
NOTES ON HOPF ALGEBRAS

ANDREW BAKER

Introduction

These notes are intended to cover some basic ideas and results on Hopf algebras, especially

finite dimensional ones.

Throughout, k will be a field, although much of the theory works over a general commutative

ring provided due care is taken over flatness and finiteness conditions.

We will make use of basic category theory terminology some of which will be explained as it

arises. The books by Mac Lane and Riehl [ML98,Rie16] are good sources for this.

The References contain several books and expository articles that cover aspects of the theory

that will be covered in these notes. Radford’s book [Rad12] is probably the most complete

source for the general theory of Hopf algebras, while Montgomery [Mon93] is more terse but

extremely useful. The recent book by Cartier & Patras [CP21] covers examples from areas

such as combinatorics and is a good introduction to the ‘classical’ theory. The lecture notes

by Brown & Goodearl [BG02] are wide ranging although their main focus is quantum groups.

Lorentz [Lor18] is an amazing book which contains a lot on Hopf algebras. Waterhouse [Wat79]

is a very accessible introduction to group schemes and the functorial viewpoint in Algebraic

Geometry.
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Background material on vector spaces over a field as a monoidal category

The abelian category of (left) k-vector spaces Vectk is very simple in terms of its additive

structure. For example, every short exact sequence splits

0→ U → V →W → 0

so that V ∼= U ⊕W . As a result there is no homological algebra like there is for modules over a

general ring. Of course this is a consequence of the existence of bases, which also implies that

every vector space is a direct sum of 1-dimensional ones.

However, additional structure is available: Vectk is also a closed symmetric monoidal category

under tensor product ⊗ = ⊗k and with the internal function object given by

hom(−,−) = Homk(−,−) = Vectk(−,−);

the vector space k is a unit object for these since there are functorial isomorphisms

k⊗ V ∼= V ∼= V ⊗ k, hom(k, V ) ∼= V.

It is symmetric because of the functorial switch isomorphism

T: U ⊗ V
∼=−−→ V ⊗ U ; T(x⊗ y) = y ⊗ x.

The tensor product is functorial in the two variables: given linear mappings f : U → U ′ and

g : V → V ′ there is a linear mapping f⊗g : U⊗V → U ′⊗V ′ fitting into a commutative diagram

of linear mappings.

U ⊗ V
f⊗IdV //

IdU′ ⊗g
��

f⊗g

%%

U ′ ⊗ V

IdU ⊗g
��

U ⊗ V ′
f⊗IdV ′

// U ′ ⊗ V ′

The tensor product is associative in the sense that for three vector spaces U, V,W , there is an

isomorphism

(U ⊗ V )⊗W
∼=−→ U ⊗ (V ⊗W )

and then for linear mappings f : U → U ′, g : V → V ′ and h : W → W ′ there is a commutative

diagram.

(U ⊗ V )⊗W

(f⊗g)⊗h

��

oo
∼= // U ⊗ (V ⊗W )

f⊗(g⊗h)

��
(U ′ ⊗ V ′)⊗W ′ oo

∼= // U ′ ⊗ (V ′ ⊗W ′)

Because of this we usually just write U ⊗ V ⊗W for (U ⊗ V ) ⊗W and f ⊗ g ⊗ h : U ⊗ V ⊗
W → U ′ ⊗ V ′ ⊗ W ′ for (f ⊗ g) ⊗ h : (U ⊗ V ) ⊗ W → U ′ ⊗ V ′ ⊗ W ′, and identify it with

f ⊗ (g ⊗ h) : U ⊗ (V ⊗W )→ U ′ ⊗ (V ′ ⊗W ′) using the isomorphisms and diagram above.

For any three vector spaces U, V,W there is an adjunction isomorphism

Vectk(U ⊗ V,W )
∼=−→ Vectk(U,hom(V,W ))
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which is functorial in the variables. This means that for linear mappings f : U → U ′, g : V → V ′

and h : W →W ′ there are commutative diagrams involving these isomorphisms.

Vectk(U
′ ⊗ V,W ) oo

∼= //

(f⊗Id)∗

��

Vectk(U
′,hom(V,W ))

f∗

��
Vectk(U ⊗ V,W ) oo

∼= // Vectk(U,hom(V,W ))

Vectk(U ⊗ V ′,W ) oo
∼= //

(Id⊗g)∗
��

Vectk(U,hom(V ′,W ))

(g∗)∗
��

Vectk(U ⊗ V,W ) oo
∼= // Vectk(U,hom(V,W ))

Vectk(U ⊗ V,W ) oo
∼= //

h∗
��

Vectk(U,hom(V,W ))

(h∗)∗
��

Vectk(U ⊗ V,W ′) oo
∼= // Vectk(U,hom(V,W ′))

The dual (space) of V is V ∗ = hom(V,k); if V is finite dimensional, a choice of basis leads to

an isomorphism V
∼=−→ V ∗ dependent on the basis used.

The (strongly) dualisable objects V are characterised by the coindition that for all W ,

hom(V,W ) ∼=W ⊗ V ∗,

and

V ∗∗ = hom(V ∗,k) ∼= V,

where the latter isomorphism can be chosen to be independent of choice of basis and functorial

in V ; these turn out to be preceisely the finite dimensional vector spaces. Notice also that

k∗ ∼= k and Endk(V ) ∼= V ⊗ V ∗. There are also functorial isomorphisms

Vectk(U ⊗ V,W ) ∼= Vectk(U,W ⊗ V ∗).

When U and V are finite dimensional, we will make the canonical identification

(0.1) (U ⊗ V )∗ ∼= V ∗ ⊗ U∗

not with U∗⊗V ∗, although these are isomorphic via the switch isomorphism; the literature has

varying conventions on this and some minor differences occur as a result. Warning: when U

or V is infinite dimensional there is a canonical injective linear mapping

(0.2) V ∗ ⊗ U∗ → (U ⊗ V )∗

which is not an isomorphism.

For later use we mention an important construction. There is a forgetful functor Vectk → Set

which ‘forgets’ the algebraic structure and just remembers the underlying set; it sends each k-
linear mapping to itself just viewed as a function.

Proposition 0.1. There is a functor F : Set → Vectk which is left adjoint to the forgetful

functor, i.e., for every set X and vector space V there is a bijection

Vectk(F(X), V ) ∼= Set(X,V ),
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and this gives a natural isomorphism of bifunctors

Vectk(F(−),−) ∼= Set(−,−).

Furthermore, there is a natural isomorphism F◦ (−×−) ∼= F(−)⊗F(−) between the bifunctors

F ◦ (−×−) : Set× Set→ Vectk; (X,Y ) 7→ F(X × Y ),

F(−)⊗ F(−) : Set× Set→ Vectk; (X,Y ) 7→ F(X)⊗ F(Y ).

We usually think of the vector space FX = F(X) as having X as a basis and it is called the

free vector space on X. One construction is

F(X) = {(α : X → k) : α is finitely supported},

where a function is finitely supported if it is zero except on finitely many elements. Of course if

we take X = {1, 2, . . . , n}, FX ∼= kn; in particular, if n = 1, FX ∼= k.

Notation for adjoint functors: When discussing a pair of adjoint functors L : C → D and

R : D→ C for which

D(L(−),−) ∼= C(−, R(−))
it is standard to use the Kan turnstyle ⊣ or ⊥, where L ⊣ R indicates that L is the left adjoint

of R, or equivalently that R is the right adjoint of L.

C

L
))⊥ D

R

ii

Notice that for anyX ∈ C, under the isomorphismD(L(X), L(X)) ∼= C(X,R(L(X))), the iden-

tity morphism IL(X) corresponds to a morphism iX : X → R(L(X)) usually called a universal

morphism.
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1. Algebras and coalgebras

Algebras. A k-algebra (A,φ, η) is a monoid in the monoidal category (Vectk,⊗), i.e., a k-
vector space A equipped with a k-linear product φ : A ⊗ A → A and unit η : k −→ A, which

make the following diagrams in Vectk commute.

(1.1) (A⊗A)⊗A

φ⊗Id

��

oo
∼= // A⊗ (A⊗A)

Id⊗φ
��

A⊗A

φ
""

A⊗A

φ
||

A

k⊗A

η⊗Id

��

A
∼=oo

Id

��

∼= // A⊗ k

Id⊗η
��

A⊗A

φ
��

A⊗A

φ
��

A

If in addition the following diagram commutes then A is commutative.

(1.2) A⊗A

φ
##

oo T

∼=
// A⊗A

φ
{{

A

We usually set xy = φ(x ⊗ y) and 1 = η(1) when this will not lead to confusion. Of course

commutativity means that for all x, y ∈ A, xy = yx.

Unpacking the definition we find that an algebra is a ring with the additional structure of

a specified ring homomorphism η : k → A whose image lies in the centre of A and makes A a

k-vector space.
A homomorphism θ : (A,φ, η) → (A′, φ′, η′) between two k-algebras is a k-linear mapping

θ : A→ A′ making the following diagrams commute.

A⊗A θ⊗θ ////

φ

��

A′ ⊗A′

φ′

��
A

θ // A′

k
η

��

η′

��
A

θ // A′

So a homomorphism is a ring homomorphism which is also a k-linear mapping. Of course the

kernel of a homomorphism θ is an ideal, ker θ◁A, and its image is a subalgebra. The conditions

for a subspace I ⊆ A to be a two-sided ideal amount to saying that there is commutative diagram

of the following form.

A⊗ I id⊗inc//

��

A⊗A
φ

��

I ⊗Ainc⊗idoo

��
I

inc // A I
incoo

The image of θ is isomorphic to the quotient algebra A/I.

The trivial k-algebra is k with the product given by the canonical isomorphism

k⊗ k
∼=−→ k

which on basic tensors is given by

r ⊗ t 7→ rs.

For any algebra the unit η : k → A is an injective homomorphism of k-algebras and it is usual

to identify its image with k, thus making k a subring of A. The exact sequence of vector spaces

0→ k→ A→ coker η → 0
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splits, giving a linear isomorphism A ∼= k ⊕ coker η. However this isomorphism depends on

choosing a basis of A which extends a basis of k. If additional structure is present then it can

sometimes be made canonical.

A k-algebra A is augmented if there is a given homomorphism of k-algebras ε : A → k, so
ker ε◁A. Notice that the commutative diagram of vector spaces and linear mappings

0

��
k
η

��
0 // ker ε //

∼= $$

A
ε

//

��

k // 0

coker η

��
0

has exact row and column, and the composition

ker ε //
))

A // coker η

is an isomorphism. Therefore there is a canonical decomposition of vector spaces

A ∼= k⊕ ker ε ∼= k⊕ coker η.

Given an algebra A, its opposite algebra Aop has the same underlying vector space but product

φop = φ ◦ T.

So if we denote a ∈ A viewed as an element of Aop by aop,

aopbop = φop(aop ⊗ bop) = (ba)op.

The identity function A → Aop is an algebra homomorphism if and only if A is commutative.

It is not always possible to find an isomorphism A→ Aop but it does sometimes occur.

Given two algebras (A1, φ1, η1) and (A2, φ2, η2), their tensor product A1 ⊗ A2 becomes an

algebra with product and unit given by the compositions

(A1 ⊗A2)⊗ (A1 ⊗A2)
IdA1

⊗T⊗IdA2−−−−−−−−−→∼=
(A1 ⊗A1)⊗ (A2 ⊗A2)

φ1⊗φ2−−−−→ A1 ⊗A2

and

k −−→∼= k⊗ k η1⊗η2−−−−→ A1 ⊗A2.

So given basic tensors a1 ⊗ a2, b1 ⊗ b2 ∈ A1 ⊗A2, their product is

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2.

Example 1.1. Given an algebra A and its opposite algebra Aop, the algebra Ae = A ⊗ Aop

is called the enveloping algebra of A. It is encountered when studying bimodules over A and

Hochschild (co)homology.

We can summarises the main properties of k-algebras and their homomorphisms in the fol-

lowing.
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Theorem 1.2. Algebras and commutative algebras form symmetric monoidal categories Algk
and coAlgk under ⊗. In coAlgk, ⊗ is the categorical coproduct and k is an initial object.

In Algk and coAlgk the Cartesian product × = ⊕ is the categorical product.

Coalgebras. The dual notion to an algebra is that of a k-coalgebra, which is a triple (C,ψ, ε),

with C a k-vector space, a coproduct ψ : C → C ⊗ C, and a counit ε : C → k fitting into the

commutative diagrams shown.

(1.3) (C ⊗ C)⊗ C oo
∼= //

OO
ψ⊗Id

C ⊗ (C ⊗ C)
OO
Id⊗ψ

C ⊗ Cee

ψ

C ⊗ C99

ψ

C

k⊗ COO
ε⊗Id

C//
∼=
OO

Id

oo
∼=

C ⊗ kOO
Id⊗ε

C ⊗ Caa

ψ

C ⊗ C==

ψ

C

This says that (C,ψ, ε) is a comonoid in Vectk.

If the following diagram commutes then C is cocommutative.

(1.4) C ⊗ Ccc

ψ

oo T

∼=
// C ⊗ C;;

ψ

C

A homomorphism θ : (C,ψ, ε) → (C ′, ψ′, ε′) between two k-coalgebras is a k-linear mapping

θ : C → C ′ making the following diagrams commute.

C ⊗ C θ⊗θ //// C ′ ⊗ C ′

C

ψ

OO

θ // C ′

ψ′

OO k

C

ε
??

θ // C ′

ε′
__

The kernel of θ is a coideal, where a subspace J ⊆ C is a coideal if the coproduct ψ restricts to

give a map J → C ⊗ J + J ⊗ C ⊆ C ⊗ C. Then there is a commutative diagram

J� _

��

// C ⊗ J + J ⊗ C� _

��
C

ψ //

��

C ⊗ C

��
C/J

ψ // C/J ⊗ C/J

The image of θ is a subcoalgebra isomorphic to the quotient C/J equipped with the induced

coproduct ψ : C/J → C/J ⊗ C/J .
The trivial k-coalgebra is k with the coproduct given by the isomorphism

k
∼=−→ k⊗k k = k⊗ k

which on basic tensors is just

t 7→ t⊗ 1 = 1⊗ t.

For any coalgebra the counit ε : C → k is a homomorphism of k-coalgebras.
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A k-coalgebra C is (co)augmented if there is a homomorphism of k-coalgebras η : k → C.

The commutative diagram of vector spaces and linear mappings has exact row and column

0

��
ker ε

��

∼=

$$
0 // k

η // C //

ε
��

coker η // 0

k

��
0

and there is a canonical decomposition of vector spaces

C ∼= k⊕ ker ε ∼= k⊕ coker η.

A coalgebra C has an opposite coalgebra Cop with coproduct

ψop = T ◦ ψ.

So if ψ(c) =
∑

i c
′
i ⊗ c′′i ,

ψop(cop) =
∑
i

(c′′i )
op ⊗ (c′i)

op.

The identity function C → Cop is a coalgebra homomorphism if and only if C is cocommutative.

Remark 1.3 (Sweedler notation). Coalgebraists often use the notations

ψ(c) =
∑

c(1) ⊗ c(2) =
∑

c1 ⊗ c2

and even drop the summation sign (this is like the Einstein summation convention used with

tensors in Applied Mathematics). This notation is quite convenient in calculations especially as

an alternative to working with huge commutative diagrams. For example, the coassociativity

condition is equivalent to the calculation

(1.5) (ψ⊗Id)◦ψ(c) =
∑

(c(1))(1)⊗(c(1))(2)⊗c(2) =
∑

c(1)⊗(c(2))(1)⊗(c(2))(2) = (Id⊗ψ)◦ψ(c),

while the counit conditions become

(1.6)
∑

ε(c(1))c(2) = c =
∑

ε(c(2))c(1).

For coalgebras C1, C2, their tensor product C1 ⊗ C2 becomes a coalgebra whose coproduct

and counit are the compositions

C1 ⊗ C2
ψ1⊗ψ2−−−−→ (C1 ⊗ C1)⊗ (C2 ⊗ C2)

IdC1
⊗T⊗IdC2−−−−−−−−−→∼=

(C1 ⊗ C2)⊗ (C1 ⊗ C2),

C1 ⊗ C2
ε1⊗ε2−−−−→ k⊗ k −−→∼= k.

So if c′ ∈ C1 and c′′ ∈ C2 with coproducts

ψC1(c
′) =

∑
c′(1) ⊗ c

′
(2), ψC2(c

′′) =
∑

c′′(1) ⊗ c
′′
(2),

the coproduct on c′ ⊗ c′′ ∈ C1 ⊗ C2 is

ψC1⊗C2(c
′ ⊗ c′′) =

∑
(c′(1) ⊗ c

′′
(1))⊗ (c′(2) ⊗ c

′′
(2)) ∈ (C1 ⊗ C2)⊗ (C1 ⊗ C2).

Dually to Theorem 1.2 we have
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Theorem 1.4. Coalgebras and cocommutative coalgebras form symmetric monoidal categories

Coalgk and coCoalgk under ⊗. In coCoalgk, ⊗ is the categorical product and k is a terminal

object. In Coalgk and coCoalgk the Cartesian product × = ⊕ is the categorical coproduct.

Dualising between algebras and coalgebras. The diagrams satisfied by the structure mor-

phisms of algebras and coalgebras are dual in the sense that they are related by ‘reversing all

the arrows’. We can exploit this categorical symmetry to dualise algebras to coalgebras and

sometimes coalgebras to algebras.

Given a coalgebra (C,ψ, ε) the dual space C∗ = hom(C,k) becomes an algebra by defining

the product C∗ ⊗ C∗ → C∗ to be the following composition.

C∗ ⊗ C∗ � � // **
(C ⊗ C)∗

ψ∗
// C∗

hom(C ⊗ C,k) hom(C,k)

On elements, for α, β ∈ C∗ and c ∈ C,

(αβ)(c) =
∑

α(c(2))⊗ β(c(1))

where we use Sweedler notation for the coproduct on c; notice the switch in order of the indices

which is a consequence of our definition of the dual of a tensor product (0.2). The unit is the

dual of the counit ε∗,

ε∗ : k→ C∗; ε∗(t) = tε.

To see why this product on C∗ is associative, for α, β, γ ∈ C∗ and c ∈ C, using (1.5) we find(
(αβ)γ

)
(c) =

∑
(αβ)(c(2))γ(c(1))

=
∑

α((c(2))(2))β((c(2))(1))γ(c(1))

=
∑

α(c(2))β((c(1))(2))γ((c(1))(1))

=
∑

α(c(2))(βγ)(c(1))

=
(
α(βγ)

)
(c),

showing that (αβ)γ = α(βγ); alternatively we could do this with a humongous commutative

diagram. A similar calculation using (1.6) shows that ε∗ is a unit. Also, if C is cocommutative

then C∗ is commutative. An important fact is that the algebra C∗ acts on C to make it a left

C∗-module, as we will see later.

We summarise this discussion in a result.

Proposition 1.5. Given a coalgebra (C,ψC , εC), there is a dual algebra (C∗, ψ∗
C , ε

∗
C); C

∗ is

commutative if and only if C is cocommutative.

A homomorphism of coalgebras θ : (C,ψC , εC) → (C ′, ψC′ , εC′) induces a homomorphism of

algebras θ∗ : ((C ′)∗, ψ∗
C′ , ε∗C′)→ (C∗, ψ∗

C , ε
∗
C).

Proof. The last part is left as an exercise. □

If (A,φ, η) is an algebra which is finite dimensional then we can similarly dualise to get a

coalgebra (A∗, φ∗, η∗). However, if A is infinite dimensional we need to modify the notion of

dual appropriately to make this work. Actually there are two ways to do this: the more drastic

one involves introducing linearly topologised vector spaces and a notion of completeness, the

other leads to a more ‘algebraic’ outcome by suitably restricting the elements in the dual space.

We will take the latter approach.
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Suppose that V is a vector space. Then a subspace U ⊆ V is cofinite or has finite codimension

if dimk V/U <∞.

For an algebra A, we define its finite or restricted dual by

A◦ = {α ∈ A∗ : there is a cofinite I ◁A such that I ⊆ kerα} ⊆ A∗.

So α ∈ A∗ is in A◦ if it factors through a finite dimensional quotient algebra A/I. Of course

when A is finite dimensional, A◦ = A∗, but otherwise A◦ ⫋ A∗. As before we can ‘dualise’ the

algebra structure on A to obtain a coproduct φ∗ : A∗ → (A ⊗ A)∗ but in order to land in a

tensor product we need to restrict it to A◦ using the fact that there is a commutative diagram

A◦
� _

��

φ◦
// A◦ ⊗A◦

� _

��

oo
∼= // (A⊗A)◦

A∗ φ∗
// (A⊗A)∗

and the dotted arrow is defined to be the coproduct φ◦ : A◦ → A◦ ⊗ A◦. There is a counit

η◦ : A◦ → k obtained by precomposing with η. Then (A◦, φ◦, η◦) is a coalgebra.

Proposition 1.6. Given an algebra (A,φA, ηA), there is a dual coalgebra (A◦, φ◦
A, η

◦); A◦ is

cocommutative if and only if A is commutative.

A homomorphism of algebras θ : (A,φA, ηA) → (A′, φA′ , ηA′) induces a homomorphism of

coalgebras θ◦ : ((A′)◦, φ◦
A′ , η◦A′)→ (A◦, φ◦

A, η
∗
A).

Convolution monoids. In order to define Hopf algebras we will require a construction that

can be made using an algebra and a coalgebra as ingredients.

Let (A,φ, η) be a k-algebra and (C,ψ, ε) a k-coalgebra. The vector space hom(C,A) can be

given a product ∗ called the convolution product : for f, g ∈ hom(C,A),

f ∗ g = φ ◦ (f ⊗ g) ◦ ψ

and since this function C → A is a composition of linear mappings it is an element of hom(C,A).

Proposition 1.7. With the multiplication ∗, hom(C,A) becomes a monoid with identity element

1 = ε ◦ η ∈ hom(C,A).

When A is commutative and C is cocommutative, this monoid is also commutative.

Proof. The main thing is to verify that ∗ is associative and that 1 acts as the unity, thus

showing hom(C,A) a monoid.

Associativity and coassociativity of A and C imply the commutativity of the following dia-

gram which gives (f ∗ g) ∗ h = f ∗ (g ∗ h).

Cψ

xx

ψ

&&

(f∗g)∗h=f∗(g∗h)

��

C ⊗ C

(f∗g)⊗h
��

ψ⊗Id// C ⊗ C ⊗ C

(f⊗g)⊗h
��

oo
∼= // C ⊗ C ⊗ C

f⊗(g⊗h)
��

C ⊗ C
Id⊗ψoo

f⊗(g∗h)
��

A⊗A

φ ..

A⊗A⊗A
φ⊗Id
oo oo

∼=
// A⊗A⊗A

Id⊗φ
// A⊗A

φppA
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By contemplating the following commutative diagram we see that 1 ∗ f = f = f ∗ 1.

C

1∗f

))

f∗1

uu

ψ

��

ψ

��
Id

��

C ⊗ C

ε⊗Id

��

C ⊗ C

Id⊗ε
��

k⊗ C

Id⊗f
��

C
∼=oo

∼= //

f

��

C ⊗ k

f⊗Id

��
k⊗A

η⊗Id

��

A
∼=oo

Id

��

∼= // A⊗ k

Id⊗η
��

A⊗A

φ
��

A⊗A

φ
��

A

The commutativity result is left as an exercise. □

When we combine ∗ with the vector space structure on hom(C,A) we get an algebra.

Corollary 1.8. The vector space hom(C,A) becomes a k-algebra with product ∗ and unity 1.

Given an algebra homomorphism α : A → A′ and a coalgebra homomorphism γ : C ′ → C,

there are k-linear mappings

α∗ : hom(C,A)→ hom(C,A′); α∗(f) = α ◦ f,
γ∗ : hom(C,A)→ hom(C ′, A); γ∗(f) = f ◦ γ.

It is easy to verify that these are monoid homomorphisms and so algebra homomorphisms, i.e.,

for f, g ∈ hom(C,A),

α∗(f ∗ g) = α∗(f) ∗ α∗(g), γ∗(f ∗ g) = γ∗(f) ∗ γ∗(g),
α∗(1) = 1, γ∗(1) = 1.

In a monoid elements need not have inverses, but sometimes they do. If f ∈ hom(C,A) then

f ∈ hom(C,A) is an inverse for f if

f ∗ f = 1 = f ∗ f,

or more explicitly if for every c ∈ C, using Sweedler notation in A we have∑
f(c(1))f(c(2)) = ε(c) =

∑
f(c(1))f(c(2)).

Of course such a two-sided inverse for f is unique.

Notice that when A = k, C∗ = hom(C,k) and 1 = ε∗, and the algebra (C∗, ∗,1) agrees with
(C∗, ψ∗, ε∗) discussed earlier.
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2. Bialgebras and Hopf algebras

In order to define a bialgebra (also known as a bigèbre in French) we need a vector space

equipped with both an algebra and a coalgebra structure, (B,φ, η) and (B,ψ, ε), which interact

appropriately.

Recall that we can give B ⊗ B an algebra stucture and a coalgebra structure, so it makes

sense to ask if φ : B⊗B → B and η : k→ B are coalgebra homomorphisms or if ψ : B → B⊗B
and ε : B → k are algebra homomorphisms. Either of these amounts to requiring that chasing

around the following diagrams read from left to right gives the same output.

ψ φ

=
ψ ◦ φ

Here the product for B ⊗B is shown in red, the coproduct in green.

ψ φ ψ φ

We also have two commutative diagrams for the unit and counit.

k
∼= //

η

��

k⊗ k

η⊗η
��

B
ψ // B ⊗B

B ⊗B
φ //

ε⊗ε
��

B

ε
��

k⊗ k
∼= // k

If necessary, we denote the structure maps in a bialgebra by writing (B,φ, η, ψ, ε).

Of course a homomorphism of bialgebras should be simultaneously an algebra and a coalgebra

homomorphism, and there is a category of bialgebras Bialgk with full subcategories of commu-

tative and cocommutative bialgebras. If a bialgebra is both commutative and cocommutative

then it is called bicommutative.

Example 2.1 (The Quantum Plane). Let 1 ̸= q ∈ k. Then the Quantum Plane is the non-

commutative bialgebra

Oq(k2) = k⟨X,Y ⟩/(Y X − qXY ).

We will denote the residue classes of X and Y by x and y, so these satisfy yx = qxy; notice

that the monomials xiyj form a basis of Oq(k2). There is a coproduct ψ and counit ε given by

ψ(x) = x⊗ x, ψ(y) = y ⊗ 1 + x⊗ y, ε(x) = 1, ε(y) = 0.

This bialgebra is neither commutative nor cocommutative so it is a quantum monoid.

Proposition 2.2. Suppose that (B,φ, η, ψ, ε) is a bialgebra.

(a) If (B,ψ, ε) is a cocommutative coalgebra, then (B,φ, η) is a monoid in coCoalgk. In par-

ticular, φ and η are coalgebra homomorphisms.

(b) If (B,φ, η) is a commutative algebra then (B,ψ, ε) is a comonoid in coAlgk. In particular,

ψ and ε are algebra homomorphisms.
12



Proof. (a) In the category coCoalgk, ⊗ is the categorical product and k is a terminal object.

Now expand the diagrams of (1.1) for (B,φ, η) with A = B and interpret them as being in
coCoalgk.

(b) In the category coAlgk, ⊗ is the categorical coproduct and k is an initial object. Now expand

the diagrams of (1.3) for (B,ψ, ε) with C = B and interpret them as being in coAlgk. □

Before introducing Hopf algebras, we note a result on inverses in convolution monoids for

bialgebras.

Lemma 2.3. Suppose that B is a bialgebra.

(a) If A is an algebra and f : B → A is an algebra homomorphism which has a convolution

inverse f in hom(B,A), then f is an algebra homomorphism B → Aop.

(b) If C is a coalgebra and g : C → B is a coalgebra homomorphism which has a convolution

inverse g in hom(C,B), then g is a coalgebra homomorphism Cop → B.

Proof. (a) Let B ⊗ B with its product φB⊗B which is also a coalgebra homomorphism with

respect to its coproduct ψB⊗B. This means that φ∗
B⊗B : hom(B,A) → hom(B ⊗ B,A) is a

monoid homomorphism and in particular φ∗
B⊗B(f) ∈ hom(B ⊗B,A) has inverse φ∗

B⊗B(f).

Now define ℓ = φA ◦ (f ⊗ f) ◦ T: B ⊗B → A, given on elments by

ℓ(x⊗ y) = f(y)f(x).

We will show that ℓ is also a left inverse for φ∗
B⊗B(f) and therefore it agrees with φ∗

B⊗B(f). To

verify this we calculate: for x, y ∈ B,

(ℓ ∗ φ∗
B⊗B(f))(x⊗ y) =

∑∑
ℓ(x(1) ⊗ y(1))φ∗

B⊗B(f)(x(2) ⊗ y(2))

=
∑∑

f(y(1))f(x(1))f(x(2)y(2))

=
∑∑

f(y(1))f(x(1))f(x(2))f(y(2))

=
∑

f(y(1))(f ∗ f)(x)f(y(2))

=
∑

f(y(1))ε(x)f(y(2))

= ε(x)
∑

f(y(1))f(y(2))

= ε(x)(f ∗ f)(y)
= ε(x)ε(y) = ε(xy).

So (ℓ ∗ φ∗
B⊗B(f)) = 1 and ℓ is the inverse of φ∗

B⊗B(f).

The proof of (b) is similar. □

In particular, when B is a bialgebra, the identity function IdB : B → B is both an alge-

bra homomorphism and a coalgebra homomorphism; so if it has a convolution inverse IdB ∈
hom(B,B), this is both an algebra isomorphism B → Bop and a coalgebra isomorphism

Bop → B.

Lemma 2.4. Suppose that (B,φ, η, ψ, ε) is a bialgebra which is either commutative or cocom-

mutative and that IdB exists. Then IdB : B → B is self-inverse, i.e.,

IdB ◦ IdB = IdB .

Proof. We will give the proof when B is commutative, the other case is similar. So IdB is an

isomorphism B ∼= Bop and by Lemma 2.3(a), IdB : B → B is an algebra homomorphism, hence

φ ◦ (IdB ⊗ IdB) = IdB ◦ φ. To identify IdB ◦ IdB it is sufficient to show that

(IdB ◦ IdB) ∗ IdB = 1.
13



We have

(IdB ◦ IdB) ∗ IdB = φ ◦ ((IdB ◦ IdB)⊗ IdB) ◦ ψ

= φ ◦ (IdB ⊗ IdB) ◦ (IdB ⊗IdB) ◦ ψ

= IdB ◦ φ ◦ (IdB ⊗IdB) ◦ ψ

= IdB ◦ (IdB ∗IdB)

= IdB ◦ 1

= IdB ◦ η ◦ ε = 1,

and so IdB ◦ IdB = IdB as required. □

Definition 2.5. If (H,φ, η, ψ, ε) is a bialgebra for which χ = IdH exists then it is called the

antipode of H and (H,φ, η, ψ, ε, χ) is called a Hopf algebra. In many sources χ is denoted by S.

The antipode χ has to satisfy some conditions which we can encode in the following commu-

tative diagram.

(2.1) H
ψ

{{
ε

��

ψ

##
H ⊗H

χ⊗Id

��

H ⊗H

Id⊗χ

��

k

η

��

H ⊗H

φ
##

H ⊗H

φ
{{

H

On an element h ∈ H this expands to give

(2.2)
∑

χ(h(1))h2 = ε(h) =
∑

h1χ(h(2)).

In general χ : H → H is not a bijective function, however if it is bijective then its inverse χ−1

fits into the two equivalent commutative diagrams

(2.3) H
ψ

{{
ε

��

ψ

##
H ⊗H

T
��

H ⊗H

T
��

H ⊗H

χ−1⊗Id
��

k

η

��

H ⊗H

Id⊗χ−1

��
H ⊗H

φ
##

H ⊗H

φ
{{

H

H
ψ

{{
ε

��

ψ

##
H ⊗H

Id⊗χ−1

��

H ⊗H

χ−1⊗Id
��

H ⊗H

T
��

k

η

��

H ⊗H

T
��

H ⊗H

φ
##

H ⊗H

φ
{{

H

which expand to give

(2.4)
∑

χ−1(h(2))h(1) = ε(h) =
∑

h(2)χ
−1(h(1)).
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Example 2.6 (The localised Quantum Plane). We can modify the Quantum Plane of Exam-

ple 2.1 to give a Hopf algebra by forcing x to have an inverse. Let

Oq(k2)[x−1] = k⟨X,Y, Z⟩/(Y X − qXY,XZ − 1, ZX − 1).

The coproduct and counit of Oq(k2) extend to Oq(k2)[x−1] so that

ψ(x−1) = x−1 ⊗ x−1, ε(x−1) = 1,

and the antipode is given by

χ(x) = x−1, χ(x−1) = x, χ(y) = −x−1y.

This is a Hopf algebra which is neither commutative nor cocommutative. It has interesting finite

dimensional quotient Hopf algebras when q takes special values; these are called Taft algebras.

Definition 2.7. A homomorphism of Hopf algebras θ : (H,φ, η, ψ, ε, χ)→ (H ′, φ′, η′, ψ′, ε′, χ′)

is a k-linear mapping θ : H → H ′ which is both an algebra and a coalgebra homomorphism. A

homomorphism which is invertible is called an isomorphism.

Just as a group homomorphism maps inverses to inverses, such a homomorphism also satisfies

θ ◦ χ = χ′ ◦ θ.

The kernel of a homomorphism of Hopf algebras θ is both an ideal and a coideal, which is

also closed under the restriction of the antipode of the domain. Such an ideal in a Hopf algebra

is called a Hopf ideal. It is easy to see if J ◁H is a Hopf ideal then there are unique algebra

and coalgebra structures on H/J so that the quotient map H → H/J is a homomorphism of

Hopf algebras; then H/J is called the quotient Hopf algebra of H with respect to J .

Proposition 2.8. Let θ : (H,φ, η, ψ, ε, χ) → (H ′, φ′, η′, ψ′, ε′, χ′) be a homomorphism of Hopf

algebras. Then

(a) χ′ ◦ θ = θ ◦ χ;
(b) ker θ◁H is a Hopf ideal and the image of θ is a subHopf algebra of H ′ is isomorphic to the

quotient Hopf algebra H/ ker θ.

Proof. (a) The idea is to show that in the convolution monoid hom(H,H ′) the elements χ′ ◦ θ
and θ ◦ χ satisfy .

(χ′ ◦ θ) ∗ θ = η′ ◦ ε = θ ∗ (χ′ ◦ θ)

and

(θ ◦ χ) ∗ θ = η′ ◦ ε = θ ∗ (θ ◦ χ)

where χ′ ◦ θ is the identity element. This shows that these elements are both inverses of θ

and so must be equal by uniqueness of inverses. Here is a sample, the others follow by similar

calculations:

(χ′ ◦ θ) ∗ θ = φ′ ◦
(
(χ′ ◦ θ)⊗ θ

)
◦ ψ

= φ′ ◦ (χ′ ⊗ Id) ◦ (θ ⊗ θ) ◦ ψ
= φ′ ◦ (χ′ ⊗ Id) ◦ ψ′ ◦ θ
= (χ′ ∗ Id) ◦ θ
= η′ ◦ ε′ ◦ θ
= η′ ◦ ε.

(b) This is a consequence of earlier results about homomorphisms of algebras and coalgebras. □
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Remark 2.9. Of course Hopf algebras over k and their homomorphisms define a category HAk
which has the null (i.e., initial and terminal) object k. There are three obvious full subcategories
whose objects are the commutative, the cocommutative and the bicommutative Hopf algebras.

In the first two, ⊗ is the categorical coproduct and product respectively. The category of

bicommutative Hopf algebras (also known as abelian Hopf algebras) has many features possessed

by an abelian category (for example ⊗ is the both the categorical coproduct and product), and

indeed appropriate subcategories such as finite dimensional ones do form abelian categories.

We mention one important example of an isomorphism.

Example 2.10. Suppose that (H,φ, η, ψ, ε, χ) is a Hopf algebra whose antipode χ is bijective.

Then its opposite Hopf algebra is (Hop, φop, ηop, ψop, εop, χop) where we take the opposite algebra

and coalgebra structures and as a function χop = χ. Then the function

χ̃ : H → Hop; χ̃(h) = (χ(h))op

is an isomorphism of Hopf algebras with inverse

χ̃op : Hop → Hop; χ̃op(hop) = χ−1(h).

A similar result applies if we interchange χ and χ−1.

Later we will see that these isomorphisms allows us to interchange between left and right

modules and comodules over H.

Proposition 2.11. Suppose that (H,φ, η, ψ, ε, χ) is a Hopf algebra.

(a) If (H,ψ, ε) is cocommutative then (H,φ, η, χ) is a group object in coCoalgk. In particular,

φ, η, χ are coalgebra homomorphisms.

(b) If (H,φ, η) is commutative then (H,ψ, ε, χ) is a cogroup object in coAlgk. In particular,

ψ, ε, χ are algebra homomorphisms.

Proof. This follows from Proposition 2.2 since χ is the inverse map in each case. □

Definition 2.12. A Hopf algebra which is commutative or cocommutative is called a classical

Hopf algebra. We have shown above that for such a Hopf algebra, χ ◦ χ = Id and χ is an

(co)algebra isomorphism H
∼=−→ Hop to the opposite (co)algebra. A Hopf algebra for which

χ ◦ χ = Id is called involutary or involutive. Of course involutary Hopf algebras have bijective

antipodes.

Remark 2.13. Although in general the antipode χ of a Hopf algebra H need not be either an

algebra or a coalgebra homomorphism, its composition square χ2 = χ ◦ χ is by Lemma 2.3 and

because χ2 commutes with χ. This means that χ2H ⊆ H is a subHopf algebra; of course χ is

not injective or surjective this might be a proper inclusion of a quotient Hopf algebra.

Definition 2.14. If H is a Hopf algebra then its set of primitive elements is

P(H) = {h ∈ H : ψ(h) = 1⊗ h+ h⊗ 1}.

This is a vector subspace but also we have for x, y ∈ P(H),

ψ(xy − yx) = 1⊗ (xy − yx) + (xy − yx)⊗ 1,

so P(H) is a Lie subalgebra of H with its commutator bracket. Notice also that if x ∈ P(H)

then

x = ε(1)x+ ε(x) = x+ ε(x)

so ε(x) = 0.
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Definition 2.15. If H is a Hopf algebra then its set of group-like elements is

G(H) = {g ∈ H : ψ(g) = g ⊗ g}.

If g, h ∈ G(H) then

ψ(gh) = gh⊗ gh
and since ψ(1) = 1 ⊗ 1, 1 ∈ G(H). This show that G(H) is a monoid under multiplication. If

g ∈ G(H) then using the counit we get

ε(g)g = g = gε(g)

so ε(g) = 1; now using the antipode we also find that

χ(g)g = ε(g) = gχ(g)

so g is a unit with inverse g−1 = χ(g). Therefore G(H) ⩽ H×.

There is a more general notion that combines the group-like and the primitives. If g ∈ G(H)

then the set of g-primitives is

Gg(H) = {h ∈ H : ψ(h) = g ⊗ h+ h⊗ g}.

Lemma 2.16. Let H be a Hopf algebra. Then the set of group-like elements G(H) is linearly

independent. Hence the group-like elements span a cocommutative subHopf algebra isomorphic

to the group algebra kG(H).

Proof. Suppose that G(H) is not linearly independent. Then there is a minimal n ⩾ 1 for which

there is a subset {g0, g1, . . . , gn} ⊆ G(H) with {g1, . . . , gn} linearly independent and

g0 =
∑

1⩽k⩽n

tkgk

for tk ∈ k. Applying ψ we obtain

g0 ⊗ g0 =
∑

1⩽k⩽n

tkgk ⊗ gk ∈ H ⊗H

and so ∑
1⩽k⩽n
1⩽ℓ⩽n

tktℓgk ⊗ gℓ =
∑

1⩽k⩽n

tkgk ⊗ gk.

Since the basic tensors gk ⊗ gℓ ∈ H ⊗ H are linearly independent we must have tk = 0. This

contradiction shows that no such minimal set exists.

The monoid G(H) spans a subspace with its elements as a basis, and which is closed under

multiplication it forms a subalgebra visibly isomorphic to the group algebra kG(H). Also the

coproduct ψ restricts to it and agrees with the coproduct in the group algebra. Finally, it is

closed under the action of the antipode. □

In fact G(−) defines a functor G: HAk → Gp and this has as its left adjoint the group

algebra functor k(−) : Gp→ HAk, so there is a natural isomorphism of bifunctors

HAk(k(−),−) ∼= Gp(−,G(−)).

This will be discussed more in the examples.
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3. Lots of examples

Endomorphism algebras. For a vector space V , its endomorphism algebra is

Endk(V ) = hom(V, V )

with composition as its product. If V is finite dimensional then

Endk(V ) ∼= V ⊗ V ∗

as a vector space with the obvious pairing

(V ⊗ V ∗)⊗ (V ⊗ V ∗)
∼=−→ V ⊗ (V ∗ ⊗ V )⊗ V ∗ → V ⊗ k⊗ V ∗ ∼=−→ V ⊗ V ∗

making this an isomorphism of algebras. Of course if we choose a basis for V and the corre-

sponding dual basis for V ∗ we can find and isomorphism of algebras with the ring of dimk V by

dimk V matrices

Endk(V ) ∼= Mdimk V (k).

Polynomial rings and their duals.

Example 3.1. Let k[X] be the polynomial ring. We can give it a coproduct by making X

primitive,

ψ(X) = X ⊗ 1 + 1⊗X,
and the antipode is determined by

χ(X) = −X.
So this Hopf algebra is bicommutative.

If k has characteristic 0 this has no ideals which are also coideals, but if the characteristic is

p > 0 the for k ⩾ 1, (Xpk) is a coideal and k[X]/(Xpk) is a quotient Hopf algebra.

This example can be generalised to a polynomial ring k[X1, . . . , Xn] and then there is an

isomorphism of Hopf algebras

k[X1, . . . , Xn] ∼= k[X1]⊗ · · · ⊗ k[Xn].

Example 3.2 (Divided power Hopf algebra). Consider the k-vector space Γk with basis γi
(i ⩾ 0). Make Γk into a commutative algebra with product

γiγj =

(
i+ j

i

)
γi+j

and unity 1 = γ0. Make it a cocommutative coalgebra with product

ψ(γk) =
∑

0⩽i⩽k

γi ⊗ γk−j

and counit

ε(γ0) = 1, ε(γk) = 0 (k > 0).

Then with this structure Γk is a bicommutative Hopf algebra with antipode defined recursively

using γ1 = −γ1 and ∑
0⩽i⩽k

γiγk−j = 0.

If the characteristic of k is 0 then it is easy to show that there is an isomorphism of Hopf

algebras Γk ∼= k[X] under which

γk ↔
1

k!
Xk

where X is primitive. In this case PΓk = k{γ1} and Γk is primitively generated.
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If the characteristic of k is p > 0 we have relations such as γpk = 0 when k > 0. As an algebra,

Γk is generated by the elements γpr with r ⩾ 0. Also PΓk = k{γ1}, and so Γk is not primitively

generated.

The finite dual Γ◦
k is familiar: if we define

x : Γk → k; x(γk) =

{
1 if k = 1,

0 otherwise,

then x ∈ Γ◦
k and

xn(γk) =

{
1 if k = n,

0 otherwise,

so xn ∈ Γ◦
k for every n ⩾ 0. Furthermore, x is primitive. Then there is an isomorphism of Hopf

algebras

k[X]
∼=−→ Γ◦

k; Xk 7→ xk.

In fact this relationship is symmetric: k[X]◦ ∼= Γk.

The free vector space. Let X be a set and recall the free vector space on X, F(X).

For any non-empty set X, F(X × X) ∼= F(X) ⊗ F(X) and the diagonal map X → X × X
induces a k-linear map

F(X) //

ψ

++
F(X ×X) // F(X)⊗ F(X)

Since there is a bijection X × (X ×X) ∼= (X ×X)×X this is coassociative. If we take any set

1 with a single element it is a terminal object and there are bijections

1×X ∼= X ∼= X × 1.

Also, F(1) ∼= k. Now the unique function X → 1 induces a counit ε : F(X)→ k. Putting all this

together we find that (F(X), ψ, ε) is a coalgebra. In fact the switch map gives a commutative

diagram

X

{{ ##
X ×X oo T

∼=
// X ×X

and using this we can show that (F(X), ψ, ε) is a cocommutative coalgebra.

If X is a monoid it has a product X × X → X and a unit 1 → X. By functoriality, these

induce maps

φ : F(X)⊗ F(X)
∼=−→ F(X ×X)→ F(X), η : k→ F(X),

so that (F(X), φ, η) is an algebra which is commutative if and only if the monoid X is commu-

tative.

Now if X is a monoid we can put together the coalgebra and algebra structures to obtain a

cocommutative bialgebra (F(X), φ, η, ψ, ε) which is commutative if and only if the monoid is

commutative. With this structure, kX = F(X) is called the monoid algebra of X.

There is also a dual object, namely

kX = the set of all functions X → k.

Then for two finite sets X,Y ,

kX×Y ∼= kX ⊗ kY .
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The diagonal map X → X ×X induces a multiplication

kX ⊗ kX
∼=−→ kX×X → kX

which is ‘pointwise product’ of functions. This makes into a commutative algebra. In fact

kX ∼= hom(kX,k).

When X is a finite monoid, there is a coproduct and kX is then a commutative bialgebra.

If G is a group, the inverse map G → G induces a coalgebra map χ : F(G) → F(G). Then

(F(G), φ, η, ψ, ε, χ) is a cocommutative Hopf algebra. The algebra kG = F(G) is called the

group algebra of G, and we know that it is also Hopf algebra. When G is finite, the dual kG is

also a commutative Hopf algebra, the dual group algebra.

This construction of an algebra and Hopf algebra for each group defines two left adjoints.

Recall that every ring has a group of units and in particular every k-algebra A has a group of

units A×; we can think of this as defining a functor (−)× : Algk → Gp. Of course every Hopf

algebra is also an algebra so there is a restriction to a functor (−)× : HAk → Gp.

Proposition 3.3. The functor F : Gp → Algk is a left adjoint to the unit functor, i.e., there

is natural isomorphism of bifunctors

Algk(F(−),−) ∼= Gp(−, (−)×).

Similarly, the functor F : Gp→ HAk is a left adjoint to the unit functor, i.e., there is natural

isomorphism of bifunctors

HAk(F(−),−) ∼= Gp(−, (−)×).

For finite groups, we can do something similar with M(G), this time obtaining a commutative

Hopf algebra contravariantly functorial in G. It is common to set kG = M(G) and call this the

dual group algebra of G.

Poset coalgebras and algebras. Let (P,≼) be a locally finite poset, i.e., each interval

[x, y] = {t ∈ P : x ≼ t ≼ y}

is finite. We define a vector space C(P,≼) with basis the symbols [x, y] with x ≼ y. Then

ψ : C(P,≼)→ C(P,≼)⊗ C(P,≼); ψ([x, y]) =
∑
t∈[x,y]

[x, t]⊗ [t, y]

is a coproduct and

ε : C → k; ε([x, y]) =

{
1 if x = y,

0 otherwise,

is its counit. There is a dual incidence algebra A(P,≼) which consists of the finitely supported

functions f : {[x, y] : x ≼ y} → k with the product given by convolution,

(f ∗ g)([x, y]) =
∑
t∈[x,y]

f([x, t])g([t, y]),

and the unit is given by the constant functions.
20



Free algebras, bialgebras and Hopf algebras. The forgetful functor Algk → Vectk which

forgets the multiplication has a left adjoint. Its construction involves the tensor powers of a

vector space V : set T0(V ) = k and for each n ⩾ 1,

Tn(V ) = V ⊗ Tn−1(V ) = V ⊗n.

Then

T(V ) =
⊕
n⩾0

Tn(V ) =
⊕
n⩾0

V ⊗n.

There are obvious linear mappings Tm(V ) ⊗ Tn(V ) → Tn+n(V ) and these make T(V ) into a

k-algebra. It is easy to see that for any k-linear mapping f : U → V there is a unique algebra

homomorphism T(f) : T(U) → T(V ) which extends T1(f) = f : T1(U) → T1(V ). Then T(V )

is called the tensor algebra or the free algebra on V .

Proposition 3.4. The functor T: Vectk → Algk is left adjoint to the forgetful functor Algk →
Vectk, i.e., there is a natural isomorphism of bifunctors

Algk(T(−), (−)) ∼= Vectk((−), (−)).

We can modify this to the case of commutative algebras. The free algebra T(V ) has a 2-sided

ideal I(V ) generated by all the elements of form

u⊗ v − v ⊗ u ∈ T2(V ) (u, v ∈ V ).

The quotient algebra

S(V ) = T(V )/I(V )

is commutative since we have implicitly killed all commutators (exercise!), and S(V ) is called

the symmetric algebra or the free commutative algebra on V .

Proposition 3.5. The functor S: Vectk → coAlgk is left adjoint to the forgetful functor
coAlgk → Vectk, i.e., there is a natural isomorphism of bifunctors

coAlgk(S(−), (−)) ∼= Vectk((−), (−)).

Notice that both T(V ) and S(V ) are naturally N-graded algebras: the degree n part of T(V )

is Tn(V ) and its image in S(V ) is Sn(V ). As a vector space,

S(V ) =
⊕
n⩾0

Sn(V ).

3.1. Free bialgebras and free Hopf algebras. There is also a functor which forgets the

algebra structure:

HAk → Coalgk; (H,φ, η, ψ, ε, χ) 7→ (H,ψ, ε, χ).

This also has a left adjoint, but we have to construct it in stages.

We first form the composition

Coalgk → Vectk
T−→ Bialgk

into the category of bialgebras, where the first map is the forgetful functor. Then for a coalgebra

C, T(C) is the free bialgebra on C. Its elements are sums of monomials in elements of C ∼= T1(C)

so the coproduct is obtained using

ψ(c1c2 · · · cℓ) = ψ(c1)ψ(c2) · · ·ψ(cℓ).

There is a similar construction forming the free free commutative bialgebra on C, S(C).
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There are variants of these for (co)augmented coalgebras which form a category k/Coalgk
(i.e., coalgebras under k). Given a coaugmented coalgebra η : k → C we form T(C) then pass

to the quotient bialgebra

T(C)/(η(1)− 1).

This of course identifies η(1) ∈ T(C) with 1 ∈ T0(C). We can do a similar thing with the

commutative version.

To get the free algebra functor into HAk we take the direct sum of coalgebras C⊕Cop, form

the free algebra T(C ⊕ Cop) and then impose relations to identify each element cop with an

antipode applied to c, i.e., quotient by the ideal generated by all the expressions∑
c(1) ⊗ c

op
(2) − ε(c)⊗ 1,

∑
cop(1) ⊗ c(2) − ε(c)⊗ 1

where c ∈ C.
To get a free commutative Hopf algebra we can use S instead of T. In fact

S(C ⊕ Cop) ∼= S(C)⊗ S(Cop).

Since a Hopf algebra is naturally a coaugmented coalgebra we can also do this by first applying

the free bialgebra functors for coaugmented coalgebras.

Enveloping algebras of Lie algebras. Recall that a Lie algebra over k is a vector space L

equipped with a linear mapping called the Lie bracket

[−,−] : L⊗ L→ L

which satisfies the following conditions for all x, y, z ∈ L:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0;(Jacobi identity)

[y, x] + [x, y] = 0;(Anticommutativity)

[x, x] = 0.(Alternativity)

If the characteristic of k is not 2 then anticommutativity implies alternativity so then the last

condition is redundant. Care is also required when the characteristic is 3 but we will ignore this

subtlety.

A Lie algebra with trivial bracket [x, y] = 0 is called an abelian Lie algebra; abelian Lie

algebras are essentially the same thing as vector spaces.

Lie algebras over k form an abelian category Liek with homomorphisms preserving brackets.

For any algebra A, its elements for a Lie algebra with the usual commutator [x, y] = xy− yx
as its bracket. Of course this Lie algebra is abelian if and only if the algebra is commutative

This construction defines a functor Algk → Liek. We will see that it has a left adjoint. But in

fact there is another functor P: HAk → Liek which also has a left adjoint.

To construct the adjoint in the algebra case we first recall the free algebra functor T. We can

apply this to a Lie algebra L but the linear mapping L = T1(L) ↪→ T(L) is not a homomorphism

of Lie algebras if we make T(L) a Lie algebra using the commutator. To correct this we have

to force relations by passing to a quotient algebra. We consider the 2-sided ideal J(L) ◁ T(L)

generated by all the elements

x⊗ y − y ⊗ x− [x, y] (x, y ∈ L).

Notice that x⊗ y, y ⊗ x ∈ T2(L) but [x, y] ∈ T1(L). The resulting quotient algebra

U(L) = T(L)/J(L)

is called the universal enveloping algebra of L. It can be verified that the mapping L → U(L)

is a Lie algebra homomorphism where U(L) is given the commutator as its Lie bracket (it is

injective except possibly when the characteristic of k is 3).
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Proposition 3.6. The functor U: Liek → Algk is left adjoint to the functor Algk → Liek
sending each algebra to its Lie algebra with the commutator bracket, i.e., there is a natural

isomorphism of bifunctors

Algk(U(−), (−)) ∼= Liek((−), (−)).

The Poincaré-Birkhoff-Witt Theorem is an important result which describes the vector space

structure of U(L) at least given a certain kind of basis of L. Here is a version when L is of finite

or countable dimension with a basis x1, x2, . . .; we will denote the image of x ∈ L in U(L) by x̃.

Theorem 3.7 (Poincaré-Birkhoff-Witt Theorem). The distinct monomials

x̃1
k1 x̃2

k2 · · · x̃ℓkℓ (ki ⩾ 0)

form a basis for U(L). In particular the linear map L→ U(L) sending x to x̃ is injective.

Since the map L→ U(L) is injective, it is usual to omit the tildes and write x for the image

of x ∈ L in U(L).

Of course we have chosen a particular ordering here; for example to express x2x1 we note

that in U(L) we have

x2x1 = (x1x2 − x2x1) + x1x2 = [x1, x2] + x1x2

where [x1, x2] ∈ L ⊆ U(L) is a linear combination of the xi.

For any Lie algebra L we can make U(L) into a Hopf algebra by defining L ⊆ U(L) to be

contained in PU(L). Then U(L) is generated as an algebra by PU(L). Of course for any Hopf

algebra H the inclusion P(H) ↪→ H is a Lie homomorphism so it induces a Hopf algebra homo-

morphism UP(H)→ H; if this is surjective then H is called primitively generated. Primitively

generated Hopf algebras are cocommutative and in a sense the ‘easy’ ones to understand.

Proposition 3.8. The functor U: Liek → HAk is left adjoint to the functor P: HAk → Liek,

i.e., there is a natural isomorphism of bifunctors

HAk(U(−), (−)) ∼= Liek((−),P(−)).

Here are some examples.

Example 3.9. Let p be a prime number and k a field of characteristic p. Let

H = k[X]/(Xp)

and write x = X + (Xp) ∈ H. Then the coproduct ψ(x) = 1 ⊗ x + x ⊗ 1 + x ⊗ x and counit

ε(x) = 0 make H a bicommutative Hopf algebra.

It is easy to see that PH = k{x} and so H is primitively generated.

This is a disguised version of the group algebra kCp. If the characteristic of k is not equal

to p and k contains a primitive p-th root of unity then kCp is not primitively generated.

Example 3.10. The polynomial ring H = k[X] given the coproduct

ψ(Xn) =
∑

0⩽i⩽n

(
n

i

)
Xi ⊗Xn−i

is a commutative and cocommutative Hopf algebra which is primitively generated. If the char-

acteristic of k is 0 then PH = k{x}, but if it is a prime number p then

PH = k{xpk : k ⩾ 0}.
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Restricted Lie algebras. See Jacobson [Jac79, section V.7] or Milnor & Moore [MM65, sec-

tion 6].

For any Hopf algebra H over a field of positive characteristic p, there is a Frobenius mapping

PH → PH; x 7→ xp.

Of course this is not linear over k but if t ∈ k, then (tx)p = tpxp. If x, y ∈ PH commute then

(x+ y)p = xp + yp, but in general there is a more complicated formula.

A Lie algebra over a field of characteristic p is called a restricted Lie algebra if there is an

additive homomorphism (−)[p] : L→ L (the restriction) such that

• for x ∈ L and t ∈ k, (tx)[p] = tpx[p];

• adx[p] = adpx = adx ◦ adx ◦ · · · ◦ adx, where adx : L → L is the linear mapping given by

adx(y) = [x, y];

• for x, y ∈ L,

(x+ y)[p] = x[p] + y[p] +

p−1∑
i=1

si(x, y)

where for an indeterminate Z, isi(x, y) is the coefficient of Zi−1 in (adtx+y)
p−1(x).

Now for a Hopf algebra H over a field of characteristic p, its primitives form a restricted Lie

algebra, so there is a functor from Hopf algebras to restricted Lie algebras and this has a left

adjoint given on a restricted Lie algebra by

V(L) = U(L)/(x̃[p] − x̃p : x ∈ L),

a quotient Hopf algebra of the usual enveloping algebra; this is called the restricted enveloping

algebra of L. When L is finite dimensional, so is V(L) whereas U(L) is infinite dimensional.

There is also a version of the PBW Theorem for V(L).

Affine group schemes. Algebraic Geometry since Grothendieck has been centred around

representable functors on the category of algebras over a base ring. A commutative algebra

R ∈ coAlgk defines a functor

Spec(R) : coAlgk → Set; Spec(R)(A) = coAlgk(R,A).

This is called an affine scheme. Its space of geometric points is given by its value on an algebraic

closure k, Spec(R)(k).
In practise such a functor often has a factorisation through a functor into a concrete category

C such as the category of groups; in this case we say that it is a C-scheme.

C

��
coAlgk

//

Spec(R) ::

Set

Let’s suppose that Spec(R) takes values in Gp so it is group scheme. Now the coproduct in
coAlgk is given by ⊗ and k is an initial object. Therefore for any A,

Spec(R⊗R)(A) ∼= Spec(R)(A)× Spec(R)(A)

and Spec(k)(A) contains only the unit homomorphism k→ A. The multiplication is a natural

transformation

Spec(R⊗R) ∼= Spec(R)× Spec(R)→ Spec(R)

so if we evaluate on R⊗R we get

Spec(R⊗R)(R⊗R)→ Spec(R)(R⊗R)
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which sends IdR⊗R to a homomorphism ψ : R → R ⊗ R. Similarly the identity evaluated on k
gives

Spec(k)(k)→ Spec(R)(k)
which sends Idk to an element ε : R→ k. Final the inverse map gives a natural transformation

Spec(R)→ Spec(R) which when evaluated on R sends IdR to χ : R→ k. All of these structure

maps are algebra homomorphisms by definition and make (R,ψ, ε, χ) a cogroup object in coAlgk,

in other words we have a commutative Hopf algebra; if the group scheme takes values in abelian

groups then it will be cocommutative. Here are some examples.

Each commutative algebra A has a group of units A×. To specify a unit means to pick

an element and another element which is its inverse. We can do this with the affine scheme

Spec(k[U, V ]/(UV − 1)) where

ψ(U) = U ⊗ U, ψ(V ) = V ⊗ V, ε(U) = 1 = ε(V ), χ(U) = V, χ(V ) = U.

It is usual to set V = U−1 and write k[U,U−1] = k[U, V ]/(UV − 1). This is called the multi-

plicative group scheme and denote Gm.

For each natural number n ⩾ 1, there is a natural transformation [n] : Gm → Gm induce by

the Hopf algebra homomorphism k[U,U−1]→ k[U,U−1] which maps U to Un. This corresponds

to the n-th power map when evaluated on an algebra A.

Gm(A)
[n]
// Gm(A)

A× (−)n
// A×

In fact Gm[n] = ker[n] is also a scheme, given by

Gm[n] = Spec(k[U ]/(Un − 1)),

represented by the quotient Hopf algebra k[U ]/(Un − 1) = k[U,U−1]/(Un − 1).

This can be generalised to a non-abelian group scheme GLn for n ⩾ 2. When n = 2 this is

GL2 = Spec
(
k[A,B,C,D,E]/((AD −BC)E − 1)

)
with coproduct induced by matrix mutiplication

ψ(A) = A⊗A+B ⊗ C, ψ(B) = A⊗B +B ⊗D,
ψ(C) = C ⊗A+D ⊗ C, ψ(D) = C ⊗B +D ⊗D,
ψ(E) = E ⊗ E.

The antipode is induced by the formula for finding the inverse of a 2 by 2 matrix (Cramer’s

Rule).

There is a normal subgroup scheme SL2 ◁GL2 given by

SL2 = Spec
(
k[A,B,C,D]/((AD −BC)− 1)

)
where k[A,B,C,D]/((AD − BC) − 1) is a quotient Hopf algebra of k[A,B,C,D,E]/((AD −
BC)E − 1).

Combinatorial Hopf algebras. The symmetric function Hopf algebra can be defined over

any commutative ring k. It is bicommutative and

Symm(k) = k[en : n ⩾ 1]

with coproduct given by

ψ(en) =
∑

0⩽i⩽n

ei ⊗ en−i
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where e0 = 1. Its vector space of primitives is spanned by the elements sn defined by s1 = e1
and the Newton recursion formula

sn = e1sn−1 − e2sn−2 + e3sn−3 − · · ·+ (−1)n−2en−1s1 + (−1)n−1nen.

If the characteristic of k is zero then

Symm(k) = k[sn : n ⩾ 1]

but if it is a prime p > 0 then for any k,

spk = spk.

The en are essentially the elementary symmetric functions in infinitely many indeterminates

while the sn are the power sums. The antipode is given by

χ(en) = hn

where the hn are the total symmetric functions. There is another set of polynomial generators

that occurs, namely the wn defined recursively by

pn =
∑
k|n

kw
n/k
k .

If the characteristic of k is p > 0 then for each m with p ∤ m, there is a subHopf algebra

B[m] = k[wmpr : r ⩾ 0] ⊆ Symm(k)

and a Hopf algebra splitting

Symm(k) =
⊗
p∤m

B[m].

This is related to Witt vectors and also the Necklace Algebra of Rota and Metropolis [MR83].

Frobenius algebras. Frobenius algebras are commonly encountered, and we will see later that

every finite dimensional Hopf algebra is a Frobenius algebra.

Definition 3.11. A finite dimensional k-algebra A is a Frobenius algebra if it has a Frobenius

form λ ∈ A∗ = hom(A, k) which is non-trivial on every simple left submodule.

A left submodule is of course a left ideal; it is simple if it has no non-trivial proper submodules.

A given Frobenius algebra can have many different Frobenius forms.

A Frobenius form λ has an associated non-degenerate k-bilinear Frobenius form

β : A×A→ k; β(x, y) = λ(xy)

which satisfies

β(xy, z) = β(x, yz).

This can be used to show that λ is non-trivial on every simple right submodule.

The Frobenius form induces two k-linear mappings

A→ A∗; a 7→ a · λ, a 7→ λ · a

where

a · λ(x) = λ(xa), λ · a(x) = λ(ax).

If we make A∗ a left or right A-module by premultiplying on the right or the left these become

left and right A-module isomorphisms. In particular this means that A is injective as a left or

right A-module, i.e., it is self-injective. This has lots of implications: for example, A is a Kasch

algebra, i.e., every simple left or right module is isomorphic to a submodule of A.
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As well as the algebra (A,φ, η) structure, λ also induces a coalgebra structure (A,φ†, η†)

which make the following diagrams commute.

A
φ†

//
OO

∼=
��

A⊗AOO
∼=
��

A∗ φ∗
// (A⊗A)∗ oo

∼= // A∗ ⊗A∗

A
η† //

OO
∼=
��

kOO
∼=
��

A∗ η∗ // k∗

Note that (A,φ, η) and (A,φ†, η†) do not interact appropriately to form a bialgebra. We will see

later that finite dimensional Hopf algebras are Frobenius algebras but the coproduct associated

to the Frobenius form is not the same as that of the Hopf coalgebra structure.

Taft Hopf algebras. For n ⩾ 1 and ζ ∈ k a primitive n-th root of unity. As an algebra let

Hn,ζ = k⟨u, v⟩/(un − 1, vn, vu− ζuv).

The coproduct is given by

ψ(u) = u⊗ u, ψ(v) = v ⊗ u+ 1⊗ v

and the antipode by

χ(u) = u−1, χ(v) = −vu−1.

For n > 1 this Hopf algebra Hn,ζ is neither commutative nor cocommutative. In fact

χ2(u) = u, χ2(v) = uvu−1 = ζ−1v.

Then Hn,ζ has as a basis the elements uivj (0 ⩽ i, j < n) and the linear mapping χ2 is

diagonalised with respect to it. Notice that dimkHn,ζ = n2.
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4. SubHopf algebras, adjoint actions and normal subalgebras

A Hopf algebra H can contain subalgebras, subcoalgebras and subbialgebras. A subbialgebra

K ⊆ H where the antipode χ restricts to give an antipode for K is called a subHopf algebra; of

course K is a Hopf algebra in its own right.

K
χ|K //

� _

��

K� _

��
H

χ // H

This is analogous to the notion of a subgroup of a group.

Proposition 4.1. The image of the antipode χH ⊆ H is a subHopf algebra. More generally,

for n ⩾ 2, χnH ⊆ H is a subHopf algebra.

Proof. We know that for H the identities

ψ ◦ χ = (χ⊗ χ) ◦ T ◦ ψ, χ ◦ φ = φ ◦ T ◦ (χ⊗ χ),

which imply

φ(χH ⊗ χH) ⊆ χH, ψχH ⊆ χH ⊗ χH,
hence χH is a subbialgebra of H.

We also have

(χ ∗ Id) ◦ χ = φ ◦ (χ⊗ Id) ◦ ψ ◦ χ
= φ ◦ (χ⊗ Id) ◦ (χ⊗ χ) ◦ T ◦ ψ
= φ ◦ (χ⊗ χ) ◦ (χ⊗ Id) ◦ T ◦ ψ
= φ ◦ (χ⊗ χ) ◦ T ◦ (χ⊗ Id) ◦ ψ
= χ ◦ φ ◦ (χ⊗ Id) ◦ ψ
= χ ◦ φ ◦ (χ ∗ Id)
= χ ◦ η ◦ ε = η ◦ ε,

and a similar calculation shows that (Id ∗χ)◦χ = η◦ε. These identities show that the restriction

of χ to χH is an antipode for it, therefore χH is a subHopf algebra of H. □

Now we will consider analogue of a normal subgroup. There are two approaches which roughly

correspond to the two ways of thinking about when a subgroup is normal (i.e., requiring left

and right cosets being equal, or being closed under conjugation).

Let A ⊆ H be a subalgebra and let A+ = ker εA, the kernel of the counit restricted to A.

Then HA+ ⊆ H is a left ideal and A+H ⊆ H is a right ideal. If HA+ = A+H we can form

the quotient algebra H/HA+, but this won’t always be a Hopf algebra. If K ⊆ H is a subHopf

algebra and if HK+ = K+H, this is also a coideal and H/HK+ is a quotient Hopf algebra. So

this looks like a reasonable way to define a ‘normal’ subHopf algebra.

The alternative approach requires the two adjoint actions.

Definition 4.2. For h ∈ H, the left and right adjoint actions adlh : H → H and adrh : H → H

are given by

adlh(x) =
∑

h(1)xχ(h(2)), adrh(x) =
∑

χ(h(1))xh(2).

Lemma 4.3. The adjoint actions are left and right actions of H on itself, i.e., for h′, h′′ ∈ H,

adlh′h′′ = adlh′ ◦ adlh′′ , adrh′h′′ = adrh′′ ◦ adrh′ .
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Furthermore, for h, x, y ∈ H,

adlh(xy) =
∑

adlh(1)(x)ad
l
h(2)

(y), ε(adlh(x)) = ε(h)ε(x), adlh(1) = 1,

adrh(xy) =
∑

adrh(1)(x)ad
r
h(2)

(y), ε(adrh(x)) = ε(h)ε(x), adrh(1) = 1.

The left/right adjoint actions makes H into a left/right module over itself.

Now we can define a subalgebra A ⊆ H to be ad-invariant if for every h ∈ H, adlhA ⊆ A and

adrhA ⊆ A. Although in general this notion involves two independent conditions, for some Hopf

algebras such as group algebras the left and right adjoint actions give equivalent information.

Lemma 4.4. Suppose that the coproduct ψ is cocommutative. Then the following conditions

are equivalent:

• A is ad-invariant;

• for every h ∈ H, adlhA ⊆ A;
• for every h ∈ H, adrhA ⊆ A.

Proof. By Lemma 2.4, χ : H → H is a bijection and indeed χ−1 = χ.

Suppose that for every h ∈ H, adlhA ⊆ A. Then for every a ∈ A and h ∈ H, let h′ = χ(h) so

that h = χ(h′) and

adrh(a) =
∑

χ(h(1))ah(2)

=
∑

χ(χ(h′)(1))aχ(h
′)(2)

=
∑

χ(χ(h′(2)))aχ(h
′
(1))

=
∑

h′(2)aχ(h
′
(1))

=
∑

h′(1)aχ(h
′
(2)) = adlh′(a) ∈ A,

where we have used cocommutativity in the last step. Therefore

∀h ∈ H, adlhA ⊆ A =⇒ ∀h ∈ H, adrhA ⊆ A.

Similarly,

∀h ∈ H, adrhA ⊆ A =⇒ ∀h ∈ H, adlhA ⊆ A. □

Proposition 4.5. Let K ⊆ H be a subHopf algebra.

(a) If K is ad-invariant then HK+ = K+H and this is a Hopf ideal. Futhermore the quotient

mapping H → H/HK+ is a homomorphism of Hopf algebras.

(b) If HK+ = K+H and H is faithfully flat as a left or right K-module then K is ad-invariant.

(c) If H is finite dimensional then K is ad-invariant if and only if HK+ = K+H.

Proof. Proofs can be found in [Mon93,Rad12].

Since free modules are faithfully flat, part (c) follows from the Nichols-Zoeller Theorem 6.1

that we will meet later. □

This result leads us to define a subHopf algebra K ⊆ H to be normal if it is ad-invariant and

therefore HK+ = K+H is a Hopf ideal in H and H → H/HK+ is a homomorphism of Hopf

algebras. Following Milnor & Moore [MM65] it is common to write

H//K = H/HK+ ∼= H ⊗K k,

where the right hand term is defined using the right K-module structure on H and the counit

K → k to define the trivial K-module, and thie isomorphism is one of left H-modules.
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Example 4.6. If G is a group then the adjoint actions in kG are given by adlg = g(−)g−1 and

adrg = g−1(−)g for g ∈ G ⊆ kG, so adrg = adlg−1 . Hence a subalgebra A ⊆ kG is ad-invariant if

and only if for all g ∈ G, adlgA = A.

If N ◁ G, then kN ⊆ kG is a normal subHopf algebra and kG//kN ∼= kG/N , the group

algebra of the quotient group G/N .
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5. Modules and comodules

Modules over an algebra. Algebras are rings with additional structure, so they have modules;

in fact a module over a k-algebra is automatically a k-vector space.

Definition 5.1. Given a k-algebra (A,φ, η), a left A-module (M,µ) is a k-vector space M and

a k-linear map µ : A⊗M →M for which the following diagrams commute.

A⊗A⊗M
Id⊗µ //

φ⊗Id
��

A⊗M
µ

��
A⊗M

µ // M

k⊗M
∼= //

η⊗Id
��

M

A⊗M
µ

;;

A similar definition applies to a right A-module, but we can also view it as a left module over

the opposite algebra Aop. The action of the algebra for a right module can be thought of either

as a map Aop ⊗M →M or as a map M ⊗A→M .

An A-module homomorphism θ : (M,µ) → (M ′, µ′) is a k-linear mapping θ : M → M ′ that

makes the following diagram commute.

A⊗M Id⊗θ //

µ

��

A⊗M ′

µ′

��
M

θ // M ′

Of course a homomorphism has a kernel, an image and a cokernel, all of which are A-modules.

Furthermore, the set of all homomorphisms M → N between two A-modules is a subspace

HomA(M,M ′) ⊆ hom(M,M ′).

Example 5.2. Recall Example 1.1. A left moduleM over the enveloping algebra Ae = A⊗Aop

is sometimes called a A-A-bimodule because it is simultaneously a left and a right A-module

and the two actions commute: if a′, a′′ ∈ A and m ∈M , then

(a′m)a′′ = a′(ma′′).

An important example of such a module is A itself acted on by A through left and right

multiplication. This gives rise to an algebra homomorphism Ae → Endk(A). When A is finite

dimensional this need not be injective, but if Ae ∼= Endk(A) then A is called an Azumaya

algebra. Examples include matrix rings of central simple algebras over k and they give rise to

the Brauer group of the field which appears in Galois Theory and Class Field Theory.

The multiplication map

Ae = A⊗Aop → A; x⊗ yop 7→ xy

is a surjective homomorphism of Ae-modules. If A is a projective Ae-module (or equivalently

if this is a split surjection) then A is called separable. For the case where A is a field extension

of k this is equivalent to the notion of separability met in Galois Theory.

For a vector space W , the tensor product A ⊗W becomes a left A-module where the com-

position

A⊗ (A⊗W ) oo ∼=
//

++
(A⊗A)⊗W

φ
// A⊗W

is the multiplication; A ⊗W is called an extended A-module. The set of A-module homomor-

phisms θ : (M,µ) → (M ′, µ′) is a vector subspace HomA(M,M ′) ⊆ hom(M,M ′). There is an

adjunction isomorphism

(5.1) HomA(A⊗W,M) ∼= hom(W,M)
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under which θ ∈ HomA(A⊗W,M) corresponds to

W oo
∼=
// **k⊗W

η⊗Id
// A⊗W

θ
// M

and f ∈ hom(W,M) corresponds to A⊗W →M given on basic tensors by

a⊗ w 7→ af(w).

For any k-vector space, the vector space hom(A,W ) becomes a left A-module with the mul-

tiplication of a ∈ A and f ∈ hom(A,W ) given by

(af)(x) = f(xa).

Notice that if b ∈ A,

(a(bf))(x) = (bf)(xa) = f((xa)b) = f(x(ab)) = ((ab)f)(x),

so a(bf) = (ab)f as required.

This A-module fits into another important adjunction. For any A-module L, there is an

isomorphism

(5.2) hom(L,W )
∼=−→ HomA(L,hom(A,W )); f 7−→ (a 7→ af(−)).

The inverse sends g ∈ HomA(L,hom(A,W )) to the composition

L
g−→ hom(A,W )

η∗−→ hom(k,W )
∼=−→W

induced by the unit η : k→ A.

Lemma 5.3. Let A be a k-algebra.
(a) For any k-vector space W , the extended A-module A⊗W is a free module.

(b) For any A-module M , let M0 denote its underlying vector space. Then there is a surjective

A-module homomorphism A⊗M0 →M .

(c) If P is a projective A-module, then there is an isomorphism of A-modules A⊗M0
∼= P ⊕Q

where Q is another projective module.

(d) For any k-vector space W , hom(A,W ) is an injective A-module.

(e) If I is an injective A-module then there is an isomorphism of A-modules hom(A, I0) ∼= I⊕J
where J is also an injective module.

Proof. (a) Choose a basis of W and use it to give a basis for the A-module A⊗W .

(b) Use the isomorphism (5.1).

(c) This is a standard argument: use (b) and projectivity.

(d) Suppose that we have a diagram of A-modules with exact row

0 // U //

��

V

hom(A,W )

Now apply HomA(−,hom(A,W )) to the row to obtain a commutative diagram where we

use (5.2) to get the vertical isomorphisms.

HomA(U,hom(A,W ))
OO
∼=
��

HomA(V,hom(A,W ))oo
OO
∼=
��

hom(U,W ) hom(V,W )oo
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But the original k-linear map U → V is split injection, so the linear map in the bottom row is

surjective, hence so is the one in the top. It follows that the original diagram of A-modules can

be extended with the dotted arrow to

0 // U //

��

V

yy
hom(A,W )

and so hom(A,W ) is injective.

(e) This is proved in a similar way to (c) using (5.2). □

Now we can summarise all of this in categorical language.

Theorem 5.4. There is an abelian category ModA whose objects are the left A-modules and

whose morphisms are given by ModA(M,N) = HomA(M,N). The usual ⊕ = × is the coproduct

and product; more generally, in this category arbitrary coproducts and coproducts exist. This

category has enough projectives and injectives.

Comodules over a coalgebra. Dually, a coalgebra has comodules.

Definition 5.5. Given a k-coalgebra (C,ψ, ε), a left comodule (N, ν) is a k-vector space N and

a k-linear map ν : N → C⊗N called the coaction or comultiplication which makes the following

diagrams commute.

C ⊗ C ⊗N C ⊗NId⊗νoo

C ⊗N

ψ⊗Id

OO

N
νoo

ν

OO k⊗N N
∼=oo

ν{{
C ⊗N

ε⊗Id

OO

A right C-comodule is the same thing as a left comodule over the opposite coalgebra Cop.

Sweedler notation is often used for the coproduct of a comodule, one version is

ν(n) =
∑

n(1) ⊗ n(0)
where n(1) ∈ C and n(0) ∈ N , so the index (0) is reserved for elements in the comodule.

A C-comodule homomorphism ρ : (N, ν) → (N ′, ν ′) is a k-linear mapping θ : N → N ′ that

makes the following diagram commute.

C ⊗N
Id⊗ρ // C ⊗N ′

N
ρ //

ν

OO

N ′

ν′

OO

It is easy to see that the image and the cokernel of a homomorphism ρ are comodules. To

see that kernels exist, let ρ : N → N ′ be a C-comodule homomorphism. As a linear mapping ρ

has a kernel and there is an exact sequence of linear mappings

0 // ker ρ // N
ρ // N ′

and we can extend this to a commutative diagram of solid arrows

0 // ker ρ
inc //

��

N
ρ //

ν

��

N ′

ν′

��
0 // C ⊗ ker ρ

Id⊗inc// C ⊗N
ρ // C ⊗N ′
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in which the bottom row is exact because tensoring over a field is an exact functor. Now a

diagram chase shows that ν ◦ inc factors through C⊗ker ρ hence we can fill in the dotted arrow

and more diagram chasing shows that it is a comultiplication making ker ρ a comodule and a

kernel for ρ.

For a vector space W , the tensor product C ⊗ W becomes a left C-comodule where the

composition

C ⊗W
ψ
//

,,
(C ⊗ C)⊗W oo

∼=
// C ⊗ (C ⊗W )

is the comultiplication; C ⊗W is called an extended C-comodule. The set of C-module homo-

morphisms ρ : (N, ν) → (N ′, ν ′) is a vector subspace CohomC(N,N
′) ⊆ hom(N,N ′). There is

an adjunction isomorphism

(5.3) CohomC(N,C ⊗W ) ∼= hom(N,W )

under which ρ ∈ CohomC(N,C ⊗W ) corresponds to

N
ρ
// **
C ⊗W

ε⊗Id
// k⊗W oo

∼=
// W

and g ∈ hom(N,W ) corresponds to the following composition.

N
ν
//

))
C ⊗N

Id⊗g
// C ⊗W

Now we will show that the extended comodule C ⊗W is an injective comodule. Suppose

given the following commutative diagram of comodule homomorphisms with an exact row.

0 // N
ρ //

��

N ′

C ⊗W

Applying CohomC(−, C ⊗W ) ∼= hom(−,W ) to the row we get a diagram of vector spaces

0 CohomC(N,C ⊗W )oo CohomC(N
′, C ⊗W )

ρ∗oo

0 hom(N,W )oo
��

∼=

OO

hom(N ′,W )
ρ∗oo

��
∼=

OO

with exact bottom row. Therefore the top row is exact so we can fill in the dotted arrow with

a comodule homomorphism.

0 // N
ρ //

��

N ′

{{
C ⊗W

This shows that C ⊗W is injective and any summand of such a comodule is as well.

Now for any comodule N , we can also view N as just a vector space. Using the isomor-

phism (5.3) we obtain CohomC(N,C ⊗N) ∼= hom(N,N) and IdN ∈ hom(N,N) corresponds to

a comodule homomorphism N → C ⊗N and the commutative diagram
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N // C ⊗N

ε⊗Id
��

k⊗NOO
∼=��

N

shows that it is injective, so N embeds into the extended comodule C ⊗N which is an injective

comodule. It follows that every injective comodule J is a summand of the extended comodule

C ⊗ J .
We can summarise this information in a statement about the category of comodules.

Theorem 5.6. For a k-coalgebra C, its comodules and comodule homomorphisms form an

abelian category ComodC with enough injectives. This category has ⊕ as coproduct and product.

If C is finite dimensional then ComodC also has enough projectives.

In general the comodule category of a coalgebra may not have enough projectives, although

in many cases it does. This asymmetry leads to slight differences in their homological algebra

compared to that of algebras. The finite dimensional case can be verified using ideas in the

discussion that follows, see Proposition 5.13.

Now recall that a coalgebra C has an associated algebra C∗. A left C-module has an action

ν† : C∗ ⊗N → N defined by

γn = ν†(γ ⊗ n) =
∑

γ(n(1))n(0),

where of course γ(n(1)) ∈ k. If α, β ∈ C∗,

α(βn) =
∑

α(β(n(1))n(0))

=
∑

β(n(1))α
(
(n(0))(1)

)
(n(0))(0)

while

(αβ)n =
∑

(αβ)(n(1))n(0))

=
∑

α
(
(n(1))(0)

)
β
(
(n(1))(1)

)
n(0) =

∑
β
(
(n(1))(1)

)
α
(
(n(1))(0)

)
n(0)

=
∑

β(n(1)α
(
(n(0))(1)

)
(n(0))(1),

so α(βn) = (αβ)n. Another argument shows that ε∗n = n. So with this multiplication, N

becomes a left C∗-module.

Definition 5.7. Let A be a k-algebra and M a left A-module. Then M is locally finite if every

element m ∈M is contained in a submodule which is a finite dimensional subspace.

In particular this means that for each m ∈M , the cyclic submodule

Am = {am : a ∈ A} ⊆M

is a finite dimensional subspace. The locally finite A-modules form a full abelian subcategory

Modl.f.
A of the full category ModA of all A-modules.

Definition 5.8. Let C be a k-coalgebra and N a left C-comodule. Then N is locally finite if

every element m ∈M is contained in a subcomodule which is a finite dimensional subspace.

In fact this notion is redundant!
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Lemma 5.9. Let C be a coalgebra. Then every C-comodule is locally finite.

Proof. Let N be a C-comodule. The idea of the proof is that for n ∈ N , the coproduct

ν(n) =
∑

n(1) ⊗ n(0)

gives rise to a finite dimensional subspace spanned by the elements n(0) ∈ N . Now using

coassociativity of ν, this can be shown to be a subcomodule. □

Lemma 5.10. Let C be a coalgebra and C∗ its dual algebra. Let N be a left C-comodule which

we also view as a left C∗-module. Then N is a locally finite C∗-module.

Proof. It is sufficient to show that for n ∈ N , the cyclic submodule C∗n ⊆ N is finite dimen-

sional. Lemma 5.9 tells us that n is contained in a finite dimensional subcomodule W ⊆ N and

by definition of the action of C∗ on n, C∗n ⊆W . □

Dualising from an algebra to a coalgebra is more problematic unless the finite dual is used.

Details can be found in Montgomery [Mon93] or Radford [Rad12]. We summarise the main

results.

Lemma 5.11. Let A be an algebra and A◦ its finite dual coalgebra. Let M be a locally finite

left A-comodule. Then M can be given the structure of a left A◦-comodule.

Proposition 5.12. There is an isomorphism of abelian categories

Modl.f.
A

∼−→ ComodA◦ .

Of course when A is finite dimensional, A◦ = A∗, and locally finite is equivalent to every

element being in a finitely generated submodule. If we restrict attention to finite dimensional

modules and comodules we obtain an important related result.

Proposition 5.13. There is an isomorphism of abelian categories

Modf.d.
A

∼−→ Comodf.d.
A∗ .

In particular, projective/injective modules correspond to projective/injective comodules.

Of course the finite dimensional projective A-modules are summands of direct sums of copies

of A. Also A is an A∗-comodule through the adjunction

hom(A⊗A,A) ∼= hom(A,A∗ ⊗A).

under which the product correspond to a coaction A→ A∗⊗A making it an A∗-comodule, and

in fact it is projective.

Tensor and cotensor products. Suppose that A is an algebra, (M,µ) is a right A-module

and (N, ν) is a left A-module. One definition of the tensor product M ⊗A N makes it the

cokernel of the k-linear mapping (µ⊗ Id− Id⊗ν) : M ⊗A⊗N →M ⊗N . In other words there

is an exact sequence

(5.4) M ⊗A⊗N
µ⊗Id− Id⊗ν // M ⊗N // M ⊗A N // 0

of k-linear mappings. Unless A is commutative this is not an A-module. We also have formulae

such as

A⊗A N ∼= N, M ⊗A A ∼=M.

Notice also that if B ⊆ A is a subalgebra we can also define M ⊗B N and there is a linear

surjection M ⊗B N →M ⊗A N .
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Proposition 5.14. For a fixed right A-module M , the functor M ⊗A (−) : ModA → Vectk is

right exact, i.e., it sends every short exact sequence of left A-modules

0→ N ′ → N → N ′′ → 0

to an exact sequence

M ⊗A N ′ →M ⊗A N →M ⊗A N ′′ → 0.

The left derived functors of M ⊗A (−) are denoted TorA∗ (M,−); these can be computed using

projective resolutions.

Remark 5.15. A left A-module P is called flat if for every right A-moduleM , TorAs (M,P ) = 0

for s > 0. In fact we can calculate TorA∗ (M,N) by using any flat resolution P• → N → 0, i.e., a

resolution consisting of flat modules Ps. Then TorA∗ (M,N) is the homology of the chain complex

N ⊗A P•. Free and projective modules are flat, and so are colimits of flat modules.

Now let’s dualise to comodules. Suppose that C is a coalgebra, (M,µ) is a right C-comodule

and (N, ν) is a left C-comodule. We define the cotensor product M□CN as the kernel of

(µ⊗ Id− Id⊗ν) : M ⊗N →M ⊗ C ⊗N , so there is an exact sequence

(5.5) 0 // M□CN // M ⊗N
µ⊗Id− Id⊗ν // M ⊗ C ⊗N

and M□CN is only a C-comodule if C is cocommutative. We have

C□CN ∼= N, M□CC ∼=M.

A surjection of coalgebras C → D induces an injective linear mapping M□CN →M□DN .

Proposition 5.16. For a fixed right C-comoduleM , the functorM□C(−) : ComodA → Vectk
is left exact, i.e., it sends every short exact sequence of left C-comodules

0→ N ′ → N → N ′′ → 0

to an exact sequence

0→M□CN
′ →M□CN →M□CN

′′.

The right derived functors of M□C(−) are denoted Cotor∗C(M,−).

Modules over a Hopf algebra. For a Hopf algebra we have both modules and comodules.

We will focus on (left) modules but similar things apply to comodules.

From now on, let (H,φ, η, ψ, ε, χ) be a Hopf algebra which we will assume has an invertible

antipode; this condition holds if the Hopf algebra is classical since then χ ◦ χ = Id. We will

often indicate the multiplication in a module (M,µ) by writing hx = µ(h⊗ x).
There are two obvious left modules. First we can let H act on itself by left multiplication, so

for µ we just take φ. This is sometimes called the left regular representation of H; this module

is free of rank 1. At the other extreme we can let H act on k using the counit ε, so µ is the

map

H ⊗ k→ k; h⊗ 1 7→ ε(h).

In fact for any vector space W we can let H act on W by

H ⊗W →W ; h⊗ w 7→ ε(h)w.

Such representations are called trivial representations, and the one with W = k is often called

the trivial representation and it is simple or irreducible.

Now we come to an important property of the category of modules over a Hopf algebra: it

forms a closed monoidal category. Let (M1, µ1) and (M2, µ2) be two left H-modules. Their
37



tensor product M1 ⊗ M2 is a k-vector space which also admits a multiplication µ̃ which is

defined to make the diagram

H ⊗ (M1 ⊗M2)

ψ⊗Id⊗ Id

��

µ̃ // M1 ⊗M2

(H ⊗H)⊗ (M1 ⊗M2) ∼=
Id⊗T⊗Id // (H ⊗M1)⊗ (H ⊗M2)

µ1⊗µ2

OO

commute and making it an H-module (M1⊗M2, µ̃). Using Sweedler notation we can write this

explicitly as

µ̃(h⊗m1 ⊗m2) =
∑

h(1)m1 ⊗ h(2)m2.

If H is cocommutative then the switch map

M1 ⊗M2
T−→∼= M2 ⊗M1.

is an isomorphism of H-modules, but when H is not cocommutative this is not usually true.

If W is any vector space with the trivial H-module structure, there is an isomorphism of

H-modules

W ⊗M ∼=M ⊗W.
In particular,

k⊗M ∼=M ∼=M ⊗ k.
For any H-module M we can consider the subspace of H-invariants

MH = {x ∈M : ∀h ∈ H, hx = ε(h)x} ⊆M.

What about M∗ = hom(M,k)? There is a natural right H-module structure on this given

by taking for h ∈ H and f ∈M∗,

(f · h)(x) = f(hx).

We can twist this into a left action by defining

(h · f)(x) = f(χ(h)x).

More generally, for two H-modules M,N , hom(M,N) becomes a module with the action given

in Sweedler notation by

(h · g)(x) =
∑

h(1)g(χ(h(2))x).

By an interesting calculation, the subspace of H-invariants of hom(M,N) turns out to be

(5.6) hom(M,N)H = HomH(M,N).

In particular,

MH ∼= {f(1) ∈M : f ∈ hom(k,M)H} ∼= HomH(k,M).

In fact taking invariants gives a functor (−)H : ModH → Vectk which is left exact, i.e., it

sends every short exact sequence

0→ L→M → N → 0

to an exact sequence

0→ LH →MH → NH ·
This means it has right derived functors denoted by Ext∗H(k,−) and also called the cohomology

of H with coefficients in M . When H = kG is a group algebra this is the cohomology of G.

We can also define the H-coinvariants of an H-module M to be

MH =M/{hm− ε(h)m : h ∈ H, m ∈M}
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This can be shown to be isomorphic to the tensor product k⊗H M where we view k as a right

H-module. Taking coinvariants gives a functor (−)H : ModH → Vectk which is right exact,

i.e., it sends every short exact sequence

0→ L→M → N → 0

to an exact sequence

LH →MH → NH → 0.

The left derived functors are TorH∗ (k,−) and TorH∗ (k,M) is also known as the homology of H

with coefficients in M . When H = kG for a group G, this is the homology of G.

When M and N are two left H-modules,

(M ⊗N)H ∼= k⊗H (M ⊗N)

is also isomorphic to the quotient (M ⊗N)/T where T is the subspace spanned by the elements

hm⊗ n−m⊗ hn (h ∈ H, m ∈M, n ∈ N).

As a special case of this, suppose that L is a right H-module; we can make this into a left

H-module by defining the action to be

h · ℓ = ℓχ(h).

Then with this left H-module L and a left H-module N ,

(L⊗N)H ∼= L⊗H N

where the latter is the right-left tensor product over H.

We can assemble all of these ideas into an important categorical result which we will make

use of later.

Theorem 5.17. The category of left H-modules ModH under ⊗ and hom(−,−) is closed

monoidal. So for H-modules L,M,N there is a functorial adjunction isomorphism

(5.7) ModH(L⊗M,N)
∼=←→ModH(L,hom(M,N)).

If H is cocommutative ModH is symmetric monoidal.

If M is finite dimensional then (5.7) gives rise to a functorial isomorphism

(5.8) ModH(L⊗M,N)
∼=←→ModH(L,N ⊗M∗).

We will return to the issue of the lack of symmetry for non-cocommutative Hopf algebras

when we discuss quantum groups. We mention one general observation that shows care is need

in such situations.

Suppose that M is a finite dimensional H-module. Then the dual space M∗ = hom(M,k)
and the double dual space M∗∗ = (M∗)∗ = hom(M∗, k) admit left H-modules structures as

described above.

Lemma 5.18. The canonical linear isomorphism M → M∗∗ need not be an isomorphism of

H-modules, but does induce an isomorphism of H-modules

(χ2)∗M
∼=−→M∗∗,

where (χ2)∗M is the vector space M given the H-module structure with

h ·m = χ2(h)m.
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Of course if H is involutary (χ2)∗M = M but in general these need not even be isomorphic

H-modules.

If W is a vector space which we view as a trivial H-module, then H ⊗W is a left H-module

with action on basic tensors

h(k ⊗ w) = (hk)⊗ w;
this is often called an extended module on W . More generally, if K ⊆ H is a subalgebra then for

a left K-module N there is an induced H-module H ⊗K N where the tensor product is formed

using right K-module structure on H. There is also the coinduced module HomK(H,N) where

the left H-multiplication is induced by right multiplication on the codomain.

If M is an H-module it is useful to forget its module structure and take its underlying vector

space with the trivial H-module structure which we will denote εM . The next result is really

important and useful when doing homological algebra over a Hopf algebra.

Proposition 5.19. Suppose that H is a Hopf algebra. For a left H-module M there are iso-

morphisms of left H-modules

H ⊗M
∼=←→ H ⊗ εM

∼=←→M ⊗H,

where H⊗εM is the extended module for the vector space M . Hence H⊗M is a free H-module.

Proof. The following k-linear maps are inverse H-module maps:

H ⊗M → H ⊗M ; h⊗ x 7→
∑

h(1) ⊗ χ(h(2))x,

H ⊗ εM → H ⊗M ; h⊗ x 7→
∑

h(1) ⊗ h(2)x.

A similar argument works for M ⊗H. □

If H is finite dimensional it is also true that for any H-module M , there is an isomorphism

of H-modules

hom(H,M) ∼= H∗ ⊗ εM

where H∗ = hom(H,k) is injective; later we will see that H∗ ∼= H so hom(H,M) is also a free

H-module.

Representations of finite groups. A representation of a finite group G over k is equivalent

to a kG-module. For a vector space V , the induced module V ↑G1 = kG ⊗ V is free and for a

kG-module M it is well known that kG⊗M ∼=M ↑G1 .
If M,N are two kG-modules then so is M ⊗N with g ∈ G acting on basic tensors by

g · (m⊗ n) = gm⊗ gn.

Similarly, M∗ = hom(M,k) is a kG-module with action of g ∈ G on f ∈M∗ given by

(g · f)(m) = f(g−1m) (m ∈M).

This is sometimes called the dual or contragredient module of M .

If H ⩽ G then kH ⊆ kG is a subHopf algebra and for any kH-module L, there is an induced

module L ↑GH ; in particular,

kG/H ∼= kG⊗kH k.
If M is a kG-module we can view it as a kH-module and then as kG-modules,

kG⊗kH M ∼= kG/H ⊗M.

In fact the only subHopf algebras of kG are the kH. If N ◁ G the kG/N is a quotient Hopf

algebra of kG.
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In the representation theory of a finite group it is well known that the tensor product of two

G-modules M and N is a G-module M ⊗N with the action of g ∈ G on basic tensors given by

g(x⊗ y) = gx⊗ gy;

this of course is equivalent to the Hopf algebra definition since in kG the coproduct on an

element g ∈ G ⊆ kG is given by ψ(g) = g ⊗ g.

Hopf module algebras and coalgebras. Hopf algebras often act or coact on other things

such as algebras and coalgebras. Let (H,φ, η, ψ, ε) be a Hopf algebra.

Definition 5.20. An H-module algebra is a k-algebra (A,φA, ηA) which is an H-module with

multiplication denoted by h · a for h ∈ H and a ∈ A, which satisfies

h · (ab) =
∑
i

(h(1) · a)(h(2) · b), h · 1 = ε(h) (h ∈ H, a, b ∈ A).

An H-module coalgebra is a k-coalgebra (C,ψC , εC) which is an H-module with multiplication

denoted by h · a for h ∈ H and a ∈ A, which satisfies

ψC(h · c) =
∑∑

(h(1) · c(1))⊗ (h(2) · c(2)), ε(h · 1) = ε(h), (h ∈ H, c ∈ C).

An H-module bialgebra/Hopf algebra is a bialgebra/Hopf algebra that is both an H-module

algebra and a H-module coalgebra.

Example 5.21. An important example is provided by the left adjoint action of H on itself: for

h, x ∈ H,

h · x = adlh(x) =
∑

h(1)xχ(h(2)).

This makes H into an H-module Hopf algebra. To see that the product formula holds, let

a, b, h ∈ H. Using a modified version of Sweedler notation where h(ij) = (h(i))(j), we have

h · (ab) =
∑

h(1)abχ(h(2))

=
∑

h(11)(ε(h(12))1)abχ(h(2))

=
∑

h(11)a(ε(h(12))1)bχ(h(2))

=
∑

h(11)aχ(h(121))h(122)bχ(h(2))

=
∑

h(11)aχ(h(12))h(21)bχ(h(22))

=
∑

(h(1) · a)(h(2) · b),

where we have used coassociativity to rewrite the penultimate sum. Verifying the formula

h · 1 = ε(h)1 requires a simpler calculation.

If H is commutative then

h · x =
∑

h(1)χ(h(2))x = ε(h)x

so in this case the action is trivial.

If A ⊆ H is a subalgebra which is closed under the left adjoint action (i.e., for all h ∈ H,

adlhA ⊆ A) then the adjoint action restricted to A makes it into an H-module subalgebra.

Example 5.22. Let kG be the group algebra of a group G and N ◁G. Then for g ∈ G ⊆ kG
and n ∈ N ⊆ kN ⊆ kG, the adjoint action is given by

g · n = gng−1

so kN is a kG-module Hopf algebra. This case is very important in representation theory and

cohomology of finite groups.
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6. Finite dimensional Hopf algebras

Finite dimensional Hopf algebras have a rich theory, some aspects of which are generalisations

of the special case of group algebras of finite groups.

The Nichols-Zoeller Theorem. Here is an important result about finite dimensional Hopf al-

gebras. Earlier versions of this for arbitrary graded connected Hopf algebras were due to Milnor

& Moore [MM65]. More general results are known, for example when K is finite dimensional.

Theorem 6.1 (Nichols & Zoeller). Let H be a finite dimensional Hopf algebra and let K be a

subHopf algebra. Then when viewed as a left or right K-module, H is free. Hence

dimkH = (dimkK)(rankK H).

Proof. The proof seems to require some module theory that requires work to develop. Proofs

can be found in [Rad12, theorem 9.3.3] or [Mon93, chapter 3]. □

The dimension formulae is of course a generalisation of Lagrange’s Theorem. For a finite

group G and H ⩽ G, kG is a finite dimensional Hopf algebra and kH is a subHopf algebra,

with dimk kG = |G| and dimk kH = |H|. Here is a nice generalisation.

Corollary 6.2. Let H be a finite dimensional Hopf algebra. Then the grouplike elements form

a finite subgroup G(H) ⩽ H× and |G(H)| divides dimkH.

Proof. By Lemma 2.16, G(H) is linearly independent so it must be finite with |G(H)| ⩽ dimkH.

In fact it spans the subHopf algebra kG(H) ⊆ H, so by Theorem 6.1, |G(H)| | dimkH. □

Antipodes and finite dimensionality. In general the antipode of a Hopf algebra need not be

bijective. But it often is, for example when the Hopf algebra is commutative or cocommutative.

Here is another important case.

Theorem 6.3. Let H be a finite dimensional Hopf algebra. Then its antipode χ : H → H is

bijective.

The proof will require a lemma which does not require H to be finite dimensional.

Lemma 6.4. Let H be a Hopf algebra and suppose that K = χH ⊆ H. If the restriction

χ|K : K → K is a bijection then χ is a bijection.

Proof. The linear mapping H → K given by χ is surjective and χ|K : K → K is injective, so

H = kerχ ⊕ K as vector spaces. Let π : H → H be projection onto the second factor; then

kerχ = kerπ and π|K = IdK .

By Proposition 4.1, K ⊆ H is a subHopf algebra and kerχ is a Hopf ideal of H. Hence

ε kerπ = {0} and

ψ kerχ ⊆ kerχ⊗H +H ⊗ kerχ = kerπ ⊗H +H ⊗ kerχ,

so for h ∈ kerχ and working with the convolution in hom(H,H),

(π ∗ χ)(h) = 0 = ε(h)1.

For k ∈ K we have

(π ∗ χ)(k) =
∑

π(k(1))χ(k(2)) =
∑

k(1)χ(k(2)) = ε(k)1.

It follows that π is the convolution inverse of χ, but this is IdH . So in fact π = IdH and χ is

surjective with kerχ = 0, hence χ is a bijection. □
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Proof of Theorem 6.3. We will prove this is stages using a ‘downward induction’ argument. See

Radford [Rad12, theorem 7.1.14] for more on this.

Since χ : H → H is a linear mapping and H is finite dimensional, Fitting’s Lemma implies

that for some large enough n,

H = imχn ⊕ kerχn.

where K = imχn = χnH ⊆ H is a subHopf algebra on which the restriction of χ is injective.

Since K = χK = χ(χn−1H), we can apply Lemma 6.4 to the subHopf algebra χn−1H ⊆ H

to deduce that χ is bijective on χn−1H. Now we can repeat this argument to show that χ is

bijective on each χkH with 1 ⩽ k ⩽ n− 1 and then show that it is bijective on H itself. □

Recall that a finite submonoid of a group is always a subgroup. A similar result holds for

Hopf algebras.

Proposition 6.5. Let H be a Hopf algebra and let B ⊆ H be a subbialgebra that is finite

dimensional. Then the antipode of H restricts to an antipode B, therefore B is a subHopf

algebra.

Proof. Consider the convolution monoids hom(B,B), hom(B,H) and hom(H,H); since B is

a subbialgebra of H, hom(B,B) ⊆ hom(B,H) is a submonoid and the inclusion incB : B →
H induces a monoid homomorphism incB : hom(H,H) → hom(B,H). Let χ′ = χ ◦ incB ∈
hom(B,H) be the restriction of the antipode χ : H → H to B. The restriction of the identity

IdH to B is just the inclusion incB : B → H, and

χ′ ∗ incB = inc∗B(χ ∗ IdH) = inc∗B(1H)

which is the identity in hom(B,H). So χ′ is the ∗-inverse of incB ∈ hom(B,H).

Now hom(B,B) ⊆ hom(B,H) is a submonoid and (incB)∗(IdB) = incB ◦ IdB = incB. But

hom(B,B) and hom(B,H) are also algebras with hom(B,B) ⊆ hom(B,H) a subalgebra. Let

Λ: hom(B,B)→ hom(B,B) be the k-linear endomorphism given by left multiplication by IdB.

Since (incB)∗(IdB) = incB ∈ hom(B,H) has a left inverse, it is injective, hence so is Λ. As B

is finite dimensional so is hom(B,B) and therefore Λ must be invertible. It follows that IdB
is invertible in hom(B,B) under ∗, hence B has antipode χB making it a Hopf algebra. By

construction, χB = χ ◦ incB so B is a subHopf algebra. □

Hopf modules. Let (H,φ, η, ψ, ε, χ) be a Hopf algebra (not necessarily finite dimensional).

Then H and H ⊗H are both left H-modules and the coproduct ψ : H → H ⊗H is a module

homomorphism since H is a bialgebra. Similarly, if M is a left H-module H ⊗M is also an

H-module.

Definition 6.6. Suppose that M is a left H-module which is also a left H-comodule (M,µ).

Then (M,µ) is a (left) H-Hopf module if µ : M → H ⊗M is an H-module homomorphism.

A homomorphism of H-Hopf modules θ : (M,µ) → (N, ν) is a k-linear mapping θ : M → N

which is both an H-module homomorphism and an H-comodule homomorphism.

If W is any vector space then H ⊗W is both a left H-module and a left H-comodule and it

is easy to check it is a Hopf module.

For a Hopf module (M,µ) we define its subspace of coinvariants to be

Mcoinv = {m ∈M : µ(m) = 1⊗m} ⊆M.

This vector subspace of M can be identified with the cotensor product k□HM where we view k
as a right H-comodule.

Here is the main result about Hopf modules, again we do not assume finite dimensionality.
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Theorem 6.7 (Fundamental Theorem of Hopf Modules). Let M be an H-Hopf module. Then

there is an isomorphism of Hopf modules

H ⊗Mcoinv
∼=−−→M.

Hence every H-Hopf module is a free H-module.

Proof. We start by defining the linear mapping

Θ: H ⊗Mcoinv
∼=−→M ; Θ(h⊗m) = hm.

Since Mcoinv is just a vector space, this is a homomorphism of H-modules.

Let h ∈ H and m ∈Mcoinv. The coaction applied to the element hm ∈M gives

µ(hm) =
∑

h(1)1⊗ h(2)m =
(∑

h(1) ⊗ h(2)
)
(1⊗m) = hµ(m),

so this is a homomorphism of H-comodules.

Now for m ∈M , let

µ(m) =
∑

m(1) ⊗m(2) ∈ H ⊗M.

Then

µ
(∑

χ(m(1))m(2)

)
=

∑
χ(m(1))µ(m(2))

=
∑

χ(m(1))(1)(m(2))(1) ⊗ χ(m(1))(2)(m(2))(2)

=
∑

χ(m(12))(m(21))⊗ χ(m(11))(m(22))

=
∑

χ(m(121))(m(122))⊗ χ(m(11))(m(2))

=
∑

ε(m(12))⊗ χ(m(11))(m(2))

=
∑

1⊗ ε(m(12))χ(m(11))(m(2))

=
∑

1⊗ χ(m(1))(m(2)),

hence
∑
χ(m(1))m(2) ∈Mcoinv.

Now consider the k-linear map Ψ: M → H ⊗Mcoinv given by

Ψ(m) =
∑

m(1) ⊗ χ((m(2))(1))(m(2))(2).

Since H acts trivially on Mcoinv, this is an H-module homomorphism and an H-comodule

homomorphism by coassociativity. Also,

ΘΨ(m) = Θ
(∑

m(1) ⊗ χ((m(2))(1))(m(2))(2)
)

= Θ
(∑

(m(1))(1) ⊗ χ((m(1))(2))m(2)

)
=

∑
(m(1))(1)χ((m(1))(2))m(2)

=
∑

ε(m(1))m(2)

= m,

and when µ(m) = 1⊗m,

ΨΘ(h⊗m) = Ψ(hm) =
∑

h(1) ⊗ χ((h(2))(1))(h(2))(2)m

=
∑

h(1) ⊗ ε(h(2))m

=
∑

ε(h(2))h(1) ⊗m

= h⊗m.
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Therefore Ψ and Θ are inverse functions.

If we choose a k-basis forMcoinv then we get an H basis for H⊗Mcoinv, henceM ∼= H⊗Mcoinv

is a free H-module. □

This result tells us that for a non-trivial Hopf module M , Mcoinv is also non-trivial. But we

can say more when we have appropriate finiteness conditions.

Corollary 6.8. If Mcoinv is finite dimensional then

rankHM = dimkMcoinv,

and if H is also finite dimensional then

dimkM = dimkH dimkMcoinv.

Here is another interesting application. For a algebra H, a subspace L ⊆ H is a left coideal

if the image of the coproduct applied to L satisfies ψL ⊆ H ⊗ L, so L is a subcomodule of H.

Corollary 6.9. If H is finite dimensional and a non-zero left ideal I ⊆H is also a left coideal,

then I = H.

Proof. The conditions imply that I is a Hopf module which is a subHopf module of H. By the

Fundamental Theorem,

I ∼= H ⊗ Icoinv
as H-modules, so dimk I ⩾ dimkH which is only possible if I = H. □

Applications to finite dimensional Hopf algebras. Now let H be a finite dimensional

Hopf algebra.

Theorem 6.10. If H is a finite dimensional Hopf algebra then its dual H∗ is an H-Hopf module

which is free of rank 1 as an H-module, i.e., H∗ ∼= H as left H-modules.

Proof. The dual H∗ = hom(H,k) is both a left H-module where for h ∈ H and f ∈ H∗,

h · f = f(χ(h)−).

It is also an algebra where the product is obtained by dualising the coproduct of H, i.e., it is

the composition

H∗ ⊗H∗ oo
∼=
//

ψ†

))
(H ⊗H)∗

ψ∗
// H∗

In fact this is a homomorphism of left H-modules where we use the antipode and the left

multiplication on the domains of H∗ = hom(H,k) and (H ⊗ H)∗ = hom(H ⊗ H,k) to define

their module structures.

Now we make H∗ into a Hopf module over H by defining the coaction µ : H∗ → H ⊗H∗ as

follows: for f ∈ H∗,

µ(f) =
∑

f(1) ⊗ f(2) ∈ H ⊗H∗

where the terms f(1) are characterised by requiring that for all g ∈ H∗, the product fg ∈ H∗

satisfies

fg =
∑

g(f(1))f(2).

A verification that this is an H-module homomorphism can be found in the proof of [Lor18,

theorem 10.9].

The Fundamental Theorem tells us that H∗ is a free module and since dimkH
∗ = dimkH it

must have rank 1, i.e., H∗ ∼= H as H-modules. □
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SinceH∗ is an injectiveH-module this result says thatH is also injective as well as projective,

i.e., it is self-injective.

We can also give another proof of Theorem 6.3. For if z ∈ kerχ ⊆ H then for any f ∈ H∗,

z · f = f(χ(z)−) = 0,

but since H∗ ∼= H, this is only possible if z = 0.

We now have an important result on finite dimensional Hopf algebras. A graded analogue of

this was proved by Browder & Spanier [BS62], then the ungraded case was proved by Larson &

Sweedler [LS69].

Theorem 6.11 (Larson & Sweedler). If H is a finite dimensional Hopf algebra then it is a

Frobenius algebra.

Proof. The existence of a left H-module isomorphism H
∼=−→ H∗ gives us an element λ ∈ H∗

which is the image of 1 ∈ H. By definition of the module structure on H∗, the image of h ∈ H
is then hλ ∈ H∗ where

(hλ)(x) = λ(xh).

If this λ is trivial on some simple left submodule S ⊆ H then for any non-zero element s ∈ S,
sλ = 0, contradicting the definition of λ. It follows that λ is a Frobenius form and so H is a

Frobenius algebra. □

This result has many interesting consequences. An algebra A is called a Kasch algebra if

every left or right simple A-module is isomorphic to a minimal left or right ideal (these are its

simple submodules).

If S is a (non-trivial) simple left or right A-module, then by Schur’s Lemma its endomorphism

algebra EndA(S) is a division algebra central over k. It is easy to see that the sum of all the

submodules of R isomorphic to S is actually a finite direct sum

S1 ⊕ S2 ⊕ · · · ⊕ Sm,

where for each i, Si ∼= S. The number m is well-defined and is called the multiplicity of S in R.

Proposition 6.12. Every Frobenius algebra A is a Kasch algebra. In particular, if S is a

simple A-module then its multiplicity in R is equal to dimEndA(S) S.

Proof. If S is a non-trivial simple left A-module, then the opposite division algebra E =

EndA(S)
op acts on HomA(S,A) by precomposition making it a left E-vector space (i.e., a left

E-module).

There are isomorphisms of E-vector spaces

HomA(S,A) ∼= HomA(S,A
∗) = HomA(S, hom(A,k))

∼= Homk(A⊗A S,k)
∼= Homk(S, k).

Every non-trivial A-module homomorphism S → A must be injective by simplicity, so the

multiplicity of S is

dimEHomA(S,A) = dimEndA(S) S ̸= 0. □

If dimk S = 1, then EndA(S) = k and dimkHomA(S,A) = 1, so S occurs with multiplicity 1,

i.e., there is a unique submodule of R isomorphic to S.

Of course this result applies to any finite dimensional Hopf algebra. In particular the counit

ε : H → k gives us a 1-dimensional simple left or right module and each of these occurs as a
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unique submodule. These 1-dimensional subspaces are called the spaces of left or right integrals

of H:

∫ lH = {z ∈ H : ∀h ∈ H, hz = ε(h)z}, ∫ rH = {z ∈ H : ∀h ∈ H, zh = ε(y)z}.

In general, ∫ lH ̸= ∫ rH , but if ∫ lH = ∫ rH then H is called unimodular and we set ∫H = ∫ lH = ∫ rH .
In general,

χ∫ lH = ∫ rH , χ∫ rH = ∫ lH ,

so when H is unimodular,

χ∫H = ∫H .

Although we know that a finite dimensional Hopf algebra H has a Frobenius form we have

not yet explained how to find a suitable element of H∗.

Lemma 6.13. Let H a finite dimensional Hopf algebra. Then in the dual Hopf algebra H∗,

any non-zero right integral λ ∈ ∫ rH∗ is a Frobenius form for H.

Example 6.14. Let kG be the group algebra of a finite group. Every element can be uniquely

written as
∑

g∈G tgg where tg. The element z0 =
∑

g∈G g satisfies

(
∑
g∈G

tgg)z0 = (
∑
g∈G

tg)z0 = ε(
∑
g∈G

tgg)z0 = z0(
∑
g∈G

tgg),

so kG is unimodular and

∫kG = {tz0 : t ∈ k}.

Define the form λ ∈ (kG)∗ by

λ
(∑
g∈G

tgg
)
= t1.

Then λ is a Frobenius form for kG.

For a finite dimensional algebra it is useful to know whether it is semisimple, and therefore

its modules are completely reducible (i.e., direct sums of simple modules). Semisimplicity is

equivalent to the triviality of the Jacobson radical of the algebra.

Theorem 6.15. Let H be a finite dimensional Hopf algebra. The following conditions are

equivalent:

(a) Every H-module is completely reducible.

(b) For any non-zero left integral z ∈ ∫ lH , ε(z) ̸= 0.

(c) For any non-zero right integral z ∈ ∫ rH , ε(z) ̸= 0.

(d) Every right H-module is completely reducible.

If these conditions hold then H is semisimple and unimodular.

A finite dimensional Hopf algebra which is semisimple has a representation theory very similar

to that of a finite group over a field whose characteristic does not divide its order. In the setting

of Example 6.14,

ε(z0) = ε
(∑
g∈G

g
)
= |G| ∈ k,

so kG is semisimple if and only if the characteristic of k does not divide |G|. Of course this is

a well-known fact in the representation theory of finite groups!
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7. A brief introduction to Quantum Groups

q-combinatorics. Suppose that we are working in a non-commutative ring R where q, x, y ∈ R
with q ̸= 1 in the centre of R and the other elements satisfy

yx = qxy.

What is the analogue of the usual binomial expansion of (x+ y)n when n ⩾ 1?

To describe the answer we introduce analogues of standard combinatorial expressions. We

will set

[n]q =
qn − 1

q − 1
= qn−1 + qn−2 + · · ·+ q + 1,

so

lim
q→1

[n]q = n.

First we have the q-factorials; these are defined recursively for n ⩾ 0:

[0]q! = 1, [n]q! = [n]q([n− 1]q!) =
qn − 1

q − 1
[n− 1]q!,

so

[n]q! =
∏

1⩽k⩽n

(qk−1 + qk−2 + · · ·+ q + 1).

Notice that

lim
q→1

[n]q! = n!.

Next we have the q-binomial coefficients for 0 ⩽ k ⩽ n:[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

(qn − 1)(q − 1)

(qk − 1)(qn−k − 1)
.

These satisfy two generalisations of Pascal’s Triangle which are easily verified:[
n

k

]
q

=

[
n− 1

k − 1

]
q

+ qk
[
n− 1

k

]
q

,(7.1) [
n

k

]
q

= qn−k
[
n− 1

k − 1

]
q

+

[
n− 1

k

]
q

.(7.2)

Proposition 7.1. For n ⩾ 1,

(x+ y)n =
∑

0⩽k⩽n

[
n

k

]
q

xkyn−k.

Proof. This can be proved by induction on n using one of the identities

(x+ y)(x+ y)n−1 = (x+ y)n = (x+ y)n−1(x+ y)

and one of the identities (7.1) or (7.2). □

Here is an application. Suppose that z ∈ R is nilpotent; the q-exponential of z is

expq(z) =
∑
k⩾0

1

[k]q!
zk

which is of course a finite sum. Notice that

lim
q→1

expq(z) = exp(z).

Now suppose that x, y ∈ R as above are also nilpotent; then for some large enough m, for any

0 ⩽ i ⩽ m we have xiym−i. So we have

(7.3) expq(x+ y) = expq(x) expq(y).
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To see this, expand out the left hand side to obtain

expq(x+ y) =
∑
k⩾0

1

[k]q!
(x+ y)k

=
∑
k⩾0

1

[k]q!

 ∑
0⩽i⩽k

[
k

i

]
q

xiyk−i


=

∑
k⩾0

∑
0⩽i⩽k

1

[i]q!
xi

1

[k − i]q!
yk−i

=
∑
i⩾0

∑
j⩾0

1

[i]q!
xi

1

[j]q!
yj

= expq(x) expq(y),

where the sums are really finite.

For polynomials in a variable X, there is a q-derivative ∂q given by

∂qf(X) =
f(qX)− f(X)

(q − 1)X
,

so for example,

∂qX
n = [n]qX

n−1.

For nilpotent z, we have

∂q expq(z) = expq(z).

The Quantum Plane. Recall the Quantum Plane of Example 2.1, the non-commutative bial-

gebra Oq(k2) where q ̸= 1, generated by two elements x, y satisfying yx = qxy. The coproduct

ψ and counit ε are given by

ψ(x) = x⊗ x, ψ(y) = y ⊗ 1 + x⊗ y, ε(x) = 1, ε(y) = 0.

The quantum version of the general linear group for 1 ̸= q ∈ k× is a Hopf algebra GLq(2)
which we will now define. As an algebra, GLq(2) is generated by a, b, c, d, e satisfying the

relations

ca = qac, ba = qab, db = qbd,

dc = qcd, cb = bc da− ad = (q − q−1)bc,

(ad− q−1bc)e = 1.

It turns out that (ad− q−1bc) is in the centre of GLq(2), hence so is

e = (ad− q−1bc)−1.

We can also define the quotient Hopf algebra SLq(2) where we have the additional relations

ad− q−1bc = 1 = e.

This is called the quantum special linear group. The coproduct, counit and antipode are given

by

ψ(a) = a⊗ a+ b⊗ c, ψ(b) = b⊗ d+ a⊗ b, ψ(c) = c⊗ a+ d⊗ b, ψ(d) = d⊗ d+ c⊗ b,
ε(a) = 1 = ε(d), ε(b) = 0 = ε(c),

χ(a) = d, χ(d) = a, χ(b) = c, χ(c) = b.
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Just as the special linear group acts linearly on the plane, so the quantum special linear group

coacts on the quantum plane, i.e., there is a coaction ρ : Oq(k2) → SLq(2) ⊗ Oq(k2). This is

given on the generators by

ρ(x) = a⊗ x+ b⊗ y, ρ(y) = c⊗ x+ d⊗ y.

Quasitriangular Hopf algebras. For a non-cocommutative Hopf algebra H, its module cat-

egory ModH is monoidal under tensor product but not always symmetric monoidal since in

general M ⊗N need not be isomorphic to N ⊗M . One way to ‘correct’ this is to impose extra

structure.

Definition 7.2. A quasitriangular Hopf algebra (H,R) is a Hopf algebra H with an element

R ∈ H ⊗H satisfying

• R is a unit in the algebra H ⊗H and for all h ∈ H,

T ◦ ψ(h) = R(ψ(h))R−1;

• In the algebra H ⊗H ⊗H we have the identities

(ψ ⊗ IdH)(R) = R13R23, (IdH ⊗ψ)(R) = R13R12,

where Rij ∈ H ⊗ H ⊗ H means the image of R under the algebra homomorphism

H ⊗H → H ⊗H ⊗H obtained by including the i and j factors (so R12 = R⊗ 1 and

R23 = 1⊗R for example).

Lemma 7.3. Suppose that (H,R) is a quasitriangular Hopf algebra.

(a) We have

(ε⊗ IdH)(R) = 1⊗ 1 = (IdH ⊗ε)(R),

(χ⊗ IdH)(R) = R−1,

(IdH ⊗χ)(R−1) = R,

and therefore

(χ⊗ χ)(R) = R.

(b) (H,R−1
21 ) is also a quasitriangular Hopf algebra where

R−1
21 = T(R−1).

(c) The Yang-Baxter identity holds in H ⊗H ⊗H:

R12R13R23 = R23R13R12.

Notice that the Yang-Baxter equation is similar to the following identity in the symmetric

group S3:

(1 2)(1 3)(2 3) = (1 3) = (2 3)(1 3)(1 2).

It is also a relation in the 3-rd braid group so is sometimes called the braid relation.

Theorem 7.4. Suppose that (H,R) is a quasitriangular Hopf algebra.

(a) The antipode of H is a bijectiion.

(b) There is a unit u ∈ H× such that χ2 = u(−)u−1, and moreover

ψ(u) = (T(R)R)−1(u⊗ u).

Proof. See Majid [Maj02, chapter 5]. □
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To illustrate the impact of a quasitriangular on a Hopf algebra, recall from Lemma 5.18 that

for a finite dimensional H-module M , M∗∗ ∼= (χ2)∗M . Using (b) it is easy to see that for a

quasitriangular Hopf algebra we have (χ2)∗M ∼= M and therefore M∗∗ ∼= M . We will see far

more is true.

Braidings on module categories. In the following we assume that (H,R) is a quasitriangular
Hopf algebra. We will often write R using Sweedler-style notation as a sum

R =
∑
R1 ⊗R2.

The module category ModH is monoidal under ⊗. We define

M
op
⊗ N = N ⊗M

with the usual H-action given by multiplication by T ◦ ψ(h):

h(m
op
⊗ n) = h(n⊗m) =

∑
h(1)n⊗ h(2)m =

∑
h(2)m

op
⊗ h(1)n.

Lemma 7.5. For two left H-modules M and N ,

ΨM,N : M ⊗N →M
op
⊗ N = N ⊗M ; ΨM,N (m⊗ n) =

∑
R1m

op
⊗R2n =

∑
R2n⊗R1m

defines an isomorphism of H-modules.

Proof. Notice that

ΨM,N = T ◦ R

where R means the multiplication by R function on H ⊗H. By the first part of Definition 7.2,

for h ∈ H,

ψ(h) ◦ R = T ◦ R ◦ ψ(h).

We have for h ∈ H, m ∈M and n ∈ N ,

ΨM,N (h(m⊗ n)) = T(Rψ(h)(m⊗ n))
= T ◦ R ◦ ψ(h)(m⊗ n)
= ψ(h) ◦ R(m⊗ n)
= ψ(h) ◦ T ◦ T ◦ R(m⊗ n)
= T ◦ ψ(h) ◦ΨM,N (m⊗ n)
= hΨM,N (m⊗ n).

It is clear that ΨM,N does has an inverse, namely R−1 ◦ T. □

The existence ofRmakes the monoidal category (ModH ,⊗) into a braided monoidal category.

This involves Ψ−,− as well as functorial isomorphisms

ΦU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

which obey the Pentagon Condition making the following diagram commute for all U, V,W,Z.

(U ⊗ V ) ⊗ (W ⊗ Z)
Φ

--
((U ⊗ V ) ⊗W ) ⊗ Z

Φ
11

Φ⊗Id
++

U ⊗ (V ⊗ (W ⊗ Z))

(U ⊗ (V ⊗W )) ⊗ Z
Φ

// U ⊗ ((V ⊗W ) ⊗ Z))
Id⊗Φ

33
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Furthermore, Φ and Ψ must obey the Hexagon Conditions making the following diagrams
commute.

U ⊗ (V ⊗W )

id⊗Ψ

ww

Φ−1

''
U ⊗ (W ⊗ V )

Φ−1

��

(U ⊗ V ) ⊗W

Ψ

��
(U ⊗W ) ⊗ V

Ψ⊗Id ''

W ⊗ (U ⊗ V )

Φ−1ww
(W ⊗ U) ⊗ V

(U ⊗ V ) ⊗W

Φ

ww

Ψ⊗Id

''
U ⊗ (V ⊗W )

Ψ

��

(V ⊗ U) ⊗W

Φ

��
(V ⊗W ) ⊗ U

Φ ''

V ⊗ (U ⊗W )

Id⊗Ψww
V ⊗ (W ⊗ U)

Notice that we do not assume that ΨV,U = Ψ−1
U,V as it would if the tensor product were

symmetric. This is related to the fact that R2 may not be 1 ⊗ 1. This means that the group

of functorial isomorphisms acting on a tensor product of H-modules M1 ⊗M2 ⊗ · · · ⊗Mn is

not the symmetric group Sn but rather the n-th braid group Brn which admits an epimorphism

πn : Brn → Sn with infinite kernel.

The group Brn has a presentation with generators b1, b2, . . . , bn−1 and relations

bibj = bjbi (|i− j| ⩾ 2),

and the Yang-Baxter equation

bibi+1bi = bi+1bibi+1.

Similarly, Sn has a presentation with generators s1, s2, . . . , sn−1 and relations

sisj = sjsi (|i− j| ⩾ 2),

and

sisi+1si = si+1sisi+1,

as well as

s2i = 1.

Here si = (i i+ 1) and πn(bi) = si.
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[CE99] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1999. With an appendix

by David A. Buchsbaum; Reprint of the 1956 original.

[CP21] P. Cartier and F. Patras, Classical Hopf Algebras and their Applications, Algebra and Applications,

vol. 29, Springer, 2021. (pdf file downloadable through GU Library).

[Jac79] N. Jacobson, Lie Algebras, Dover Publications, 1979. Republication of the 1962 original.

[KC02] V. Kac and P. Cheung, Quantum calculus, Universitext, Springer-Verlag, 2002.

[Lam99] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag,

1999.

[LS69] R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J.

Math. 91 (1969), 75–94.

[Lor11] M. Lorenz, Some applications of Frobenius algebras to Hopf algebras, Contemp. Math. 537 (2011),

269–289.

[Lor18] , A Tour of Representation Theory, Graduate Studies in Mathematics, vol. 193, American Math-

ematical Society, 2018. (pdf file downloadable through GU Library).

[Maj95] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.

[Maj02] , A Quantum Groups Primer, London Mathematical Soc. Lect. Note Ser., vol. 292, Cambridge

University Press, 2002.

[MR83] N. Metropolis and G-C. Rota, Witt vectors and the algebra of necklaces, Adv. in Math. 50 (1983),

95–125.

[Mil17] J. S. Milne, Algebraic Groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge Uni-

versity Press, 2017. (GU Library will order).

[MM65] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264.

[ML98] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics,

vol. 5, Springer-Verlag, 1998.

[Mon93] S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Regional Conference Series in Math-

ematics, vol. 82, 1993.

[Rad12] D. E. Radford, Hopf Algebras, Series on Knots and Everything, vol. 49, World Scientific Publishing,

2012. (pdf file downloadable through GU Library).

[Rie16] E. Riehl, Category Theory in Context, Graduate Texts in Mathematics, Dover Publications, 2016.

[Und11] R. G. Underwood, An Introduction to Hopf Algebras, Springer, 2011. (pdf file downloadable through

GU Library).

[Und15] , Fundamentals of Hopf Algebras, Springer, 2015. (pdf file downloadable through GU Library).

[Wat79] W. C. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts in Mathematics, vol. 66,

Springer-Verlag, 1979.

53

arXiv:2205.09541

	Introduction
	Background material on vector spaces over a field as a monoidal category
	1. Algebras and coalgebras
	Algebras
	Coalgebras
	Dualising between algebras and coalgebras
	Convolution monoids

	2. Bialgebras and Hopf algebras
	3. Lots of examples
	Endomorphism algebras
	Polynomial rings and their duals
	The free vector space
	Poset coalgebras and algebras
	Free algebras, bialgebras and Hopf algebras
	3.1. Free bialgebras and free Hopf algebras
	Enveloping algebras of Lie algebras
	Restricted Lie algebras
	Affine group schemes
	Combinatorial Hopf algebras
	Frobenius algebras
	Taft Hopf algebras

	4. SubHopf algebras, adjoint actions and normal subalgebras
	5. Modules and comodules
	Modules over an algebra
	Comodules over a coalgebra
	Tensor and cotensor products
	Modules over a Hopf algebra
	Representations of finite groups
	Hopf module algebras and coalgebras

	6. Finite dimensional Hopf algebras
	The Nichols-Zoeller Theorem
	Antipodes and finite dimensionality
	Hopf modules
	Applications to finite dimensional Hopf algebras

	7. A brief introduction to Quantum Groups
	q-combinatorics
	The Quantum Plane
	Quasitriangular Hopf algebras
	Braidings on module categories

	References

