Power operations in completed K-theory

Andrew Baker (University of Glasgow)

92nd Transpennine Topology Triangle 17th July 2014

arXiv:1406.5620

last updated 22/07/2014

Let *p* be a prime, and let $K = KU_{(p)}$ be the *p*-localisation of *KU*. This gives rise to a homology theory $K_*(-) = \pi_*(K \wedge -)$. Then *p*-completed *K*-theory is the covariant homotopy functor defined by

$$\mathcal{K}^{\vee}_{*}(-) = \pi_{*}\bigg((\mathcal{K} \wedge -)_{p}\bigg).$$

In practise we replace the \mathbb{Z} -grading by a $\mathbb{Z}/2$ -grading, to obtain $K_{\bullet}^{\vee}(-)$. This takes values in \mathbb{Z} -graded *L-complete* \mathbb{Z}_p -modules. Here the covariant endofunctors L_s ($s \ge 0$) on \mathbb{Z}_p -modules are the left derived functors of *p*-adic completion, and the \mathbb{Z}_p -module *M* is said to be *L-complete* if the natural homomorphism $M \to L_0 M$ is an isomorphism. The symmetric monoidal abelian category of all *L*-complete $\mathbb{Z}/2$ -graded \mathbb{Z}_p -modules will be denoted by \mathcal{M} . The cooperation algebra $K_*(K)$ is known to satisfy $K_{\text{odd}}(K) = 0$, and $K_0(K)$ is free as a left or right $K_0 = \mathbb{Z}_{(p)}$ -module, hence $K_{\bullet}^{\vee}(K) = K_{\bullet}(K)_p^{\frown}$ is *pro-free*. Because pro-free *L*-complete \mathbb{Z}_p -modules are flat on \mathcal{M} , the left $K_*(K)$ -coaction on $K_*(-)$ extends to a coaction

$$K^{\vee}_{\bullet}(-) \to K^{\vee}_{\bullet}(K)\widehat{\otimes}K^{\vee}_{\bullet}(-).$$

This is dual to a continuous action of the pro-group ring $\mathbb{Z}_p[\![\mathbb{Z}_p^{\times}]\!]$ via Adams operations indexed on the *p*-adic units \mathbb{Z}_p^{\times} .

$$egin{aligned} &\mathcal{K}_0(\mathcal{K}) = \{f(w) \in \mathbb{Q}[w,w^{-1}] : f\mathbb{Z}_{(p)}^{ imes} \subseteq \mathbb{Z}_{(p)}\} \ &= \{f(w) \in \mathbb{Q}[w,w^{-1}] : f\mathbb{Z}_p^{ imes} \subseteq \mathbb{Z}_p\}, \end{aligned}$$

and

$$\mathcal{K}_0^{\vee}(\mathcal{K}) = \operatorname{Cont}(\mathbb{Z}_p^{\times}, \mathbb{Z}_p).$$

This is complete with respect to the *p*-adic sup-norm. Here we can view *w* as the inclusion function $\mathbb{Z}_p^{\times} \to \mathbb{Z}_p$. There is an continuous operation

$$\Theta \colon {\mathcal K}_0^{ee}({\mathcal K}) o {\mathcal K}_0^{ee}({\mathcal K}); \quad \Theta(f) = rac{f-f^p}{p}.$$

We define a sequence of elements θ_n $(n \ge 0)$ by $\theta_0 = w$ and for $n \ge 1$,

$$\theta_n = \Theta(\theta_{n-1}).$$

Then the monomials $\theta_0^{r_0} \theta_1^{r_1} \cdots \theta_{\ell}^{r_{\ell}}$ with $r_j = 0, 1, \dots, p-1$ form a topological basis for $K_0^{\vee}(K)$.

Power operations

The spectra KU, K, K_p^{\sim} are all E_{∞} ring spectra and so their associated homology theories admit power operations. McClure/Barthels-Frankland: There is a power operation $Q: K_{\bullet}^{\vee}(-) \rightarrow K_{\bullet}^{\vee}(-)$ defined on the functor $K_{\bullet}^{\vee}(-)$ on E_{∞} (or H_{∞}) ring spectra and enjoying various properties including the following.

If
$$|x| = |y| = 0$$
,

$$Q(x + y) = Qx + Qy - \sum_{1 \le r \le p-1} \frac{1}{p} {p \choose r} x^r y^{p-r},$$

$$Q(xy) = y^p Qx + x^p Qy + Qx Qy.$$
If $a \in \mathbb{Z}_p^{\times}$ and $|x| = 0$,

$$\psi^a Qx = Q(\psi^a x),$$

$$Q(ax) = a Q(x) + \frac{(a - a^p)}{p} x^p.$$

Power operations on the cooperation algebra

For $a \in \mathbb{Z}_p^{\times}$, the action of ψ^a on $K_0^{\vee}(K) = \operatorname{Cont}(\mathbb{Z}_p^{\times}, \mathbb{Z}_p)$ satisfies, $\psi^a f = f(a^{-1}-),$

so for example,

$$\psi^a w^r = a^{-r} w^r.$$

Theorem

The action of Q on $K_0^{\vee}(K)$ is given by

$$Qf = \frac{(f-f^p)}{p} = \Theta(f).$$

This gives the iteration $\theta_0 = w$, and for $n \ge 0$,

$$Q \theta_n = \theta_{n+1}.$$

The operator Q makes $K_0^{\vee}(K)$ into a *p*-complete \mathbb{Z}_p - θ -algebra.

Theorem

The p-complete \mathbb{Z}_p - θ -algebra $K_0^{\vee}(K)$ is generated by the element w. Hence $K_0^{\vee}(K)$ is a quotient of a monogenic free p-complete \mathbb{Z}_p - θ -algebra,

$$\begin{split} & \mathcal{K}_0^{\vee}(\mathcal{K}) \cong \\ & \mathbb{Z}_p[\theta^s(x) : s \ge 0]_p^{\frown} \Big/ (((\theta^s(x))^p - \theta^s(x) + p\theta^{s+1}(x) : s \ge 0)). \end{split}$$

Completed K-theory of free algebras

For a spectrum X, the free algebra on X is

$$\mathbb{P} X = \bigvee_{r \ge 0} X^{(r)} / \Sigma_r.$$

The functor $\mathbb{P}: \mathcal{M}_S \to \mathcal{M}_S$ preserves pushouts so sends cell *S*-modules to cell commutative *S*-algebras/ E_{∞} ring spectra. In particular the two notions of skeleta correspond,

$$\mathbb{P}(X^{[n]}) = (\mathbb{P}X)^{\langle n \rangle}.$$

Theorem

If X has finitely many even dimensional cells, then $K_{\bullet}^{\vee}(X)$ is free on a finite basis of even degree elements x_i say, and

$$\mathcal{K}^{\vee}_{ullet}(\mathbb{P}X) = \mathbb{Z}_{\rho}[\mathbb{Q}^{s} x_{i} : s \ge 0, \ i]_{\rho}^{\frown}.$$

There is also a reduced free algebra functor $\widetilde{\mathbb{P}}: S^0/\mathscr{M}_S \to S^0/\mathscr{M}_S$ on the comma category under the cofibrant 0-sphere.

Suppose that $f: S^{2n-1} \to S^0$ is a map. We can form the classical mapping cone C_f and also the free algebras $\mathbb{P}C_f, \widetilde{\mathbb{P}}C_f$. We have

$$K_{\bullet}^{\vee}(C_f)=\mathbb{Z}_p\{x_0,x_{2n}\},\$$

and then

$$\begin{split} & \mathcal{K}_{\bullet}^{\vee}(\mathbb{P}C_{f}) = \mathbb{Z}_{p}[\mathbb{Q}^{s} x_{0}, \mathbb{Q}^{s} x_{2n} : s \geq 0]_{p}^{\frown}, \\ & \mathcal{K}_{\bullet}^{\vee}(\widetilde{\mathbb{P}}C_{f}) = \mathbb{Z}_{p}[\mathbb{Q}^{s} x_{2n} : s \geq 0]_{p}^{\frown}. \end{split}$$

If f has non-trivial e-invariant then there is a non-trivial coaction on x_{2n} .

Take p = 2 and let $f: S^1 \to S^0$ be the Hopf map η . Then in

$$K_0^{\vee}(C_f) = \mathbb{Z}_p\{x_0, x_2\},\$$

the coaction is

$$\Psi x_2 = \frac{1-w}{2} \otimes x_0 + w \otimes x_2.$$

If we introduce the elements

$$\Theta_0 = \frac{1-w}{2}, \quad \Theta_n = \Theta(\Theta_{n-1}),$$

then the monomials $\Theta_0^{r_0} \cdots \Theta_\ell^{r_\ell}$ with $r_j = 0, 1$ form a topological basis for $\mathcal{K}_0^{\vee}(\mathcal{K})$.

There is a map $C_{\eta} \to K$ which extends to a unique morphism of algebras $\widetilde{\mathbb{P}}C_{\eta} \to K$. In $K_0^{\vee}(-)$ we have $x_2 \mapsto \Theta_0$, hence

$$\mathsf{Q}^s x_2 \mapsto \mathsf{Q}^s \Theta_0 = \Theta_s.$$

It follows that this map of θ -algebras is surjective, and realises the quotient homomorphism from the free θ -algebra,

$$\mathbb{Z}_{2}[\theta^{s}(x):s \ge 0]_{2}^{\widehat{}} \longrightarrow$$
$$\mathbb{Z}_{2}[\theta^{s}(x):s \ge 0]_{2}^{\widehat{}} / (((\theta^{s}(x))^{2} - \theta^{s}(x) + 2\theta^{s+1}(x):s \ge 0)).$$

Similar results apply on replacing η by ν , and for p odd, by α_1 .