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P-algebras

Let k be a field. A graded cocommutative Hopf algebra A = A* is
a P-algebra if
> it is connected (i.e., A” =0 if n <0 and Al = k);
> finite type;
» a union of finite dimensional subHopf algebras A(n) = A(n)*
where A(n) C A(n+1).

Here each A(n) is a Poincaré (duality) algebra and A(n+1) is a
free left/right A(n)-module.

Theorem

Let A be P-algebra.

(a) A is a free and injective left/right A(n)-module.

(b) A is a coherent k-algebra.

(c) A is self-injective. More generally, every bounded below free
module is injective.
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More properties

Every coherent A-module M is finitely presented and there is a
finite presentation
Pir—Py—+ M—=0

which is induced up from a finite presentation
Pl — Py — M =0

of a finitely generated A(m)-module for some m, so there is an
exact sequence

A ®A(m) P — A ®A(m) Py — M — 0.

Similarly, every homomorphism M — N between coherent
A-modules are induced up from homomorphisms between finitely
generated A(n)-modules for some n.
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Proposition

Let M be a coherent A-module. Then there is an embedding of M
into a finitely generated free A-module which is also injective.
Hence M has an injective resolution by finitely generated free
A-modules.

Proof.

Let My be a finitely generated A(n)-module with M = A® 4,y Mp.
By a standard result My — F where F is a finitely generated free
A(n)-module, so M = A® () Mo — A®a(n) F is a monic since A
is A(n)-flat. O
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An A-module is called finite if it is finite dimensional over k.

Proposition
Let M be a finite A-module and N an A-module.
» If N is bounded below and free, then

Exth(M, N) = Homa(M, N) = 0;
» If N is coherent, then

Ext’y,(M, N) = 0.
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Proof.

Since bounded below free modules are injective, Ext3(M, N) =0
when s > 0, so it suffices to show that Homa(M, A) = 0. For this,
note that the image of a non-trivial homomorphism must lie in
some A(n) and have a highest degree element. But also

A(n) C A(n+ 1) and so by Poincaré duality there is a non-trivial
product with an element of A(n+ 1).

For the other part use an injective resolution of N consisting of
finitely generated free modules. O

Note: This proof exploits a special case of the following general

property of a P-algebra: for each non-zero a € A there are positive
degree elements u, v for which ua, av are non-zero.
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P.-algebras

A P,-algebra A, is the degree-wise dual of a P-algebra A, i.e.,
An = Homg (A" k). It inherits the structure of a commutative
Hopf algebra.

Every left A.-comodule M, is naturally a right A-module, but we
can also dualise it to give a left A-module M* where

M" = Homy(M,, k).

A A.-comodule M, is coherent if M* is a coherent A-module.
Because we have assumed A and A, are finite type, Ay is a
projective A,-comodule. Furthermore, every coherent comodule
admits a projective comodule resolution by finitely generated
cofree comodules.
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Proposition
Let M, be a finite A.-comodule and N, an A.-comodule.
» If N, is bounded below and cofree, then

Coexty, (Ns, M,) = Cohom} (N, M,) =0;
» I/f N, is coherent, then

Coexty (N,, M,) =0.

We will need some ‘change of rings’ spectral sequences for
computing such Coext groups. It is well known that

Coext} (N, —) is computable using injective resolutions where a
comodule is injective if it is a retract of a cofree comodule

A, ® W. Usually projective comodules are not available for infinite
dimensional A, although we have seen that in certain situations
they may exist. In general this means that Coext) (—,—) is not a
balanced functor.
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Let ModuA’f't' denote the category of finite type bounded below
homologically graded A*-modules (with A* acting by decreasing
degree), Modi{f't' denote the category of finite type bounded
below cohomologically graded A*-modules and Mod 4+ denoting
the category of all A*-modules. There is a commutative diagram
of functors in which all functors are exact.

MOd?A’*f't'
/) - Her

Comodi{f't' P — (Modl;if't')op

(=)~
\) i
Mod%i

So in the case of finite type bounded below comodules we can set
Coext) (Ny, M,) = Extj. (M*, N*)
where Ext}.(—, —) is a balanced bifunctor on Moda+. There are

four Cartan-Eilenberg spectral sequences for computing this, two
depending on injective resolutions and two on projective ones.
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Cartan-Eilenberg spectral sequences

There are two ways to set up Cartan-Eilenberg spectral sequences
for computing Exts(M, N) where R - S — S//R=S5S®rkis a
normal sequence of Hopf algebras over a field k and S is a free
R-module. For a left S//R-module L and a left S-module M there
is a spectral sequence

B3 = Ext}) (L, Exti(k, M)) = Extg™(L, M)

For left S-module M and left S//R-module N there is a spectral
sequence

E5" = Extgp(Tork(k, M), N) = Extg"(M, N).

These can be defined as composite functor spectral sequences using
injective and projective resolutions of M and standard adjunctions

Homs(L, —) = Homs/r(L, Homg(k, —)),
HOms(—, N) = HomS//R(k®R (_)7 N)
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For the comodule version, suppose K\\H — H — K, is a sequence
of commutative Hopf algebras over k, where

K\\H = kOxH = HOkk C H.
There are adjunctions
Cohompy(M, —) = Homk\\ y(M, kOk(—)),
Cohomy(—, N) = Homg(kOk(—), N).

Let M be a left K\\H-comodule and N a left H-comodule. Then
there is a spectral sequence

Ey" = Coextjey (M, Cotorj(k, N)) = Coext} (M, N).

If N is a trivial K-comodule then

St~ s t K\\H
E;" = Coextjy y(M, Cotory (k,k) A N).

C
Here U A V indicates the tensor product of two comodules over a
commutative Hopf algebra C with diagonal coaction
UV = (Cal)(CaV) 3 CeCalaV s Calr V.



Let M be a left H-comodule which admits a projective resolution
and let N be a left K\\H-comodule. There is a spectral sequence

Ey" = Coextjy (Cotorf(k, M), N) = Coext/ (M, N).

If M is a trivial K-comodule then

St~ s t K\\H
E;" = Coextj y(Cotory (k, k) A M, N).

The condition that M admits a projective resolution is crucial;
when H is a P,-algebra it is satisfied by a coherent comodule M.
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Topological examples

For each prime p, the mod p Steenrod algebra is a P-algebra.
When p = 2,

A= A(n)

n=0

where A(n) is the finite dimensional subHopf algebra generated by
Sqt,Sq?,...,Sq%", with

dim A(0) = 2, dim A(1) = 8, dim A(2) = 64,...

Many subHopf algebras and quotient Hopf algebras of A are
P-algebras; for example, the primitively generated subHopf algebra
& C A generated by the Milnor primitives.
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The dual Steenrod algebra

The commutative Hopf algebra A, is polynomial:
A =& r > 1) =TF[¢ : r > 1],

where &,,(, € Axr—1 and (, = x(&,). The coproduct and antipode

satisfy
Y= > &0 P)= Y o,
0j<n 0<j<n
= > &
1<k<n

The non-zero primitives are the elements ¢2° = (¥
The dual of A(n) is the quotient Hopf algebra

+1
A(n)* :A*/( f" ) 22na'~~aCr27+laCn+25-")
2n+1 on

2
:A*//F2[C1 1 52 7"'7Cn+17<n+27"']'



For each s > 0 there is a subHopf algebra
Ang) :F2[C1257 2257"'7 no- ] CA*

with dual A(s) = Af,) a quotient Hopf algebra of A. Each Ay is

a P-algebra and .Agf) is a P,-algebra.
There is also a family of finitely subHopf algebras

P =R, (T ..., 21 C P(oo)) = AL,

All of these are P,-algebras as are the quotients Alf //73( )(S)
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Some sample calculations

The Adams spectral sequence for calculating homotopy classes of
maps has the form

ESY(X,Y) = Coext;’ (Hi(X), Hi(Y)) = Y* H(X) = [X, Y] "

Here are some examples.
Take X = BP (the Brown-Peterson spectrum) and Y = S% where

H.(BP) = A and H,(S%) = F,. To calculate the Ep-term we

use a Cartan-Eilenberg spectral sequence

By’ = Coextl(*l) (AW, Cotor;*//A(*l) (Fp,Fp)) = COCXtiCt(ASgl),FQ).
Here we have suppressed the internal grading on Cotor®*(IF,, F3)

which is concentrated in * < 0. Since AS}) is projective over itself
E;’* = 0 when s > 0. Later we will show that Eg’t =0.
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Comparing some Bousfield classes

In his seminal paper on localization of spectra, Ravenel introduced
a family of ring spectra and maps

SO=Xo =X, =>Xo—---— BP
and showed that their Bousfield classes satisfied
(S%) = (Xo) > (X1) > (Xa) > -+ > (Xs) > (Xs41) > --- > (BP).

The proof requires showing that for example X(BP) = 0. Again
we can reduce this to showing that

Cohom (1)(AS< ), Cotor

AD () s (F2, F2)) = 0.

A/,
To do this we need to know more about Cotor AL AW w(F2,F>) as a
M /1P (n)M-comodule where 0 <
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We will focus on the case n = 0, the general case is similar. First

we recall that

Cotor*’*//A(l) (IF2, F2) = F2[qo, q1, 92, - - ]

*

1.2k+1_71 . .
@) Next we can determine the induced
AlJ/A

Agkl)//.Agz)—coaction: qo is primitive and for k > 1,

where g, € Cotor

1(ak) = €2 ® qo + 1 ® qi.

This means that we can filter each Cotor:’://Ag) (F2,172) by a finite

increasing sequence of subcomodules

A R T S
o<igt

where the coaction on Ft% /Ftk—1 is trivial.
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Now any non-zero Agl)//A(Q)—comodule homomorphism

AWM Cotor:’t*//A(l) (F2,F>) has to factor through a filtration
Ft:ko where ko is minimal. Hence we can compose with the
quotient homomorphism to find a non-trivial homomorphism

.Agﬁl) — Ftho JFtk0=1 and the project onto a suspension of F,. But
since ./49) is a cofree Agl)//A(z)—comodule over a P,-algebra, this
contradicts earlier results.
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Some new results

It is known that locally at 2, (MSp) > (BP).

Theorem
(% > (MSp) > (BP).
The proof that (MSp) > (BP) involves showing that

Coext’y" (H.(BP), H.(MSp)) = 0

and this reduces to showing that

Cohom , (.A .AS? /\ Cotor® ) (F2,F2)) =0

A ) AD
and this can be reduced to the vanishing of

Cohom (./45< ),.A( )DA(U//A(z) COtOFA /] A 4 (FQ,FQ))

AW , Cotor

AW

o~ CohomAg)//A(*z)( A*//A(U(F%Fz))-
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The proof that (S%) > (MSp) is harder because it involves the
vanishing of

(AP Cotor (Fy, F>))

Cohom A ) AD

AP
and this can be done by reducing to

Cohom (AP Cotort (F2,T2))

A a9 A f]AD
and defining a suitable filtration on the A&l)//A£3)—comoduIe

Cotori‘*//A(*z) (Fo,F2). This requires analysis of the

AN 17 4B _comodules Cotor;*//Ag})(Fz,Fz) and

Cotor;g)//As(z) (Fz, Cotori‘* //As(l) (Fz, FQ))
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