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ITERATED DOUBLES OF THE JOKER AND THEIR
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(communicated by Donald M. Davis)

Abstract
Let A(1)∗ be the subHopf algebra of the mod 2 Steenrod algebra

A∗ generated by Sq1 and Sq2. The Joker is the cyclicA(1)∗-module
A(1)∗/A(1)∗{Sq3} which plays a special rôle in the study of A(1)∗-
modules. We discuss realisations of the Joker both as anA∗-module
and as the cohomology of a spectrum. We also consider analogous
A(n)∗-modules for n > 2 and prove realisability results (both stable
and unstable) for n = 2, 3 and non-realisability results for n > 4.

Introduction

The cyclic A(1)∗-module A(1)∗/A(1)∗{Sq3}, commonly known as the Joker, was
shown by Adams and Priddy [2] to give rise to a torsion summand in the Picard
group of invertible stable A(1)∗-modules. Here is a representation of the Joker where
a vertical line indicates the action of Sq1 and a curved line indicates the action of Sq2.

•

•

•

Sq2•
Sq1

•
There are various choices for the grading, but for topological reasons we use the one
where the lowest degree of a nontrivial element is 0. More details about the Joker
and its homological algebra can be found in [5, Appendix A.8]. For a recent result
which highlights the special significance of the Joker see [4]. Incidentally, the use of
the name Joker appears to be due to Frank Adams, although the earliest published
occurrence that we are aware of is in [10]; it may be based on the similarity of the
diagram above to a traditional jester’s hat.
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The A(1)∗-module structure of the Joker extends in two ways to an A∗-module
structure determined by whether Sq4 acts non-trivially or not between the bottom
and top degrees. The resulting A∗-modules are linear duals of each other. We will
show that both can be realised as cohomology of finite CW spectra which are Spanier-
Whitehead dual using a construction we learnt from Peter Eccles, however, it also
appeared in Mike Hopkins’ Oxford PhD thesis but seems not to be otherwise pub-
lished. We will show in Theorem 5.1 that these can be realised as cohomology of
spaces with bottom cells of degrees 2 and 4, respectively.

Using a construction based on doubling, we introduce higher versions of the Joker
defined as cyclic A(n)∗-modules and show that these can be realised as cohomology
of spectra precisely when n 6 3. Most cases of the non-realisability result can be
verified by a direct application of Adams’ result on Hopf invariant 1, however, in one
case we resort to a more delicate argument using the precise form of his factorisation
of Sq2r for r > 4, so we give a proof which applies in all cases. In the cases where we
can realise these modules, our constructions depend on the existence of triple Toda
brackets containing the first three elements of Kervaire invariant 1, i.e., η2, ν2, σ2.
Finally, we consider unstable realisations and show that for n = 1, 2 we can indeed
realise optimal unstable versions of the higher Joker modules; the techniques used
involve modifying naturally occurring spaces by mapping into Eilenberg-Mac Lane
spaces and certain spaces in the spectra kO and tmf, thus giving alternatives to the
stable constructions above.

For the convenience of the reader, we include a brief appendix in which some
connectivity results on infinite loop spaces are given; this material is standard but we
were unable to locate convenient references.

We also make numerous references to calculational results obtained using the
Adams spectral sequence. The reader can find relevant charts in the earlier arxiv

versions of this paper

https://arxiv.org/abs/1710.02974

but at the request of the Editor we have omitted most of these. They were obtained
using Bob Bruner’s programmes available at the following address.

http://www.math.wayne.edu/∼rrb/cohom/index.html
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Conventions & notations

Throughout we work locally at the prime 2.
To avoid excessive display of gradings we will often suppress cohomological degrees

and write V for a cohomologically graded vector space V ∗; in particular, we will
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often write A for the Steenrod algebra. The linear dual of V is DV where (DV )k =
HomF2

(V −k,F2), and we write V [m] for graded vector space with (V [m])k = V k−m,
so for the cohomology of a spectrum X, H∗(ΣmX) = H∗(X)[m].

For a connected graded algebra B∗ we will write B+ for its positive degree part.
We will denote the Spanier-Whitehead dual of a spectrum X by DX.

1. A-module structures on the Joker and duality

The Joker has two possible A-module structures corresponding to the choice of
action of Sq4 between the top and bottom degrees. The resulting A-modules Joker∗0
and Joker∗1 are displayed in the following diagrams in which the shorter edges repre-
sent non-trivial Sq1 and Sq2 actions.

•

Sq4=0

Joker0 •

•

•

•

•

Sq4

Joker1 •

•

•

•
Recall that for a left A-module M , the F2-linear dual DM is naturally a right

A-module where for f ∈ DM , θ ∈ A and x ∈M ,

(f · θ)(x) = f(θx).

There is an associated left module structure given by

(θ · f)(x) = (f · χθ)(x) = f(χθx),

where χ : A → A is the antipode. For a finite CW complex spectrum Z, as a left
A-module the cohomology of the Spanier-Whitehead dual DZ satisfies

H∗(DZ) ∼= D(H∗(Z)).

Since the following relations hold in A,

Sq3 = Sq1 Sq2, Sq2 Sq2 = Sq1 Sq2 Sq1,

χSq1 = Sq1, χSq2 = Sq2,

χSq4 = Sq4 + Sq1 Sq2 Sq1 = Sq4 + Sq2 Sq2,

it follows that Joker0 and Joker1 are dual up to a degree shift, i.e.,

Joker1
∼= DJoker0[4]. (1.1)

2. Doubling and higher versions of the Joker

Doubling for A and A(n) are discussed in Margolis [14, Section 15.3] (for a partic-
ularly relevant result on modules see Theorem 31). We give a brief description and,
in particular, explain what happens under iterated doubling.
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The dual of A(n) is the quotient Hopf algebra

A(n)∗ = A∗/(ζ2n+1

1 , ζ2n

2 , . . . , ζ2
n+1, ζn+2, . . .)

= F2[ζ1, ζ2, . . . , ζn+1]/(ζ1
2n+1

, ζ2
2n

, . . . , ζn+1
2
),

where (−) indicates residue class. The dual of the normal exterior subHopf algebra
E(n) ⊆ A(n) generated by the Milnor primitives P0

t (1 6 t 6 n+ 1) is the quotient
exterior algebra

E(n)∗ = A∗/(ζ2
1 , ζ

2
2 , . . . , ζ

2
n+1, ζn+2, ζn+3, . . .) ∼= A(n)∗/(ζ1

2
, ζ2

2
, . . . , ζn+1

2
).

The dual of the quotient Hopf algebra

A(n)//E(n) = A(n)⊗E(n) F2
∼= A(n)/A(n)E(n)+

is

A(n)∗�E(n)∗F2 = F2[ζ1
2
, ζ2

2
, . . . , ζn+1

2
]/(ζ1

2n+1

, ζ2
2n

, . . . , ζn+1
2
) ⊆ A(n)∗.

There is an external Frobenius homomorphism f : A(n)∗ → A(n+ 1)∗ which factors

through the dual of A(n)//E(n) and satisfies f(ζr) = ζr
2
.

A(n)∗

f ))

// A(n+ 1)∗�E(n+1)∗F2

��
A(n+ 1)∗

More generally there are iterations f (k) : A(n)∗ → A(n+ k)∗ where k > 0, so that

f (0) = f and f (k)(ζr) = ζr
2k

.

A(n)∗

f (k) ))

// A(n+ k)∗�E(n+k)∗F2

��
A(n+ k)∗

Each f (k) is clearly a Hopf algebra homomorphism and there is a dual Verschiebung
Hopf algebra homomorphism v(k) : A(n+ k)→ A(n).

A(n) hh

v(k)

oo A(n+ k)//E(n+ k)
OO

A(n+ k)

Since

f (k)(ξi11 · · · ξ
i`
` ) = ξ2ki1

1 · · · ξ2ki`
`

the effect of v(k) is easily seen using the Milnor basis dual to the monomial basis in
the elements ξr = χζr and we have

v(k)(Sq(j1, . . . , j`)) =

{
Sq(j′1, . . . , j

′
`) if jr = 2kj′r for all r,

0 otherwise.
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Since Sq(j) = Sqj ,

v(k)(Sqj) =

{
Sqj

′
if j = 2kj′,

0 otherwise.

Finally, for 1 6 t 6 n+ 1 the elements v(k)(Pst ) ∈ A(n) are given by

v(k)(Pst ) = v(k)(Sq(

t︷ ︸︸ ︷
0, . . . , 0, 2s)) =

{
Ps−kt if s > k,

0 otherwise.

Let A(n)M(r) be the full subcategory of A(n)M consisting of modules concentrated

in degrees divisible by 2r; for example A(n)M(0) = A(n)M, and A(n)M(1) = A(n)Mev.

The Verschiebung v(k) together with the quotient homomorphism π : A(n+ k)→
A(n+ k)//E(n+ k) induces restriction functors between categories of left modules
fitting into the following commutative diagram.

A(n)M

∆(k) **

(v(k))∗ // A(n+k)//E(n+k)M(k)

π∗

��

A(n+k)M(k)

(2.1)

Here ∆(k) multiplies degrees by 2k and it is a monoidal functor since v(k) and π are
both homomorphisms of Hopf algebras.

By [14, Theorem 15.3.31] ∆(1) is an isomorphism of categories, but when k > 1
this is not true. However, this can be corrected by replacing A(n+ k)//E(n+ k) by
the quotient of A(n+ k) by the ideal generated by a larger set of the elements Pst .
Let

E(n+ k, k) = F2(Pst : 1 6 t 6 n+ k + 1, 0 6 s < k) ⊆ A(n+ k)

and consider the normal quotient

A(n+ k)//E(n+ k, k) = A(n+ k)/A(n+ k)E(n+ k, k)+ ∼= A(n+ k)⊗E(n+k,k) F2.

Then (2.1) can be replaced by

A(n)M

∆(k) **

(v(k))∗

∼=
// A(n+k)//E(n+k,k)M(k)

π∗∼=
��

A(n+k)M(k)

so that the proof of Margolis still applies to show that this ∆(k) is an isomorphism
of categories.

We remark that ∆(k) does not induce a functor on stable module categories since
it does not preserve projective modules.

For each n > 2, iterated doubling gives a generalisation of the Joker to a cyclic

A(n)-module Joker(n) = ∆(n−1)(Joker). The actions of Sq2n−1

and Sq2n on Joker(n)
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are shown below.

•
Sq2n−1

Sq2n•

Sq2n •

Sq2n•
Sq2n−1

•

•

•

•

•

•

Sq2n+1

There are two extensions to A-module structures, each determined by a choice of

action by Sq2n+1

from the top to the bottom degree, and we denote the resulting

A-modules by Joker(n)0 and Joker(n)1 depending on whether Sq2n+1

acts trivially

or not. It is straightforward to verify that the action of χSq2n+1

on Joker(n)0 is
non-trivial and

Joker(n)1
∼= DJoker(n)0[2n+1].

As an A(n)-module, Joker(n) is finitely presented. For example, Joker(1) has min-
imal presentation

0← Joker(1)← A(1)← A(1)[3],

while

Joker(2) = A(2)/A(2){P0
1,P

0
2,P

0
3,Sq6} = A(2)/A(2){P0

1,P
0
2,Sq6},

so it has a minimal presentation

0← Joker(2)← A(2)← A(2)[1]⊕A(2)[3]⊕A(2)[6].

Finally,

Joker(3) = A(3)/A(3){P0
1,P

0
2,P

0
3,P

1
1,P

1
2,Sq12} = A(3)/A(3){P0

1,P
1
1,P

1
2,Sq12}

and there is a minimal presentation

0← Joker(3)← A(3)← A(3)[1]⊕A(3)[2]⊕A(3)[6]⊕A(3)[12].

Of course the A-modules Joker(n)0 and Joker(n)1 are not finitely presented. These
presentations can be extended further using the Sage package of Mike Catanzaro and
Bob Bruner which can be found at

http://www.math.wayne.edu/∼mike/mods/

and is documented in [6].

3. Some recollections on Toda brackets

For ease of reference, we recall some basic ideas about triple Toda brackets in
homotopy theory. A classic source for the basic ideas is the book of Mosher and
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Tangora [16] and Toda’s seminal work [17] provides a more exhaustive account,
while Cohen [7] gives a different treatment, also discussed by Whitehead [19].

Let

W
f−→ X

g−→ Y
h−→ Z

be a sequence of maps (of based spaces or spectra) and assume that gf and hg are
null homotopic. The mapping sequence for g extends to a commutative diagram of
solid arrows

ΣW
Σf

""
f[
��

X
g // Y

j //

h
!!

C(g)
k //

h]

��

ΣX
Σg // ΣY

Z

and the composition h]f[ : ΣW → Z represents the Toda bracket 〈f, g, h〉. Of course
this element is not necessarily well defined up to homotopy: the choices in f[ and h]

contribute indeterminacy subgroups h∗[ΣW,Y ] and (Σf)∗[ΣX,Y ] and when W is a
suspension or a spectrum

indet〈f, g, h〉 = h∗[ΣW,Y ] + (Σf)∗[ΣX,Y ],

and

〈f, g, h〉 = h]f[ + h∗[ΣW,Y ] + (Σf)∗[ΣX,Y ],

for some given choice of f[ and h].

Here are some important examples of such Toda brackets in the stable homotopy
groups of spheres π∗(S) where S = S0

(2) is the 2-local sphere spectrum. As usual, we

identify θ ∈ πn(S) with Σkθ ∈ πn+k(ΣkS) ∼= πn+k(Sk).

〈2, η, 2〉 = {η2}, (3.1a)

〈η, ν, η〉 = {ν2}, (3.1b)

〈ν, σ, ν〉 = {σ2}. (3.1c)

Of course these elements θ1 = η2, θ2 = ν2 and θ3 = σ2 are the first elements of Ker-
vaire invariant 1.

Proof/justification. Using the Peterson-Stein formula [16] or performing calculations
with Massey products in ExtA, it is straightforward to see that these brackets contain
the stated elements; alternatively see [17, Corollary 3.7]. Also,

indet〈2, η, 2〉 = 2π1(S) = 0,

indet〈η, ν, η〉 = ηπ5(S) = 0,

since π1(S) ∼= Z2 and π5(S) = 0. To see that indet〈ν, σ, ν〉 = 0, we need to consider
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the Adams spectral sequence

Es,t2 = Exts,tA (F2,F2) =⇒ πt−s(S)

in degree 14. Although there is an element h2Ph2 ∈ E6,20
2 this is killed by the differ-

ential d3, so νπ11(S) = 0.

4. Constructing Joker spectra

The main idea for this construction was explained to us by Peter Eccles, and it also
appears in the unpublished Oxford PhD thesis of Mike Hopkins [11] (see Section 1.7).
We will make use of the well-known Toda bracket 〈2, η, 2〉 = {η2} ⊆ π2(S0).

Let 2] : C(η)→ S0 extend 2 on the bottom cell; there is no indeterminacy in
this choice because the non-trivial element η2 ∈ π2(S0) is in the image of the map
π2(S1)→ π2(S0) induced by η : S2 → S1 on domains. Let 2[ : S2 → C(η) be the coex-
tension of the degree 2 map onto the top cell; again there is no indeterminacy in
this choice since the non-trivial element η2 ∈ π2(S0) is in the image of the map
π2(S1)→ π2(S0) induced by η : S1 → S0 on codomains.

S2

η

||
η2

��

2

!!
2[

��
S1

η
// S0

2 !!

// C(η) //

2]

��

S2

η2

uu

η // S1

ηqqS0

By (3.1a) the composition η2 − 2] ◦ 2[ in the following diagram is null homotopic.

S2
η∨2[

//

η2−2]◦2[

**
S1 ∨ C(η)

η∨(−2])

// S0

The mapping sequences for η ∨ 2] and η ∨ 2[ together yield the following diagram of
solid and dashed arrows.

3∃θ

�� 2[ ��

η

��

3

η

3

η2

η

2

η

2

1 1

2

// 1
η∨(−2])// 1

0
η∨(−2])// 0 // 0

This shows the existence of a map θ which is well-defined up to indeterminacy which
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lies in the image of

π3(S0)/[ηπ3(S1) + 2π3(S0)] = π3(S0)/2π3(S0) ∼= Z2,

so there are two choices of such a map θ up to homotopy. Because of the η component
on the 2-sphere, the mapping cone of θ has the form

4

η

2

3

η 2

η1
2

0

and its cohomology is the Joker A(1)-module. The A-module structure has a Sq4

action between degrees 0 and 4 and this could be zero or non-zero. Each of these
possibilities can occur, depending on which of the two of choices for θ is made. Putting
all this together with the algebraic identity (1.1) we obtain the following.

Theorem 4.1. There are two equivalence classes of finite 2-local CW spectra, J0 and
J1, whose cohomology realise the A-modules Joker0 and Joker1. Up to suspension, J0

and J1 are Spanier-Whitehead dual, i.e.,

DJ0 ' Σ−4J1.

Up to degree 12, the Adams E2-terms for such Joker spectra are almost identical,
differing only by an h0 multiplication in the 6-column and having no non-trivial
differentials.

Here is a useful consequence of the existence of such Joker spectra; we assume this
was known to Mark Mahowald but have not been able to locate an explicit statement
on the existence of Joker spectra in his published work – however, see Remark 4.3
and also [11, Section 1.7].

Corollary 4.2. The (−1)-connected cover of kO satisfies

kO ∧ Σ2J0 ∼ kO〈2〉 ∼ kO ∧ Σ2J1.

It is well known that the other spectra which appear in the Whitehead tower of
kO can all be defined in terms of kO-module spectra of the form kO ∧W where the
A(1)∗-module H∗(W ) has one of the following forms.

H∗(W0) H∗(W1) H∗(W2) H∗(W4)

• • • •

• •

• •

• • •

•
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In general, when r = 0, 1, 2, 4 and m > 0,

kO〈8m+ r〉 ∼ kO ∧ Σ8mWr.

For more details see [12,13].

Remark 4.3. A spectrum whose cohomology agrees with A(1) as an A(1)-module
(referred to as a ‘space’ in [13, Remark 1.6]) can be constructed using our Joker
spectra. The following construction makes use of detailed information on homotopy
groups that can be read off from Adams spectral sequence charts. Starting with J
being either of J0 or J1 we find that there is a generator u of π2(J) ∼= Z(2) in Adams
filtration 1 (this is a manifestation of v1 and has degree 2 on the 2-cell). Also, ηu =
0 so u extends to a map S2 ∪η e4 → J . As π4(J) = 0, this also extends to a map
f : S2 ∪η e4 ∪2 e

3 → J where the attaching map of the 3-cell is yet another avatar
of v1. The cohomology of the mapping cone C(f) has basis elements in the same
degrees as A(1) and all but one Steenrod operation (indicated by the dashed line
below) are clear from the above description.

◦

◦
Sq1

•

?

◦

Sq2

•

•

•

•

The relation Sq2 Sq2 = Sq1 Sq2 Sq1 shows that this is indeed a Sq2 and therefore as
A(1)-modules, H∗(C(f)) ∼= A(1).

Of course, the action of A on H∗(J) extends to one on H∗(C(f)), thus giving
at least two different A-module structures on A(1). In [9, Theorem 1.4], Davis and
Mahowald gave a different construction realising all four of the possible A-module
structures known to exist.

For small n we can realise Joker(n)0 and Joker(n)1 as the cohomology of spectra.

Theorem 4.4. For n = 2, 3 there are finite 2-local CW spectra, J(n)0 and J(n)1,
whose cohomology restricts to A(n)-modules isomorphic to Joker(n). These realise
the two A-module structures extending the two dual A(n)-module structures. Up to
suspension, J(n)1 can be taken to be the Spanier-Whitehead dual of J(n)0.

Proof. The approach of Section 4 also works using the Toda brackets 〈η, ν, η〉 and
〈ν, σ, ν〉 given in (3.1).
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The case n = 2:
Using ideas and notation from Section 3 we can form a map

S3 ∨ C(Σν)
ν∨(−η])−−−−−→ S0,

whose mapping cone fits into a cofibre sequence

S0 → C(ν ∨ (−η]))→ S4 ∨ C(Σ2ν)→ S1.

The map

S7 Σ4ν∨(Σ5η)[−−−−−−−−→ S4 ∨ C(Σ2ν)

projects to

(Σν2 − η](Σ5η)[) : S7 → S1,

which is null homotopic as 〈η, ν, η〉 = {ν2}. Hence Σ4ν ∨ (Σ5η)[ factors through a
map

θ′ : S7 → C(ν ∨ (−η])),

whose mapping cone has the following form.

8

ν

η

6

ν 4

ν2
η

0

The indeterminacy in θ′ is

π7(S0)/[νπ4(S0) + ηπ6(S0)] = π7(S0)/{0} ∼= Z8.

The case n = 3:
A similar argument works and we obtain the desired spectrum as the mapping

cone of a map

θ′′ : S15 → C(σ ∨ (−ν])).

The indeterminacy in θ′′ is

π15(S0)/[σπ8(S0) + νπ12(S0)] = π15(S0)/{0} ∼= Z32.

Remark 4.5. In similar fashion to the construction of a realisation of A(1) described
in Remark 4.3, we can use either of the spectra J(2)0 or J(2)1 to build a spectrum
whose cohomology realises the double ∆A(1). In [15], such a spectrum is denoted
DA(1), but this clashes with standard notation for Spanier-Whitehead duals so we
avoid using it here. We sketch the details, making use of the information that can be
read off of Adams spectral sequence charts.
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Choose J(2) to be either J(2)0 or J(2)1. We start with a map S5 → J(2) realising
the generator of π5(J(2)) ∼= Z2 (this has Adams filtration 1); since νπ5(J(2)) = {0},
this extends to a map S5 ∪ν e9 → J(2). As π10(J(2)) = {0} there is an extension to
a map g : S5 ∪ν e9 ∪η e11 → J(2) and the cohomology of its mapping cone has the
following form where short/long lines indicate Sq2/Sq4 actions.

◦

◦
Sq2

•

?

◦

Sq4

•

•

•

•

Using the type (B) Wall relation [18] we see that Sq4 Sq4 + Sq2 Sq4 Sq2 acts triv-
ially on Joker(2) and so the dashed line must be a non-trivial Sq4 action. Therefore
H∗(C(g)) ∼= ∆A(1) as A(2)-modules. Of course there are two possible A actions
depending on which choice of J(2) we make giving different Sq16 actions.

An attempt at a direct analogue of the preceding argument for the next case runs
into difficulties as π18(J(3)) 6= {0} when J(3) is either of J(3)0 or J(3)1.

In the other direction we have some non-existence results.

Theorem 4.6. For n > 4, there is no finite 2-local CW spectrum whose cohomology
restricts to an A(n)-module isomorphic to Joker(n).

When n > 5 such a spectrum would violate Adams’ Hopf invariant 1 theorem
because of the large gap between the two elements of lowest degrees. However, in all
cases we can use the precise statement of the following crucial result on the factori-
sation of primary operations. Here X is a connective spectrum and we explain the
notation after the statement.

Theorem 4.7 (Adams [1, Theorem 4.6.1]). Let k > 3 and suppose that u ∈ Hm(X)

for m > 0 satisfies Sq2r u = 0 for 0 6 r 6 k. Then

Sq2k+1

u ≡
∑

06i6j6k
j 6=i+1

αi,j,kΦi,ju (mod indeterminacy).

In this result, the secondary operation Φi,j has degree 2i + 2j − 1, and the primary
operation αi,j,k ∈ A has degree 2k+1 − 2i − 2j + 1. The indeterminacy is the sum of
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the indeterminacies of all the Φi,j appearing and has form∑
06i6j6k
j 6=i+1

αi,j,kQ
∗(X; i, j),

for certain subgroups Q∗(X; i, j) ⊆ H∗(X). Finally, for each pair i, j occurring,

1 6 degαi,j,k 6 2k+1 − 1.

Proof of Theorem 4.6. Let n > 4 and suppose that a Joker spectrum J exists for
this n.

2n+1 •

Sq2n−1

Sq2n

3·2n−1 •

Sq2n • 2n−1

Sq2n

2n−1 •

Sq2n−1

0 •

Consider the non-zero element u in degree 2n−1. Taking k = n− 1, we can apply
Theorem 4.7. Carefully examining the possible terms in the sum we find that they
are all 0, and similarly so is the indeterminacy. The conclusion is that Sq2n u = 0,
contradicting the assumptions on J .

5. Some unstable realisations

Now we turn to the question of unstable realisations, i.e., as the cohomology of
spaces. If X is a 2-local space whose cohomology H̃∗(X) is isomorphic to Joker∗[n]
as an A(1)-module then n > 2 since Sq2 acts non-trivially on the bottom generator.
Similarly, realising the A-module Joker1[n] unstably requires that n > 4.

Theorem 5.1. There are finite 2-local CW complexes X2 and X4 such that as A-
modules,

H̃∗(X2) ∼= Joker∗0[2], H̃∗(X4) ∼= Joker∗1[4].

Proof. Corollary 4.2 suggests looking for an unstable realisation of the Joker in the
space kO〈2〉

0
= BSO. However, the cohomology of this is too large in low degrees,

instead we look at BSO(3).
Recall the Wu formula

Sqr wm = wrwm +
∑

16i6r

(
r −m
i

)
wr−iwm+i.

Using this, in H∗(BSO(3)) = F2[w2, w3] we obtain

Sq1 w2 = w3, Sq2 w3 = 0.
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Thus we obtain a copy of the Joker in the A(1)-module H∗(BSO(3)).

w2
3

w2w3

Sq2 w2
2

w3

Sq1

w2

However, H6(BSO(3)) = F2{w2
3, w

3
2}, so we next remove the additional generator by

considering the fibre of the map classifying w3
2,

BSO(3)
w3

2−−→ K(F2, 6),

which we will denote by BSO(3){w3
2}. Calculating H∗(BSO(3){w3

2}) using the Serre
spectral sequence or the Eilenberg-Moore spectral sequence we find that when k 6 6,

Hk(BSO(3){w3
2}) ∼= (F2[w2, w3]/(w3

2))k,

so taking the 6-skeleton of a minimal CW realisation (in the sense of [3, Section 3]
for example) we obtain an isomorphism of A(1)-modules

H∗(BSO(3){w3
2}[6]) ∼= Joker0[2].

To realise Joker1[4], we start with an unstable complex S3 ∪η3 e5 ∪2 e
6 which exists

since the suspension of the Hopf map S3 → S2 gives an element η3 ∈ π4(S3) of order 2,
see [17, Chapter V]. Smashing with the Moore space S1 ∪2 e

2 we obtain a CW com-
plex X ′ whose cohomology as an A(1)-module realises the 4-fold suspensions of the
‘whiskered Joker’ module

•

Joker′ = A(1)/A(1){Sq2 Sq1 Sq2} = A(1)/A(1){Sq2 Sq3}. •

Sq2

•

•

•
Sq1

•

Labelling cells and cohomology generators in the obvious way, X ′ has the following
cell diagram.
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x6 x6y2

x5 ∧ y2

∼

x5y2 x6y1 + x5y2

y1 x5y1

x3 x3y2

x3y1

Sq4

Notice that as well as the Sq1 and Sq2 actions we also have Sq4(x3y1) = x6y2 so this
agrees with Joker′1[4] as an A-module.

We will begin by showing that there is a factorisation

X ′ //
))

kO7
// K(F2, 7)

of the map classifying x6y1 + x5y2 ∈ H7(X ′). We will do this by producing a map of
spectra Σ∞X ′ → Σ7kO by dualising a map

S1 → kO ∧ Σ8DΣ∞X ′ ∼ kO ∧W ′′,

where D denotes Spanier-Whitehead dual and W ′′ is a CW spectrum whose coho-
mology realises the dual whiskered Joker A(1)-module Joker′′1 = DJoker′1 shown in
the following diagram.

4 •

•

•

Sq2•
Sq1

•1

0 •

Since we are interested in elements of π1(kO ∧W ′′), we need to consider the t− s = 1
column in the Adams spectral sequence

Es,t2 = Exts,tA (H∗(kO ∧W ′′),F2) ∼= Exts,tA(1)(H
∗(W ′′),F2) =⇒ πt−s(kO ∧W ′′)

and a portion of the E2-term is shown in Figure 1. As the generator in E0,1
2 cannot

support a differential there is a non-trivial element of π1(kO ∧W ′′) detected in the
zero line by the only A(1)-indecomposable element of H1(W ′′). Hence there is a dual
element of kO7(X ′) with the desired properties.

Now take a minimal CW complex equivalent to the fibre of the map X ′ → kO7

and let X4 be its 8-skeleton. By a straightforward calculation with either of the
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Serre or Eilenberg-Moore spectral sequences and making use of the kO results of
Examples A.3, we find that H∗(X) realises the A-module Joker1[4].

0 1 2 3 4
0

4

8

Figure 1: Exts,tA(1)(Joker′′,F2): 0 6 s 6 4 and 0 6 t− s 6 4.

Theorem 5.2. There are finite 2-local CW complexes Y4 and Y8 such that as A-
modules,

H̃∗(Y4) ∼= Joker(2)∗0[4], H̃∗(Y8) ∼= Joker(2)∗1[8].

Proof. A similar construction to that of X2 starting with BSU(3) leads to an unstable
realisation of Joker(2)0[4].

We will realise Joker(2)1[8] using a similar approach to that for X4. By Toda [17,
Proposition 5.8], π10(S6) is trivial, so the suspensions of the Hopf maps give elements
η9 ∈ π10(S9) and ν6 ∈ π9(S6) which satisfy

0 = ν6 ◦ η9 ∈ π10(S6).

Hence we can form S5 ∪ν5 e9 ∪η9 e11 and S3 ∪η3 e5. By smashing these together we
obtain a CW complex

Y ′ = (S5 ∪ν5 e9 ∪η9 e11) ∧ (S3 ∪η3 e5),

whose cohomology realises the A-module with non-trivial Sq8-action and is the 8-fold
suspension of the whiskered double Joker cyclic A(2)-module

Joker(2)′1 = A(2)/A(2){P0
1,P

1
1,P

1
2,Sq4 Sq6}.

16 •

• •14

Joker(2)′1[8] •

Sq4•
Sq2

8 •

We would like to define a map Y ′ → tmf14 so that the cohomology class in H14(tmf14)
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carried on the bottom cell is mapped to Sq2 Sq4 y8 by the induced homomorphism,
where y8 ∈ H8(Y ) is the generator. Such a map corresponds to a map of spectra
Σ∞Y ′ → Σ14tmf or equivalently a map

S0 → Σ14(DΣ∞Y ′) ∧ tmf ∼ Σ−2Z ′′ ∧ tmf,

where Z ′′ is a CW spectrum whose cohomology realises the other whiskered double
Joker A(2)-module Joker(2)′′1 shown in the following diagram.

8 •

•

•

Sq4•
Sq2

•2

0 •

Since we are interested in elements of π2(tmf ∧ Z ′′), we need to consider the t− s = 2
column in the Adams spectral sequence

Es,t2 = Exts,tA (H∗(tmf ∧ Z ′′),F2) ∼= Exts,tA(2)(H
∗(Z ′′),F2) =⇒ πt−s(tmf ∧ Z ′′)

and a portion of the E2-term is shown in Figure 2. As the generator in E0,2
2 cannot

support a differential this shows that there is a suitable element of π2(tmf ∧ Z ′′) and
hence of tmf14(Y ′).

Now consider the fibre of the above map Y ′ → tmf14. By a spectral sequence calcu-
lation and making use of the tmf results of Examples A.3 we see that its cohomology
agrees with Joker(2)1[8] up to degree 21. The 16-skeleton of a minimal CW reali-
sation of this fibre is a CW complex Y8 whose cohomology as an A-module agrees
with Joker(2)1[8].

0 4 8
0

4

8

Figure 2: Exts,tA(2)(Joker(2)′′,F2): 0 6 s 6 5 and 0 6 t− s 6 8.
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It is unclear how to realise Joker(3)0[8] since there is no obvious analogue ofBSO(3)
and BSU(3) which appears relevant. Similarly, our argument for X4 and Y8 has no
obvious generalisation since because of the non-existence of suitable elements of Hopf
invariant 1 there is no spectrum playing an analogous rôle to kO and tmf in the last
steps.

Concluding remarks

The appearance of the elements of Kervaire invariant 1 in our realisations of Joker
modules raises the question of whether there other A(n)-modules which admit reali-
sations when θn exists, i.e., when n = 4, 5 and possibly 6. In particular, by [20, The-
orem 5.2],

{θ4} = 〈2, σ2 + κ, 2σ, σ〉,

while older work of Barratt, Mahowald and Tangora, and Kochman shows that

{θ4} = 〈2, σ2, 2, σ2〉 = 〈2, σ2, σ2, 2〉 = 〈2σ, σ, 2σ, σ〉 = 〈2, σ2, 2σ, σ〉.

These suggest the intriguing possibility that appropriate constructions associated
with such 4-fold Toda brackets might lead to realisation results for some interest-
ing A(4)-modules.

Appendix A. Some connectivity results

Let p be a prime and let f : X → Y be a map between two finite type p-local
connective spectra or spaces which are simply connected or at least have abelian
fundamental groups.

Recall that f is called an n-equivalence if f∗ : πk(X)→ πk(Y ) is an isomorphism
for k < n and an epimorphism if k = n; this is equivalent to the mapping cone Cf
being n-connected. It is well-known that the following are also equivalent conditions:

• f∗ : Hk(X;Z(p))→ Hk(Y ;Z(p)) is an isomorphism if k < n and an epimorphism
if k = n.

• f∗ : Hk(X;Fp)→ Hk(Y ;Fp) is an isomorphism if k < n and an epimorphism if
k = n.

The next result relates connectivity information for spectra and their associated
infinite loop spaces. Although such results are undoubtedly standard we are not aware
of convenient references and we use them to establish Examples A.3.

We will denote the m-th space in a spectrum X by Xm = Ω∞ΣmX. If f : X → Y
is a map of (−1)-connected spectra then for each m > 0 there is an induced infinite
loop map fm : Xm → Y m.

Lemma A.1. Let f : X → Y be an n-equivalence. Then for each m > 1, fm : Xm →
Y m is an m+ n-equivalence, hence (fm)∗ : Hk(Xm;Fp)→ Hk(Y m;Fp) is an isomor-
phism if k < m+ n and an epimorphism if k = m+ n.

Here is a sample application; we only state this for the prime 2, but a similar result
also holds for odd primes.
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Corollary A.2. Take p = 2 and let X be a (−1)-connected spectrum and suppose
that π0(X) is a cyclic Z(2)-module with generator given by a map j : S0 → X. If j is
an n-equivalence then for each m > n, and m < k 6 m+ n,

Hk(Xm;F2) = 0.

Proof. Recall that for m > 1, the homology of S0
m = QSm is given by

H∗(QS
m;F2) = F2[QIxm : I admissible, exc(I) > m],

where xm ∈ Hm(QSm;F2). Thus the three elements of lowest positive degree are xm,
x2
m and Q2m+1xm in degrees m, 2m > m+ n and 2m+ 1 > m+ n respectively.

The infinite loop map jm induces an algebra homomorphism (jm)∗ over the Dyer-
Lashof algebra. By assumption on j,

(jm)∗ : Hk(QSm;F2)→ Hk(Xm;F2)

is an isomorphism when k < m+ n and an epimorphism when k = m+ n.

Thus the lowest degree non-zero element of H∗(Xm;F2) not in the image of (jm)∗
occurs in some degree k0 > m+ n+ 1 where k0 −m is also the smallest degree for
which

coker[j∗ : Hk(S0;F2)→ Hk(X;F2)] 6= 0.

Examples A.3. We set H∗(−) = H∗(−;F2).
Recall that

H∗(kO) = F2[ζ4
1 , ζ

2
2 , ζ3, . . .] ⊆ A∗, H∗(tmf) = F2[ζ8

1 , ζ
4
2 , ζ

2
3 , ζ4, . . .] ⊆ A∗.

Thus on H∗(−) the units jkO : S → kO and jtmf : S → tmf induce homomorphisms
whose cokernels coker jkO

∗ and coker jkO
∗ have non-zero elements of lowest degrees 4

and 8 respectively. Thus jkO is a 3-equivalence and jtmf is a 7-equivalence.
For 4 6 m < k 6 m+ 3,

Hk(kOm) = 0,

while for 8 6 m < k 6 m+ 7,

Hk(tmfm) = 0.

The results for kO can also be deduced from work of Dena Cowen Morton [8]
but as far as we know the algebra structure of the Hopf ring for tmf has not been
determined.

References

[1] J.F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of
Math. (2) 72 (1960), 20–104.

[2] J.F. Adams and S.B. Priddy, Uniqueness of BSO, Math. Proc. Cambridge Philos.
Soc. 80 (1976), 475–509.

[3] A.J. Baker and J.P. May, Minimal atomic complexes, Topology 43 (2004),
645–665.



360 ANDREW BAKER

[4] P. Bhattacharya and N. Ricka, The stable Picard group of A(2) (2017), available
at arXiv:1702.01493.

[5] R.R. Bruner and J.P.C. Greenlees, Connective Real K-Theory of Finite Groups,
Math. Surveys Monogr., vol. 169, American Mathematical Society, 2010.

[6] M. Catanzaro, Finitely Presented Modules over the Steenrod Algebra in Sage,
MA thesis, Wayne State University, 2011, http://www.math.wayne.edu/~mike/
mods/Essayfinal.pdf.

[7] J.M. Cohen, The decomposition of stable homotopy, Ann. of Math. (2) 87 (1968),
305–320.

[8] D.S. Cowen Morton, The Hopf ring for bo and its connective covers, J. Pure
Appl. Algebra 210 (2007), 219–247.

[9] D.M. Davis and M. Mahowald, v1 and v2-periodicity in stable homotopy theory,
Amer. J. Math. 103 (1981), 615–659.

[10] V. Giambalvo and D.J. Pengelley, The homology of MSpin, Math. Proc. Cam-
bridge Philos. Soc. 95 (1984), no. 3, 427–436.

[11] M.J. Hopkins, Some Problems in Topology, PhD thesis, University of Oxford,
1984.

[12] M. Mahowald, bo-resolutions, Pac. J. Math. 92 (1981), 365–383.

[13] M. Mahowald and R.J. Milgram, Operations which detect Sq4 in connective K-
theory and their applications, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 108,
415–432.

[14] H.R. Margolis, Spectra and the Steenrod Algebra: Modules over the Steenrod Alge-
bra and the Stable Homotopy Category, North-Holland, 1983.

[15] A. Mathew, The homology of tmf, Homology Homotopy Appl. 18 (2016), 1–29.

[16] R.E. Mosher and M.C. Tangora, Cohomology Operations and Applications in
Homotopy Theory, Harper & Row, 1968.

[17] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math.
Stud., vol. 49, Princeton University Press, 1962.

[18] C.T.C. Wall, Generators and relations for the Steenrod algebra, Ann. of Math.
72 (1960), 429–444.

[19] G.W. Whitehead, Recent Advances in Homotopy Theory, CBMS Reg. Conf. Ser.
Math., vol. 5, American Mathematical Society, 1970.

[20] Z. Xu, The strong Kervaire invariant problem in dimension 62, Geom. Topol. 20
(2016), 1611–1624.

Andrew Baker a.baker@maths.gla.ac.uk

School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QW,
Scotland http://www.maths.gla.ac.uk/∼ajb


