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Historical and mathematical motivations
I Freudenthal suspension theorem: For a based space X and

finite CW complex Z , there is a k � 0 such that

{Z ,X} = colim
`

[Σ`Z ,Σ`X ] ∼= [ΣkZ ,ΣkX ]

In particular, for n ∈ Z and k � 0,

πSn(X ) = {Sn,X} = colim
`

πn+`(Σ`X ) ∼= πn+k(ΣkX ).

Suggests forming a homotopy category with objects formed
from sequences X = (Σ`X )`∈Z and at least when Z is a finite
CW complex, morphisms Z → X being elements of {Z ,X}.

I Spanier-Whitehead duality: For a finite CW complex X , an
embedding j : X ↪→ Sn+1 has a complementary subspace DjX
which depends on j up to homotopy. However, for k � 0, up
to homotopy equivalence Σk−nDjX is independent of j , so the
Spanier-Whitehead dual DX = Σ−nDjX would be a
well-defined object in the above homotopy category.



I Brown representability: Every reasonable cohomology theory
h∗ defined on based CW complexes is representable. This
means that there is a sequence of spaces (En)n∈Z for which
there is a natural isomorphism hn(−) ∼= [−,En] and
furthermore the suspension isomorphisms hn(−) ∼= hn+1(Σ−)
correspond to weak equivalences En ∼ ΩEn+1. The sequence
(En)n∈Z should be a spectrum and a morphism
(En)n∈Z → (Fn)n∈Z between two such objects should
correspond to a natural transformation of cohomology
theories.

I Products in (co)homology theories: These should arise from
‘smash products’ (En)n∈Z ∧ (Fn)n∈Z extending the usual space
level smash products Em ∧ Fn. So a good category of spectra
should have such smash products.

Early history of spectra (< 1975): Lima/Spanier, Kan,
G. Whitehead, Atiyah, Boardman/Vogt/Adams.



Modern categories of spectra (> 1990)

I EKMM: first categories of spectra with strictly monoidal
smash product (S-modules).

I Symmetric spectra.

I Orthogonal spectra.

I Diagram spectra.

I Equivariant spectra.

Properties

I Stable monoidal model category structures allowing passage
to homotopy categories and triangulated structures.

I Monoids and commutative monoids equivalent to A∞ and E∞
ring spectra giving relative module categories. Multiplicative
(co)homology theories have spectral sequences for calculations
based on homological algebra of homotopy rings.

I Bousfield localisation works well.



Some examples

Let MS be the category of (left) S-modules. There is a symmetric
monoidal smash product ∧ = ∧S on this, with unit S . The
homotopy/derived category DS inherits a derived smash product
∧. There is also a function object F (−,−) = FS(−,−).
A commutative monoid (aka commutative ring spectrum)
R ∧ R → R has left R-modules M which are equipped with
suitably associative and unital products µM : M ∧ R → M. For two
R-modules M and N there is a coequaliser diagram

M ∧ R ∧ N
µM //
µN
// M ∧ N // M ∧R N

which defines the relative smash product. The category of
R-modules MR is also a symmetric monoidal model category with
homotopy category DR . There is also a relative function object
FR(−,−) defined by an equaliser diagram.



Algebraic Bousfield localisation: For such a commutative ring
spectrum R, given u ∈ Rd = πd(R), there is a commutative ring
spectrum R[u−1] with π∗(R[u−1]) = R∗[u

−1]. This extends to an
R-module M by setting M[u−1] = R[u−1] ∧R M so that

π∗(M[u−1]) = π∗(M)[u−1].

Homology and cohomology theories can be defined on DR by
setting

ER
∗ (−) = π∗(E ∧R −), E ∗R(−) = π−∗(FR(−,E )).

Versions of Brown representability are true.
Bousfield localisations exist for such homology theories and
preserve commutative ring spectra. However, the resulting
localised module categories may not have the obvious smash
products. For example, localisation with respect to HFp for p a
prime is essentially p-adic completion (−)p̂. The category of
p-complete S-modules has smash product given by

(M ∧Ŝp N)p̂ = (M ∧ N)p̂.



Cohomology operations and homology cooperations

A cohomology theory E ∗R(−) has a ring of operations E ∗R(E ). For
example, when R = S and E = H = HFp this is the Steenrod
algebra A = A(p)∗. This acts on the left of E ∗R(X ) for any
R-module X , and also on the left of ER

∗ (X ). Warning: in general,
these actions are not E∗ = π∗(E )-linear.
Usually E ∗R(E ) has to be thought of as a topological ring and
E ∗R(X ) as a topological E∗-module; then the action of E ∗R(E ) is
continuous. This led to the dual viewpoint becoming standard.
Assuming that ER

∗ (E ) is E∗-flat, ER
∗ (X ) is naturally a right

ER
∗ (E )-comodule. Under suitable finiteness conditions, there is a

strong relationship between the left action of E ∗R(E ) and the
ER
∗ (E )-coaction. Here ER

∗ (E ) is a Hopf algebroid since there are
two E∗-module structures which need not agree but are
interchanged by the antipode. Similarly, E ∗R(E ) is an R∗-algebra
which has two E∗-module structures.



When R = S and E = H = HFp everything is as simple as possible
and H∗(H) = A∗ is a commutative Hopf algebra over E∗ = Fp; of
course H∗(H) = A is a cocommutative Hopf algebra.
Consider the case of H∗(RP∞) = H∗(RP∞;F2). The action of A
on H∗(RP∞) = H∗(RP∞;F2) = F2[z ] is given by

Sqrzs =

(
s

r

)
z r+s .

If an ∈ Hn(RP∞) is dual to zn then the left action is determined by

χ(Sqr )at =

(
t − r

r

)
at−r .

Here A∗ = F2[ζ1, ζ2, . . .] with ξk ∈ A2k−1 and the coproduct is

ψζn = ζn ⊗ 1 +
n−1∑
i=1

ζi ⊗ ζ2
i

n−i + 1⊗ ζn.

The coaction H∗(RP∞)→ H∗(RP∞)⊗A∗ is given by

ψan = an ⊗ 1 +
n−1∑
i=1

ai ⊗ [ζ(T )i ]T n , ζ(T ) =
∞∑
i=0

ζiT
2i .



BP for a prime p
The Thom spectrum MU turns out to be very important not least
because MU∗ = π∗(MU) has an algebraic universality property
connected with formal group laws. For a prime p there is an
idempotent self map of MU(p) which defines the Brown-Peterson
spectrum BP and gives a good hold on BP∗BP. Here are some
important facts.

BP∗ = Z(p)[vi : i > 1], |vi | = 2(pi − 1), v0 = p.

BP∗BP = BP∗[ti : i > 1], |ti | = 2(pt − 1), t0 = p;

There are lots of recursive formulae for the coproduct and antipode
and explicit choices for the generators vi and ti .
There is a map of homotopy ring spectra BP → H = HFp which
induces a ring homomorphism BP∗BP → H∗ = A∗ with

vi 7→ 0, ti 7→ ζi .



Lubin-Tate and Morava K -theories
For each prime p and n > 1 there is a commutative ring spectrum
En (the n-th Lubin-Tate spectrum for p) with homotopy ring

(En)∗ = π∗(En) = W(Fpn)[[u1, . . . , un−1]][u, u−1]

where ui ∈ (En)0 and u ∈ (En)2. There is also a ring spectrum Kn

(not even homotopy commutative when p = 2) which is an algebra
over En and has homotopy ring

(Kn)∗ = π∗(Kn) = Fpn [u, u−1].

So Kn is a kind of residue (skew) field for En. In fact En is Kn-local.
The operation algebra E ∗n (En) is a kind of ‘twisted pro-group ring’
for a certain p-adic Lie group Gn which acts continuously on
(En)∗. The correct dual object is

En
∨
∗En = π∗(LKn(En ∧ En)).

An easier object to think about is the original ‘Morava stabiliser
algebra’ whose degree 0 part is a Hopf algebra over Fpn :

(Kn)0(En) = Fpn [ti : i > 1]/(tp
n

i − ti : i > 1).



Adams(-Novikov) spectral sequences
This construction works for any R so we’ll leave it out of notation
or take R = S .
For a spectrum X want to calculate π∗(X ) or more generally
D(Y ,X )∗. Let E be a homotopy commutative ring spectrum and
let E be the cofibre of the unit S → E .
Form a resolution

X0

!!

X1◦oo

!!

X2◦oo

!!

X3◦oo · · ·oo

W0

==

W1

==

W2

==

where X0 = X , Ws = E ∧ Xs and so Xs+1 = E ∧ Xs . Notice that
for each s, the unit map is split by multiplication.

π∗(E ∧ Xs)
unit∧1// π∗(E ∧ E ∧ Xs)

��
π∗(E ∧ Xs)



The maps

X Σ−1X1
oo Σ−2X2

oo Σ−3X3
oo · · ·oo

induce a filtration on π∗(X ) and there is an associated spectral
sequence.
If we assume that E∗E = E∗(E ) is E∗-flat then the E2-term has an
algebraic form, namely

Es,t
2 (X ) = Exts,tE∗E

(E∗,E∗X ),

where the Ext is calculated in the category of right E∗E -comodules
using weakly injective resolutions.
Under enough assumptions we can replace E∗E -comodules with
E ∗E -modules and even replace homology with cohomology. For
example, when E = H = HFp we can take

Es,t
2 (X ) = Exts,tA (H∗X ,Fp).

In general convergence is a complicated issue, but in good
situations the target is π∗(XE ), the homotopy of the Bousfield
E -localisation of X , XE .



Lubin-Tate spectra

For the Lubin-Tate spectrum En and related ring spectra, the
Adams E∗,∗2 (X ) can be interpreted as continuous group
cohomology. Here the target is π∗(XKn) and the input is

E∨n X = π∗((En ∧ X )Kn)

which for finite X is a topological (En)∗-module on which the
Morava stabiliser group Gn acts continuously. Then

Es,t
2 (X ) ∼= Hs

c(Gn;E∨t X ) =⇒ πt−s(XKn),

where for a profinte group G and a topological G -module M,
H∗c(G ;M) is continuous cohomology of a topological G -module;
when M is discrete this agrees with Galois cohomology

H∗c(G ;M) = colim
NCG
|G :N|<∞

H∗c(G/N;MN).


