Ker} h)_{*}, d\right), \quad \operatorname{Im} h=\left((\operatorname{Im} h)_{*}, d\right),
$$

where

$$
(\operatorname{Ker} h)_{n}=\operatorname{Ker} h: C_{n} \longrightarrow D_{n}, \quad(\operatorname{Im} h)_{n}=\operatorname{Im} h: C_{n} \longrightarrow D_{n} .
$$

The boundary homomorphisms are the restrictions of d to each of these.
Let $h:\left(L_{*}, d\right) \longrightarrow\left(M_{*}, d\right)$ and $k:\left(M_{*}, d\right) \longrightarrow\left(N_{*}, d\right)$ be chain homomorphisms and suppose that

$$
0 \rightarrow\left(L_{*}, d\right) \xrightarrow{h}\left(M_{*}, d\right) \xrightarrow{k}\left(N_{*}, d\right) \rightarrow 0
$$

is short exact, i.e.,

$$
\operatorname{Ker} h=0, \quad \operatorname{Im} k \cong\left(N_{*}, d\right), \quad \operatorname{Ker} k \cong \operatorname{Im} h .
$$

It is natural to ask about the relationship between the three homology functors $H_{*}\left(L_{*}, d\right)$, $H_{*}\left(M_{*}, d\right)$ and $H_{*}\left(N_{*}, d\right)$.

Example 2.1. Consider the following exact sequence of chain complexes of \mathbb{Z}-modules (written vertically).

$$
L_{*} \quad M_{*} \quad N_{*}
$$

On taking homology we obtain

$$
\begin{array}{ccc}
& H_{*}\left(L_{*}\right) & H_{*}\left(M_{*}\right)
\end{array} H_{*}\left(N_{*}\right)
$$

Neither of the rows with $*=0,1$ are exact, however there is an isomorphism

$$
H_{1}\left(N_{*}\right)=\mathbb{Z} / 2 \longrightarrow H_{0}\left(L_{*}\right)=\mathbb{Z} / 2 .
$$

Theorem 2.2. There is a long exact sequence of the form

and this is natural in the following sense: given a commutative diagram of short exact sequences

there is a commutative diagram

In Example 2.1, the boundary map ∂_{1} induces the isomorphism $H_{1}\left(N_{*}\right) \cong H_{0}\left(L_{*}\right)$ and there is a long exact sequence

$$
0 \rightarrow H_{1}\left(N_{*}\right) \stackrel{\partial_{1}}{\cong} H_{0}\left(L_{*}\right) \xrightarrow{0} H_{0}\left(M_{*}\right) \underset{0}{\cong} H_{0}\left(N_{*}\right) \rightarrow 0 .
$$

For cochain complexes we get a similar result for a short exact sequence of cochain complexes

$$
0 \rightarrow\left(L^{*}, d\right) \xrightarrow{h}\left(M^{*}, d\right) \xrightarrow{k}\left(N^{*}, d\right) \rightarrow 0
$$

but the ∂_{n} are replaced by homomorphisms

$$
\delta^{n}: H^{n}\left(N^{*}, d\right) \longrightarrow H^{n+1}\left(L^{*}, d\right)
$$

3. Chain homotopies and quasi-ISomorphisms

Given two chain complexes $\left(C_{*}, d\right),\left(D_{*}, d\right)$ and chain homomorphisms $f, g: C_{*} \longrightarrow D_{*}$, a chain homotopy between f and g is a sequence of R-module homomorphisms $s_{n}: C_{n} \longrightarrow D_{n+1}$ for which the following functional equation holds for all n :

$$
d s_{n}+s_{n-1} d=f-g .
$$

We say that f and g are chain homotopic or just homotopic if there is such a chain homotopy. In particular, f is null homotopic if $f \simeq 0$.

Proposition 3.1. \simeq is an equivalence relation on the set of chain homomorphisms $C_{*} \longrightarrow D_{*}$.
The equivalences classes of \simeq are called chain homotopy classes.
Proposition 3.2. Suppose that two chain homomorphisms $f, g: C_{*} \longrightarrow D_{*}$ are chain homotopic. Then the induced homomorphisms $f_{*}, g_{*}: H_{*}\left(C_{*}, d\right) \longrightarrow H_{*}\left(D_{*}, d\right)$ are equal.

Proof. Let $n \in \mathbb{Z}$. Then for $[z] \in H_{n}\left(C_{*}, d\right)$ we have $d z=0$, hence

$$
f(z)-g(z)=\left(d s_{n}+s_{n-1} d\right)(z)=d s_{n}(z)+s_{n-1}(0)=d\left(s_{n}(z)\right) .
$$

Therefore

$$
g_{*}[z]=[g(z)]=\left[f(z)-d\left(s_{n}(z)\right)\right]=[f(z)]=f_{*}[z] .
$$

The idea behind this definition comes from the geometric mapping cone of a continuous map $f: X \longrightarrow Y$. Here is the algebraic version of this construction. Given a chain homomorphism $f:\left(C_{*}, d\right) \longrightarrow\left(D_{*}, d\right)$, its (mapping) cone is the complex Cone f with

$$
(\text { Cone } f)_{n}=C_{n-1} \oplus D_{n}, \quad d(u, v)=(-d u, d v-f u)
$$

There is an exact sequence

$$
0 \rightarrow D_{*} \xrightarrow{j}(\text { Cone } f)_{*} \xrightarrow{q} C[-1]_{*} \rightarrow 0
$$

in which

$$
j(v)=(0, v), \quad q(u, v)=-u
$$

A particular case of this is the cone on $\left(C_{*}, d\right)$, $\operatorname{Cone} C_{*}=\operatorname{Cone}(C, d)_{*}=\operatorname{Coneid}_{C_{*}}$, for which

$$
(\text { Cone } C)_{n}=C_{n-1} \oplus C_{n} .
$$

Proposition 3.3. A chain homomorphism $f: C_{*} \longrightarrow D_{*}$ is null homotopic if and only if there is a factorisation

There is also a closely related notion of (mapping) cylinder Cyl C_{*} based on the topological cylinder construction $X \times I$ for a space X, where $I=[0,1]$ is the unit interval.

A chain homomorphism $f: C_{*} \longrightarrow D_{*}$ is a chain homotopy equivalence if there is a chain homomorphism $h: D_{*} \longrightarrow C_{*}$ for which $h f \simeq \mathrm{id}_{C_{*}}$ and $f h \simeq \mathrm{id}_{D_{*}}$. Notice that these conditions imply the equations

$$
h_{*} f_{*}=\mathrm{id}: H_{*}\left(C_{*}, d\right) \longrightarrow H_{*}\left(D_{*}, d\right), \quad f_{*} h_{*}=\mathrm{id}: H_{*}\left(D_{*}, d\right) \longrightarrow H_{*}\left(C_{*}, d\right),
$$

hence f_{*} and h_{*} are mutually inverse isomorphisms. Note that chain homotopy equivalences can identify very different complexes.

Example 3.4. Consider the complex $\left(C_{*}, d\right)$ of \mathbb{Z}-modules in Example 1.1. Then the chain homomorphism $q:\left(C_{*}, d\right) \longrightarrow \mathbf{0}$ is a chain homotopy equivalence which is not an chain isomorphism.

More generally, a chain homomorphism $f:\left(C_{*}, d\right) \longrightarrow\left(D_{*}, d\right)$ which induces an isomorphism $f_{*}: H_{*}\left(C_{*}, d\right) \longrightarrow H_{*}\left(D_{*}, d\right)$ is called a quasi-isomorphism and does not have to be a chain homotopy equivalence.

4. Split complexes

A complex $\left(C_{*}, d\right)$ is called split if for each $n \in \mathbb{Z}$ there is a $s_{n}: C_{n} \longrightarrow C_{n+1}$ such that

$$
d=d s_{n-1} d: C_{n} \longrightarrow C_{n-1} .
$$

$\left(C_{*}, d\right)$ is called split exact if it is split and exact.
Example 4.1. Suppose that F is a field and $\left(V_{*}, d\right)$ is a complex of F-vector spaces. Then $\left(V_{*}, d\right)$ is split.

Proof. Consider the exact sequences of (1.2),

$$
\begin{aligned}
0 & \rightarrow \operatorname{Im} d_{n+1} \\
0 & \longrightarrow \operatorname{Ker} d_{n}
\end{aligned} \longrightarrow H_{n}\left(V_{*}, d\right) \rightarrow 0,
$$

For each n, choose vector subspaces $B_{n} \subseteq V_{n}, H_{n} \subseteq \operatorname{Ker} d_{n}$ for which $V_{n}=\operatorname{Ker} d_{n} \oplus B_{n}$, $d_{n}: B_{n} \xlongequal{\cong} \operatorname{Im} d_{n}$ and $\operatorname{Ker} d_{n}=\operatorname{Im} d_{n+1} \oplus H_{n}$. Then there is an evident isomorphism $V_{n} \cong$ $B_{n+1} \oplus H_{n} \oplus B_{n}$ under which d corresponds to the linear mapping

$$
d^{\prime}:(u, v, w) \longmapsto(w, 0,0) .
$$

Now define

$$
s_{n}^{\prime}: B_{n+1} \oplus H_{n} \oplus B_{n} \longrightarrow B_{n+2} \oplus H_{n+1} \oplus B_{n+1} ; \quad s_{n}^{\prime}(u, v, w)=(0,0, u) .
$$

It is easy to see that $d^{\prime} s_{n-1}^{\prime} d^{\prime}=d^{\prime}$ which implies that the corresponding mapping $s_{n}: V_{n} \longrightarrow$ V_{n+1} satisfies $d s_{n-1} d=d$.

The arguments used in Example 4.1 apply to any complex of R-modules $\left(C_{*}, d\right)$.
Proposition 4.2. Let $\left(C_{*}, d\right)$ be a chain complex. $\left(C_{*}, d\right)$ is split if and only if it has the form

$$
C_{n}=B_{n+1} \oplus H_{n} \oplus B_{n}
$$

with differential

$$
d: C_{n} \longrightarrow C_{n+1} ; \quad d(u, v, w)=(w, 0,0) .
$$

Furthermore, $\left(C_{*}, d\right)$ is split exact if and only if $H_{n}=0$.
Example 4.3. For any complex $\left(C_{*}, d\right)$, the cone $\operatorname{Cone}\left(C_{*}, d\right)=$ Cone C_{*} is split exact, hence $H_{*}\left(C_{*}, d\right)=0$.

5. Projective and injective resolutions

Let R be a ring. A right R-module F is called free if there is a set of elements $\left\{b_{\lambda}: \lambda \in \Lambda\right\} \subseteq F$ such that every element $x \in F$ can be uniquely expressed as

$$
x=\sum_{\lambda \in \Lambda} b_{\lambda} t_{\lambda}
$$

for elements $t_{\lambda} \in R$. We say that the b_{λ} form a basis for F over R. We can make a similar definition for left modules.

For example, if $n \geqslant 1$,

$$
R^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right): t_{1}, \ldots, t_{n} \in R\right\}
$$

is free on the basis consisting of the standard elements

$$
e_{1}=(1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)
$$

This works whether we view R^{n} as a left or right module. More generally, if we have a set A, then there is a free module

$$
\bigoplus_{\alpha \in A} R=\{s: A \longrightarrow R: s \text { finitely supported }\}
$$

where ' s finitely supported' means that $s(\alpha) \neq 0$ for only finitely many $\alpha \in A$.
Notice that for any module M, there is always a surjection $F \longrightarrow M$ from some free module. For example, if we take a set of generators $m_{\alpha}(\alpha \in A)$ for M, then there is a surjection

$$
\bigoplus_{\alpha \in A} R \longrightarrow M ; \quad\left(x_{\alpha}\right) \mapsto \sum_{\alpha \in A} x_{\alpha} m_{\alpha}
$$

An R-module P is called projective if given an exact sequence $M \stackrel{f}{\rightarrow} N \rightarrow 0$ and a homomorphism $p: P \longrightarrow N$, there is a (not usually unique) homomorphism $\widetilde{p}: P \longrightarrow M$ for which $f \widetilde{p}=p$.

In particular, every free R-module is projective. More generally, we have the following characterisation.

Proposition 5.1. An R-module P is projective if and only if it is a retract of a free module.
Proof. Suppose that P is projective. Then there is a surjective homomorphism $g: F \longrightarrow P$ from a free module F. Consider the diagram of solid arrows

in which the vertical sequence is exact. By projectivity there is a homomorphism $k: P \longrightarrow F$ corresponding to the dotted arrow and making the whole diagram commute. Then g is a retraction and $F \cong P \oplus \operatorname{Ker} g$.

Now suppose that for some module $Q, P \oplus Q$ is a free module with basis $e_{\alpha}(\alpha \in A)$ say. Suppose there is a diagram

in which the vertical sequence is exact. Then we can extend p to the homomorphism $p^{\prime}: P \oplus$ $Q \longrightarrow N$ given by $p^{\prime}(x, y)=p(x)$. Then the elements $p^{\prime}\left(e_{\alpha}\right) \in N$ can be lifted to elements $u_{\alpha} \in M$ for which $f\left(u_{\alpha}\right)=p^{\prime}\left(e_{\alpha}\right)$, and there is a unique homomorphism $\widetilde{p}: P \oplus Q \longrightarrow M$ for which $\widetilde{p}\left(e_{\alpha}\right)=u_{\alpha}$. Now restricting this to $P \subseteq P \oplus Q$ gives the required \widetilde{p} satisfying $f \widetilde{p}=p$.

An exact complex

$$
\begin{equation*}
\cdots \longrightarrow F_{k} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow M \rightarrow 0 \tag{5.1}
\end{equation*}
$$

is called a resolution of M, and denoted $F_{*} \longrightarrow M \rightarrow 0$. Here we view M as the (-1)-term and 0 as the (-2)-term. If each F_{k} is free (resp. projective) over R then it is called a free (resp. projective) resolution of M.

Proposition 5.2. Let M be an R-module.
(a) There is a free (hence projective) resolution $F_{*} \longrightarrow M \rightarrow 0$.
(b) If $f: M \longrightarrow M^{\prime}$ is a homomorphism and $P_{*} \longrightarrow M \rightarrow 0, P_{*}^{\prime} \longrightarrow M^{\prime} \rightarrow 0$ are projective resolutions, then there is a chain homomorphism between these which is f in degree -1 . Furthermore, any two such chain homomorphisms are homotopic.
(c) If $P_{*} \longrightarrow M \rightarrow 0$ and $Q_{*} \longrightarrow M \rightarrow 0$ are two projective resolutions, then they are chain homotopy equivalent by a chain map which is the identity in degree -1 .

An R-module J is called injective if given an exact sequence $0 \rightarrow K \xrightarrow{g} L$ and a homomorphism $q: K \longrightarrow J$, there is a (not usually unique) homomorphism $\widetilde{q}: L \longrightarrow J$ for which $\widetilde{q} g=q$.

It is easy to see that if J is injective, then $\operatorname{Hom}_{R}(, J)$ is right exact.
Injective modules are less easy to characterise than projective modules.
Let R be a commutative integral domain. Then an R-module M is said to be divisible if for every non-zero $r \in R$, the multiplication by r homomorphism $r \cdot: M \longrightarrow M$ is surjective. For example, if the fraction field of R is F, then for any vector space over F is an R-module and is divisible. Another example is the quotient R-module F / R.

Proposition 5.3. Let R be a pid. Then an R-module is injective if and only if it is divisible. Furthermore, for every R-module M, there is an injective homomorphism $j: M \longrightarrow J$ with J injective.

Thus the injective \mathbb{Z}-modules ($=$ abelian groups) are the divisible groups. Any torsion-free abelian group can be viewed as a subgroup of a \mathbb{Q}-vector space. On the other hand the torsion group \mathbb{Z} / n is isomorphic to the subgroup of \mathbb{Q} / \mathbb{Z} consisting of all elements of order dividing n.

Now let R be any ring and let M be a right R-module. We may view M as a \mathbb{Z}-module and choose and injection of \mathbb{Z}-modules $i: M \longrightarrow I$. Now consider $\operatorname{Hom}_{\mathbb{Z}}(R, I)$ which is right R-module with the action of $r \in R$ on $f \in \operatorname{Hom}_{\mathbb{Z}}(R, I)$ given by

$$
(f \cdot r)(x)=f(r x)
$$

Then there is a homomorphism of R-modules

$$
\theta: M \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, I) ; \quad \theta(m)(x)=i(m x) \quad(x \in R)
$$

Since $i(m)=0$ implies $m=0$, this is an injection. In fact, $\operatorname{Hom}_{\mathbb{Z}}(R, I)$ is an injective R-module since for any right R-module N, there is a natural isomorphism

$$
\operatorname{Hom}_{R}\left(N, \operatorname{Hom}_{\mathbb{Z}}(R, I)\right) \cong \operatorname{Hom}_{\mathbb{Z}}(N, I) .
$$

An exact cochain complex $0 \rightarrow M \longrightarrow J^{*}$ in which each J^{n} is injective is called an injective resolution of M.

Proposition 5.4. Let M be an R-module.
(a) There is an injective resolution $0 \rightarrow M \longrightarrow J^{*}$.
(b) If $f: M \longrightarrow M^{\prime}$ is a homomorphism and $0 \rightarrow M \longrightarrow J^{*}, 0 \rightarrow M^{\prime} \longrightarrow K^{*}$ are injective resolutions, then there is a chain homomorphism between these which is f in degree -1. Furthermore, any two such chain homomorphisms are homotopic.
(c) If $0 \rightarrow M \longrightarrow J^{*}$ and $0 \rightarrow M \longrightarrow K^{*}$ are two injective resolutions, then they are chain homotopy equivalent by a chain map which is the identity in degree -1 .

6. Hom and Ext

Let M, N be two right R-modules. Then we define

$$
\operatorname{Hom}_{R}(M, N)=\{h: M \longrightarrow N: h \text { is a homomorphism of } R \text {-modules }\} .
$$

If R is commutative then $\operatorname{Hom}_{R}(M, N)$ is also an R-module, otherwise it may only be an abelian group.
If $f: M \longrightarrow M^{\prime}$ and $g: N \longrightarrow N^{\prime}$ are homomorphisms of R-modules, then there are functions

$$
\begin{array}{cl}
f^{*}: \operatorname{Hom}_{R}\left(M^{\prime}, N\right) \longrightarrow \operatorname{Hom}_{R}(M, N) ; & f^{*} h=h \circ f, \\
g_{*}: \operatorname{Hom}_{R}(M, N) \longrightarrow \operatorname{Hom}_{R}\left(M, N^{\prime}\right) ; & g_{*} h=g \circ h .
\end{array}
$$

These are group homomorphisms and homomorphisms of R-modules if R is commutative.
Proposition 6.1. Let M, N be right R-modules.
(a) Given a short exact sequence of R-modules

$$
0 \rightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \rightarrow 0,
$$

the sequence

$$
0 \rightarrow \operatorname{Hom}_{R}\left(M_{3}, N\right) \xrightarrow{f_{2}^{*}} \operatorname{Hom}_{R}\left(M_{2}, N\right) \xrightarrow{f_{1}^{*}} \operatorname{Hom}_{R}\left(M_{1}, N\right)
$$

is exact.
(b) Given a short exact sequence of R-modules

$$
0 \rightarrow N_{1} \xrightarrow{g_{1}} N_{2} \xrightarrow{g_{2}} N_{3} \rightarrow 0,
$$

the sequence

$$
0 \rightarrow \operatorname{Hom}_{R}\left(M, N_{1}\right) \xrightarrow{g_{1 *}} \operatorname{Hom}_{R}\left(M, N_{2}\right) \xrightarrow{g_{2 *}} \operatorname{Hom}_{R}\left(M, N_{3}\right)
$$

is exact.

These results show that $\operatorname{Hom}_{R}(, N)$ and $\operatorname{Hom}_{R}(M$,$) are left exact.$
If P is projective, then $\operatorname{Hom}_{R}(P$,$) is right exact, since for given a short exact sequence$

$$
0 \rightarrow L \longrightarrow M \longrightarrow N \rightarrow 0,
$$

every homomorphism $P \longrightarrow N$ lifts to a homomorphism $P \longrightarrow M$.
Now suppose that $P_{*} \longrightarrow M \rightarrow 0$ is a resolution of M by projective modules (for example, each P_{n} could be free). This means that the complex $P_{*} \longrightarrow M \rightarrow 0$ is exact. We can forget the M and just look at $P_{*} \rightarrow 0$, whose homology is just M in degree 0 . Then for any N we can form the cochain complex $\operatorname{Hom}_{R}\left(P_{*}, N\right)$ whose n-th term is $\operatorname{Hom}_{R}\left(P_{n}, N\right)$. The n-th cohomology group of this is

$$
\operatorname{Ext}_{R}^{n}(M, N)=H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, N\right)\right)
$$

It turns out that this is independent of the choice of projective resolution of M. Notice also that

$$
\operatorname{Ext}_{R}^{0}(M, N)=\operatorname{Hom}_{R}(M, N)
$$

Now let $0 \rightarrow M \longrightarrow J^{*}$ be an injective resolution of M. Then we may form the cochain complex $\operatorname{Hom}_{R}\left(M, J^{*}\right)$ whose n-term is $\operatorname{Hom}_{R}\left(M, J^{n}\right)$. The n-th cohomology group of this complex is

$$
\operatorname{rExt}_{R}^{n}(M, N)=H^{n}\left(\operatorname{Hom}_{R}\left(M, J^{*}\right)\right)
$$

It turns out that this is independent of the choice of injective resolution of N. Notice also that

$$
\operatorname{rExt}_{R}^{0}(M, N)=\operatorname{Hom}_{R}(M, N) .
$$

Proposition 6.2. For R-modules M, N there is a natural isomorphism

$$
\operatorname{rExt}_{R}^{n}(M, N) \cong \operatorname{Ext}_{R}^{n}(M, N)
$$

Thus $\operatorname{Ext}_{R}^{n}($,$) is a balanced functor of its two variables.$
The main properties of Ext_{R}^{*} are summarised in the following result. Let R_{0} be the centre of R, i.e., the subring

$$
R_{0}=\{r \in R: r s=s r \text { for all } s \in R\} .
$$

Theorem 6.3. Let M and N be right R-modules.
(a) For each $n \geqslant 0, \operatorname{Ext}_{R}^{n}\left(M\right.$,) is a covariant functor $\operatorname{Mod}_{R} \longrightarrow \operatorname{Mod}_{R_{0}}$.
(b) For each $n \geqslant 0, \operatorname{Ext}_{R}^{n}(, N)$ is a contravariant functor $\operatorname{Mod}_{R} \longrightarrow \operatorname{Mod}_{R_{0}}$.
(c) For short exact sequences

$$
0 \rightarrow N_{1} \longrightarrow N_{2} \longrightarrow N_{3} \rightarrow 0, \quad 0 \rightarrow M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \rightarrow 0
$$

there are natural long exact sequences

$$
0 \rightarrow \operatorname{Ext}_{R}^{0}\left(M, N_{1}\right) \longrightarrow \operatorname{Ext}_{R}^{0}\left(M, N_{2}\right) \longrightarrow \operatorname{Ext}_{R}^{0}\left(M, N_{3}\right) \longrightarrow \cdots
$$

and

$$
0 \rightarrow \operatorname{Ext}_{R}^{0}\left(M_{3}, N\right) \longrightarrow \operatorname{Ext}_{R}^{0}\left(M_{2}, N\right) \longrightarrow \operatorname{Ext}_{R}^{0}\left(M_{1}, N\right) \longrightarrow \cdots
$$

7. Tensor products and Tor

Let M be any right R-module and N be left R-module. Then we can form the tensor product $M \otimes_{R} N$ which is an abelian group. If R is commutative, $M \otimes_{R} N$ is also an R-module. The definition involves forming the free \mathbb{Z}-module $F(M, N)$ with basis consisting of all the pairs (m, n) where $m \in M$ and $n \in N$. Then

$$
M \otimes_{R} N=F(M, N) / S(M, N),
$$

where $S(M, N) \leqslant F(M, N)$ is the subgroup generated by all the elements of form

$$
\left(m_{1}+m_{2}, n\right)-\left(m_{1}, n\right)-\left(m_{2}, n\right), \quad\left(m, n_{1}+n_{2}\right)-\left(m, n_{1}\right)-\left(m, n_{2}\right), \quad(m r, n)-(m, r n),
$$

where $m, m_{1}, m_{2} \in M, n, n_{1}, n_{2} \in N, r \in R$. We usually denote the coset of (m, n) by $m \otimes n$; such elements generate the group $M \otimes_{R} N$.

The tensor product $M \otimes_{R} N$ has an important universal property which characterizes it up to isomorphism. Write $q: M \times N \longrightarrow M \otimes_{R} N$ for the quotient function. Let $f: M \times N \longrightarrow V$ be a function into an abelian group V which satisfies

$$
\begin{aligned}
f\left(m_{1}+m_{2}, n\right) & =f\left(m_{1}, n\right)+f\left(m_{2}, n\right), \\
f\left(m, n_{1}+n_{2}\right) & =f\left(m, n_{1}\right)+f\left(m, n_{2}\right), \\
f(m r, n) & =f(m, r n)
\end{aligned}
$$

for all $m, m_{1}, m_{2} \in M, n, n_{1}, n_{2} \in N, r \in R$, there is a unique homomorphism $\widetilde{f}: M \otimes_{R} N \longrightarrow V$ for which $f=\widetilde{f} \circ q$.

Proposition 7.1. If $f: M_{1} \longrightarrow M_{2}$ and $g: N_{1} \longrightarrow N_{2}$ are homomorphisms of R-modules, there is a group homomorphism

$$
f \otimes g: M_{1} \otimes_{R} N_{1} \longrightarrow M_{2} \otimes_{R} N_{2}
$$

for which

$$
f \otimes g(m \otimes n)=f(m) \otimes g(n) .
$$

Proposition 7.2. Given a short exact sequence of left R-modules

$$
0 \rightarrow N_{1} \xrightarrow{g_{1}} N_{2} \xrightarrow{g_{2}} N_{3} \rightarrow 0,
$$

there is an exact sequence

$$
M \otimes_{R} N_{1} \xrightarrow{1 \otimes g_{1}} M \otimes_{R} N_{2} \xrightarrow{1 \otimes g_{2}} M \otimes_{R} N_{3} \rightarrow 0 .
$$

Because of this property, we say that $M \otimes_{R}()$ is right exact. Obviously it would be helpful to understand Ker $1 \otimes g_{1}$ which measures the deviation from left exactness of $M \otimes_{R}()$.

Every M admits a projective resolution $P_{*} \longrightarrow M \rightarrow 0$, and given a left R-module N, we can form a new complex $P_{*} \otimes_{R} N \rightarrow 0$, where the boundary maps are obtained by tensoring those of P_{*} with the identity on N an taking $P_{0} \otimes_{R} N \longrightarrow 0$ rather than using the original map $P_{0} \longrightarrow M$. Here $P_{n} \otimes_{R} N$ is in degree n. We define

$$
\operatorname{Tor}_{n}^{R}(M, N)=H_{n}\left(P_{*} \otimes_{R} N\right)
$$

It is easy to see that

$$
\operatorname{Tor}_{0}^{R}(M, N) \cong M \otimes_{R} N
$$

Of course we could also form a projective resolution of N, tensor it with M and then take homology.

Theorem 7.3. $\operatorname{Tor}_{*}^{R}$ has the following properties.
i) $\operatorname{Tor}_{*}^{R}(M, N)$ can be computed by using projective resolutions of either variable and the answers agree up to isomorphism.
ii) Given R-module homomorphisms $f: M_{1} \longrightarrow M_{2}$ and $g: N_{1} \longrightarrow N_{2}$ there are homomorphisms

$$
(f \otimes g)_{*}=f_{*} \otimes g_{*}: \operatorname{Tor}_{n}^{R}\left(M_{1}, N_{1}\right) \longrightarrow \operatorname{Tor}_{n}^{R}\left(M_{2}, N_{2}\right)
$$

generalizing $f_{*} \otimes g_{*}: M_{1} \otimes_{R} N_{1} \longrightarrow M_{2} \otimes_{R} N_{2}$.
iii) For a projective right (resp. left) R-module P (resp. Q) and $n>0$, we have

$$
\operatorname{Tor}_{n}^{R}(P, N)=0=\operatorname{Tor}_{n}^{R}(M, Q)
$$

iv) Associated to a short exact sequence of right R-modules

$$
0 \rightarrow M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \rightarrow 0
$$

there is a long exact sequence

and associated to a short exact sequence of left R-modules

$$
0 \rightarrow N_{1} \longrightarrow N_{2} \longrightarrow N_{3} \rightarrow 0
$$

there is a long exact sequence

Corollary 7.4. Let Q be a left R-module for which $\operatorname{Tor}_{n}^{R}(M, Q)=0$ for all $n>0$ and M. Then for any exact complex $\left(C_{*}, d\right)$, the complex $\left(C_{*} \otimes_{R} Q, d \otimes 1\right)$ is exact, and

$$
H_{n}\left(C_{*} \otimes_{R} Q, d \otimes 1\right) \cong H_{n}\left(C_{*}, d\right) \otimes_{R} Q
$$

An R-module M for which $\operatorname{Tor}_{n}^{R}(M, N)=0$ for all $n>0$ and left R-module N is called flat. Given a module M, it is always possible to find a resolution $F_{*} \longrightarrow M \rightarrow 0$ for which each F_{k} is flat (for example a projective resolution).

Proposition 7.5. If $F_{*} \longrightarrow M \rightarrow 0$ is a flat resolution, then

$$
\operatorname{Tor}_{n}^{R}(M, N)=H_{n}\left(F_{*} \otimes_{R} N, d \otimes 1\right)
$$

8. The Künneth Theorem

Suppose that $\left(C_{*}, d\right)$ is a chain complex of flat (for example projective) right R-modules. For any left R-module N we have another chain complex $\left(C_{*} \otimes_{R} N, d \otimes 1\right)$ with homology $H_{*}\left(C_{*} \otimes_{R} N, d \otimes 1\right)$. We would like to understand the connection between this homology and $H_{*}\left(C_{*}, d\right) \otimes_{R} N$.

Begin by taking a flat resolution of $N, F_{*} \longrightarrow N \rightarrow 0$. For each n the complex

$$
C_{n} \otimes_{R} F_{*} \longrightarrow C_{n} \otimes_{R} N \rightarrow 0
$$

is still exact since C_{n} is flat. The double complex $C_{*} \otimes_{R} F_{*}$ has two compatible families of boundaries, namely the 'horizontal' ones coming from the boundaries maps d tensored with the identity, $d \otimes 1$, and the 'vertical' ones coming from the identity tensored with the boundary maps δ of $F_{*}, 1 \otimes \delta$. We can take the two types of homology in different orders to obtain

$$
\begin{aligned}
& H_{*}^{\mathrm{v}}\left(H_{*}^{\mathrm{h}}\left(C_{*} \otimes_{R} F_{*}\right)\right)=H_{*}^{\mathrm{v}}=\operatorname{Tor}_{*}^{R}\left(H_{*}\left(C_{*}, d\right), N\right) \\
& \left.H_{*}^{\mathrm{h}}\left(H_{*}^{\mathrm{v}}\left(C_{*} \otimes_{R} F_{*}\right)\right)=H_{*}^{\mathrm{h}}\left(C_{*} \otimes_{R} N\right)\right)=H_{*}\left(C_{*} \otimes_{R} N, d \otimes 1\right)
\end{aligned}
$$

In general, the precise relationship between these two involves a spectral sequence, however there are situations where the relationship is more direct.

Suppose that N has a flat resolution of the form

$$
0 \rightarrow F_{1} \longrightarrow F_{0} \longrightarrow N \rightarrow 0
$$

This will always happen when $R=\mathbb{Z}$ or any (commutative) pid and for semi-simple rings. Then for any right R-module M and $n>1$,

$$
\operatorname{Tor}_{n}^{R}(M, N)=0
$$

Now consider what happens when we tensor C_{*} with such a resolution. We obtain a short exact sequence of chain complexes

$$
0 \rightarrow C_{*} \otimes_{R} F_{1} \longrightarrow C_{*} \otimes_{R} F_{0} \longrightarrow C_{*} \otimes_{R} N \rightarrow 0
$$

and on taking homology, an associated long exact sequence as in Theorem 2.2.

As F_{0} and F_{1} are flat, in each case Corollary 7.4 gives

$$
H_{n}\left(C_{*} \otimes_{R} F_{i}\right) \cong H_{n}\left(C_{*}\right) \otimes_{R} F_{i},
$$

so our long exact sequence becomes

The segment

$$
H_{n}\left(C_{*}\right) \otimes_{R} F_{1} \longrightarrow H_{n}\left(C_{*}\right) \otimes_{R} F_{0}
$$

is part of the complex used to compute $\operatorname{Tor}_{*}^{R}\left(H_{n}\left(C_{*}\right), N\right)$ and so we have the sequence

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}\left(H_{n}\left(C_{*}\right), N\right) \longrightarrow H_{n}\left(C_{*}\right) \otimes_{R} F_{1} \longrightarrow H_{n}\left(C_{*}\right) \otimes_{R} F_{0} \longrightarrow \operatorname{Tor}_{0}^{R}\left(H_{n}\left(C_{*}\right), N\right) \rightarrow 0
$$

in which

$$
\operatorname{Tor}_{0}^{R}\left(H_{n}\left(C_{*}\right), N\right)=H_{n}\left(C_{*}\right) \otimes_{R} N .
$$

For $\partial_{n}: H_{n}\left(C_{*} \otimes_{R} N\right) \longrightarrow H_{n-1}\left(C_{*} \otimes_{R} F_{1}\right)$ we find that

$$
\operatorname{Ker} \partial_{n} \cong \operatorname{Tor}_{0}^{R}\left(H_{n}\left(C_{*}\right), N\right), \quad \operatorname{Im} \partial_{n} \cong \operatorname{Tor}_{1}^{R}\left(H_{n-1}\left(C_{*}\right), N\right) .
$$

Theorem 8.1 (Künneth Theorem). Let $\left(C_{*}, d\right)$ be a chain complex of flat right R-modules and N a left R-module. For each n there is an exact sequence

$$
0 \rightarrow H_{n}\left(C_{*}\right) \otimes_{R} N \longrightarrow H_{*}\left(C_{*} \otimes_{R} N\right) \longrightarrow \operatorname{Tor}_{1}^{R}\left(H_{n-1}\left(C_{*}\right), N\right) \rightarrow 0
$$

9. Some examples of resolutions and calculations

9.1. Regular sequences. Let R be a commutative ring and suppose that $u \in R$ is not a zero-divisor. Then there is an exact sequence of R-modules

$$
0 \rightarrow R \xrightarrow{u} R \longrightarrow R /(u) \rightarrow 0 .
$$

This is a free resolution of $R /(u)$ with $F_{0}=F_{1}=R$ and all other terms zero. For any R-module N we have the complex

$$
0 \rightarrow \operatorname{Hom}_{R}\left(P_{0}, N\right) \xrightarrow{u} \operatorname{Hom}_{R}\left(P_{1}, N\right) \rightarrow 0
$$

whose cohomology is $\operatorname{Ext}_{R}^{*}(R /(u), N)$. Hence

$$
\operatorname{Ext}_{R}^{0}(R /(u), N)=\operatorname{Ker}(N \xrightarrow{u} N), \quad \operatorname{Ext}_{R}^{1}(R /(u), N)=N / u N .
$$

Similarly,

$$
\operatorname{Tor}_{0}^{R}(R /(u), N)=R /(u) \otimes_{R} N=N / u N, \quad \operatorname{Tor}_{1}^{R}(R /(u), N)=\operatorname{Ker}(N \xrightarrow{u} N)
$$

This can be generalised. Again let R be a commutative ring. Suppose that $u_{1}, \ldots, u_{n} \in$ R is a regular sequence, i.e., for each $k=1, \ldots, n$, the residue class $u_{k}+\left(u_{1}, \ldots, u_{k-1}\right) \in$ $R /\left(u_{1}, \ldots, u_{k-1}\right)$ is not a zero divisor. Now form the graded R-algebra

$$
K\left(u_{1}, \ldots, u_{n}\right)_{*}=\Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{*},
$$

where e_{k} has degree 1 and

$$
e_{k} e_{\ell}=(-1)^{\ell k} e_{\ell} e_{k}
$$

This has a differential d which drops degree by 1 and is a derivation, i.e., for $x \in \Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{r}$ and $y \in \Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{s}$ it satisfies

$$
d(x y)=(d x) y+(-1)^{r} x d y
$$

and also

$$
d e_{r}=u_{r}
$$

Then there is an exact sequence of R-modules

$$
\begin{aligned}
& \cdots \stackrel{d}{\rightarrow} \Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{s} \xrightarrow{d} \Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{s-1} \xrightarrow{d} \cdots \\
& \quad \stackrel{d}{\rightarrow} \Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{1} \xrightarrow{d} \Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{0} \longrightarrow R /\left(u_{1}, \ldots, u_{n}\right) \rightarrow 0 .
\end{aligned}
$$

This is a free resolution of $R /\left(u_{1}, \ldots, u_{n}\right)$ and $\Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{*}$ is called the Koszul resolution. Then

$$
\operatorname{Ext}_{R}^{*}\left(R /\left(u_{1}, \ldots, u_{n}\right), N\right)=H^{*}\left(\operatorname{Hom}_{R}\left(\Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{*}, N\right)\right)
$$

and

$$
\operatorname{Tor}_{*}^{R}\left(R /\left(u_{1}, \ldots, u_{n}\right), N\right)=H_{*}\left(\Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{*} \otimes_{R} N\right)
$$

For example, if $N=R /\left(u_{1}, \ldots, u_{n}\right)$, then

$$
\operatorname{Tor}_{*}^{R}\left(R /\left(u_{1}, \ldots, u_{n}\right), R /\left(u_{1}, \ldots, u_{n}\right)\right)=H_{*}\left(\Lambda_{R}\left(e_{1}, \ldots, e_{n}\right)_{*} \otimes_{R} R /\left(u_{1}, \ldots, u_{n}\right)\right)
$$

Here the boundary is trivial so

$$
\operatorname{Tor}_{*}^{R}\left(R /\left(u_{1}, \ldots, u_{n}\right), R /\left(u_{1}, \ldots, u_{n}\right)\right)=\Lambda_{R /\left(u_{1}, \ldots, u_{n}\right)}\left(e_{1}, \ldots, e_{n}\right)_{*}
$$

9.2. Exterior algebras. Let \mathbb{k} be a commutative ring and let $R=\Lambda_{\mathbb{k}}(\varepsilon)$, so $\varepsilon^{2}=0$. Sending ε to 0 gives a ring homomorphism $R \longrightarrow \mathbb{k}$ and using this \mathbb{k} becomes an R-module. There is a free resolution of \mathbb{k},

$$
\cdots \xrightarrow{\varepsilon} R \gamma_{s} \xrightarrow{\varepsilon} R \gamma_{s-1} \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} R \gamma_{0} \longrightarrow \mathbb{k} \rightarrow 0
$$

where $R \gamma_{s} \xrightarrow{\varepsilon} R \gamma_{s-1}$ is the obvious multiplication by ε map.

Books on homological algebra

Here are some textbooks that cover homological algebra from rather different times and perspectives. Anyone seriously learning about the subject as it now exists would probably find [3] the most sensible book to use since it covers topics such as derived categories that are absent from the others. However, it is certainly much more sophisticated than [2]. Although older, [1] is still a good source for traditional parts of the subject and contains a number of specialist topics that are not as well treated in other texts.

There are many other books that aim to cover the whole or part of the subject, and algebraic topology, algebraic geometry, and algebra books tend to cover at least the basic notions.

References

[1] H. Cartan \& S. Eilenberg, Homological Algebra, Princeton University Press (1956).
[2] J. J. Rotman, An introduction to Homological Algebra, Academic Press (1979).
[3] C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press (1994).

