Duals of P-algebras and their comodules

Bilkent Topology Seminar (26th April 2021)

Printable version
พพw.maths.gla.ac.uk/~ajb/dvi-ps/Talks/Bilkent2021.pdf
See also arXiv:2103.01253

Andrew Baker, University of Glasgow

last updated 26/04/2021

Some references

- J. C. Moore \& F. P. Peterson, Nearly Frobenius algebras, Poincaré algebras and their modules, J. Pure Appl. Algebra, 3 (1973), 83-93.
- H. R. Margolis, Spectra and the Steenrod Algebra: Modules over the Steenrod algebra and the stable homotopy category, North-Holland, (1983).

P-algebras

Let \mathbb{k} be a field. A graded cocommutative Hopf algebra $A=A^{*}$ is a P-algebra if

- it is connected (i.e., $A^{n}=0$ if $n<0$ and $A^{0}=\mathbb{k}$);
- finite type;
- a union of finite dimensional subHopf algebras $A(n)=A(n)^{*}$ where $A(n) \subset A(n+1)$.
Here each $A(n)$ is a Poincaré (duality) algebra and $A(n+1)$ is a free left/right $A(n)$-module.

Theorem

Let A be P-algebra.
(a) A is a free and injective left/right $A(n)$-module.
(b) A is a coherent \mathbb{k}-algebra.
(c) A is self-injective. More generally, every bounded below free module is injective.

More properties

Every coherent A-module M is finitely presented and there is a finite presentation

$$
P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

which is induced up from a finite presentation

$$
P_{1}^{\prime} \rightarrow P_{0}^{\prime} \rightarrow M^{\prime} \rightarrow 0
$$

of a finitely generated $A(m)$-module for some m, so there is an exact sequence

$$
A \otimes_{A(m)} P_{1}^{\prime} \rightarrow A \otimes_{A(m)} P_{0}^{\prime} \rightarrow M \rightarrow 0
$$

Similarly, every homomorphism $M \rightarrow N$ between coherent A-modules are induced up from homomorphisms between finitely generated $A(n)$-modules for some n.

Proposition

Let M be a coherent A-module. Then there is an embedding of M into a finitely generated free A-module which is also injective. Hence M has an injective resolution by finitely generated free A-modules.

Proof.

Let M_{0} be a finitely generated $A(n)$-module with $M \cong A \otimes_{A(n)} M_{0}$. By a standard result $M_{0} \hookrightarrow F$ where F is a finitely generated free $A(n)$-module, so $M \cong A \otimes_{A(n)} M_{0} \hookrightarrow A \otimes_{A(n)} F$ is a monic since A is $A(n)$-flat.

An A-module is called finite if it is finite dimensional over \mathbb{k}.
Proposition
Let M be a finite A-module and N an A-module.

- If N is bounded below and free, then

$$
\operatorname{Ext}_{A}^{*}(M, N)=\operatorname{Hom}_{A}(M, N)=0 ;
$$

- If N is coherent, then

$$
\operatorname{Ext}_{A}^{*}(M, N)=0
$$

Proof.

Since bounded below free modules are injective, $\mathrm{Ext}_{A}^{s}(M, N)=0$ when $s>0$, so it suffices to show that $\operatorname{Hom}_{A}(M, A)=0$. For this, note that the image of a non-trivial homomorphism must lie in some $A(n)$ and have a highest degree element. But also $A(n) \subseteq A(n+1)$ and so by Poincaré duality there is a non-trivial product with an element of $A(n+1)$.
For the other part use an injective resolution of N consisting of finitely generated free modules.

Note: This proof exploits a special case of the following general property of a P-algebra: for each non-zero $a \in A$ there are positive degree elements u, v for which $u a, a v$ are non-zero.

P_{*}-algebras

A P_{*}-algebra A_{*} is the degree-wise dual of a P-algebra A, i.e., $A_{n}=\operatorname{Hom}_{\mathbb{k}}\left(A^{n}, \mathbb{k}\right)$. It inherits the structure of a commutative Hopf algebra.
Every left A_{*}-comodule M_{*} is naturally a right A-module, but we can also dualise it to give a left A-module M^{*} where $M^{n}=\operatorname{Hom}_{\mathbb{k}}\left(M_{n}, \mathbb{k}\right)$.
A A_{*}-comodule M_{*} is coherent if M^{*} is a coherent A-module. Because we have assumed A and A_{*} are finite type, A_{*} is a projective A_{*}-comodule. Furthermore, every coherent comodule admits a projective comodule resolution by finitely generated cofree comodules.

Proposition

Let M_{*} be a finite A_{*}-comodule and N_{*} an A_{*}-comodule.

- If N_{*} is bounded below and cofree, then

$$
\operatorname{Coext}_{A_{*}}^{*}\left(N_{*}, M_{*}\right)=\operatorname{Cohom}_{A_{*}}^{*}\left(N_{*}, M_{*}\right)=0 ;
$$

- If N_{*} is coherent, then

$$
\operatorname{Coext}_{A_{*}}^{*}\left(N_{*}, M_{*}\right)=0
$$

We will need some 'change of rings' spectral sequences for computing such Coext groups. It is well known that Coext ${ }_{A_{*}}^{*}\left(N_{*},-\right)$ is computable using injective resolutions where a comodule is injective if it is a retract of a cofree comodule $A_{*} \otimes W$. Usually projective comodules are not available for infinite dimensional A_{*}, although we have seen that in certain situations they may exist. In general this means that $\operatorname{Coext}_{A_{*}}^{*}(-,-)$ is not a balanced functor.

Let $\mathbf{M o d}_{A}^{\natural, \text { f.t. }}$ denote the category of finite type bounded below homologically graded A^{*}-modules (with A^{*} acting by decreasing degree), $\operatorname{Mod}_{A^{*}}^{\text {b, f.t. }}$ denote the category of finite type bounded below cohomologically graded A^{*}-modules and $\operatorname{Mod}_{A^{*}}$ denoting the category of all A^{*}-modules. There is a commutative diagram of functors in which all functors are exact.

So in the case of finite type bounded below comodules we can set

$$
\operatorname{Coext}_{A_{*}}^{*}\left(N_{*}, M_{*}\right)=\operatorname{Ext}_{A^{*}}^{*}\left(M^{*}, N^{*}\right)
$$

where $\operatorname{Ext}_{A^{*}}^{*}(-,-)$ is a balanced bifunctor on $\operatorname{Mod}_{A^{*}}$. There are four Cartan-Eilenberg spectral sequences for computing this, two depending on injective resolutions and two on projective ones.

Cartan-Eilenberg spectral sequences

There are two ways to set up Cartan-Eilenberg spectral sequences for computing $\operatorname{Ext}_{S}^{*}(M, N)$ where $R \rightarrow S \rightarrow S / / R=S \otimes_{R} \mathbb{k}$ is a normal sequence of Hopf algebras over a field \mathbb{k} and S is a free R-module. For a left $S / / R$-module L and a left S-module M there is a spectral sequence

$$
\mathrm{E}_{2}^{s, t}=\mathrm{Ext}_{S / / R}^{s}\left(L, \mathrm{Ext}_{R}^{t}(\mathbb{k}, M)\right) \Longrightarrow \mathrm{Ext}_{S}^{s+t}(L, M)
$$

For left S-module M and left $S / / R$-module N there is a spectral sequence

$$
\mathrm{E}_{2}^{s, t}=\mathrm{Ext}_{S / / R}^{s}\left(\operatorname{Tor}_{R}^{t}(\mathbb{k}, M), N\right) \Longrightarrow \operatorname{Ext}_{S}^{s+t}(M, N)
$$

These can be defined as composite functor spectral sequences using injective and projective resolutions of M and standard adjunctions

$$
\begin{aligned}
\operatorname{Hom}_{S}(L,-) & \cong \operatorname{Hom}_{S / / R}\left(L, \operatorname{Hom}_{R}(\mathbb{k},-)\right) \\
\operatorname{Hom}_{S}(-, N) & \cong \operatorname{Hom}_{S / / R}\left(\mathbb{k} \otimes_{R}(-), N\right)
\end{aligned}
$$

For the comodule version, suppose $K \backslash \backslash H \mapsto H \rightarrow K$, is a sequence of commutative Hopf algebras over \mathbb{k}, where

$$
K \backslash \backslash H=\mathbb{k} \square_{K} H=H \square_{K} \mathbb{k} \subseteq H
$$

There are adjunctions

$$
\begin{aligned}
& \operatorname{Cohom}_{H}(M,-) \cong \operatorname{Hom}_{K \backslash \backslash H}\left(M, \mathbb{k} \square_{K}(-)\right), \\
& \operatorname{Cohom}_{H}(-, N) \cong \operatorname{Hom}_{S}\left(\mathbb{k} \square_{K}(-), N\right) .
\end{aligned}
$$

Let M be a left $K \backslash \backslash H$-comodule and N a left H-comodule. Then there is a spectral sequence

$$
\mathrm{E}_{2}^{s, t}=\operatorname{Coext}_{K \backslash \backslash H}^{s}\left(M, \operatorname{Cotor}_{K}^{t}(\mathbb{k}, N)\right) \Longrightarrow \operatorname{Coext}_{H}^{s+t}(M, N) .
$$

If N is a trivial K-comodule then

$$
\mathrm{E}_{2}^{s, t} \cong \operatorname{Coext}_{K \backslash \backslash H}^{s}\left(M, \operatorname{Cotor}_{K}^{t}(\mathbb{k}, \mathbb{k}) \wedge^{K \backslash \backslash H} N\right)
$$

Here $U \stackrel{C}{\wedge} V$ indicates the tensor product of two comodules over a commutative Hopf algebra C with diagonal coaction

$$
U \otimes V \rightarrow(C \otimes U) \otimes(C \otimes V) \xrightarrow{\cong} C \otimes C \otimes U \otimes V \rightarrow C \otimes U \otimes V .
$$

Let M be a left H-comodule which admits a projective resolution and let N be a left $K \backslash \backslash H$-comodule. There is a spectral sequence

$$
\mathrm{E}_{2}^{s, t}=\operatorname{Coext}_{K \backslash \backslash H}^{s}\left(\operatorname{Cotor}_{K}^{t}(\mathbb{k}, M), N\right) \Longrightarrow \operatorname{Coext}_{H}^{s+t}(M, N) .
$$

If M is a trivial K-comodule then

$$
\mathrm{E}_{2}^{s, t} \cong \operatorname{Coext}_{K \backslash \backslash H}^{s}\left(\operatorname{Cotor}_{K}^{t}(\mathbb{k}, \mathbb{k}) \Lambda^{K \backslash \backslash H} M, N\right)
$$

The condition that M admits a projective resolution is crucial; when H is a P_{*}-algebra it is satisfied by a coherent comodule M.

Topological examples

For each prime p, the $\bmod p$ Steenrod algebra is a P-algebra.
When $p=2$,

$$
\mathcal{A}=\bigcup_{n \geqslant 0} \mathcal{A}(n)
$$

where $\mathcal{A}(n)$ is the finite dimensional subHopf algebra generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \ldots, \mathrm{Sq}^{2^{n}}$, with

$$
\operatorname{dim} \mathcal{A}(0)=2, \operatorname{dim} \mathcal{A}(1)=8, \operatorname{dim} \mathcal{A}(2)=64, \ldots
$$

Many subHopf algebras and quotient Hopf algebras of \mathcal{A} are P-algebras; for example, the primitively generated subHopf algebra $\mathcal{E} \subseteq \mathcal{A}$ generated by the Milnor primitives

The dual Steenrod algebra

The commutative Hopf algebra \mathcal{A}_{*} is polynomial:

$$
\mathcal{A}_{*}=\mathbb{F}_{2}\left[\xi_{r}: r \geqslant 1\right]=\mathbb{F}_{2}\left[\zeta_{r}: r \geqslant 1\right]
$$

where $\xi_{r}, \zeta_{r} \in \mathcal{A}_{2^{r}-1}$ and $\zeta_{r}=\chi\left(\xi_{r}\right)$. The coproduct and antipode satisfy

$$
\begin{gathered}
\psi\left(\xi_{n}\right)=\sum_{0 \leqslant j \leqslant n} \xi_{n-j}^{2^{j}} \otimes \xi_{j}, \quad \psi\left(\zeta_{n}\right)=\sum_{0 \leqslant j \leqslant n} \zeta_{j} \otimes \zeta_{n-j}^{2^{j}} \\
\zeta_{n}=\sum_{1 \leqslant k \leqslant n} \xi_{k} \zeta_{n-k}^{2^{k}}
\end{gathered}
$$

The non-zero primitives are the elements $\xi_{1}^{2^{s}}=\zeta_{1}^{2^{s}}$. The dual of $\mathcal{A}(n)$ is the quotient Hopf algebra

$$
\begin{aligned}
\mathcal{A}(n)_{*} & =\mathcal{A}_{*} /\left(\zeta_{1}^{2^{n+1}}, \zeta_{2}^{2^{n}}, \ldots, \zeta_{n+1}^{2}, \zeta_{n+2}, \ldots\right) \\
& =\mathcal{A}_{*} / / \mathbb{F}_{2}\left[\zeta_{1}^{2^{n+1}}, \zeta_{2}^{2^{n}}, \ldots, \zeta_{n+1}^{2}, \zeta_{n+2}, \ldots\right]
\end{aligned}
$$

For each $s \geqslant 0$ there is a subHopf algebra

$$
\mathcal{A}_{*}^{(s)}=\mathbb{F}_{2}\left[\zeta_{1}^{2^{s}}, \zeta_{2}^{2^{s}}, \ldots, \zeta_{n}^{2^{s}}, \ldots\right] \subseteq \mathcal{A}_{*}
$$

with dual $\mathcal{A}_{(s)}=\mathcal{A}_{(s)}^{*}$ a quotient Hopf algebra of \mathcal{A}. Each $\mathcal{A}_{(s)}$ is a P-algebra and $\mathcal{A}_{*}^{(s)}$ is a P_{*}-algebra. There is also a family of finitely subHopf algebras

$$
\mathcal{P}(n)_{*}^{(s)}=\mathbb{F}_{2}\left[\zeta_{1}^{2^{s}}, \zeta_{2}^{2^{s}}, \ldots, \zeta_{n}^{2^{s}}\right] \subseteq \mathcal{P}(\infty)_{*}^{(s)}=\mathcal{A}_{*}^{(s)}
$$

All of these are P_{*}-algebras as are the quotients $\mathcal{A}_{*}^{(s)} / / \mathcal{P}(n)_{*}^{(s)}$.

Some sample calculations

The Adams spectral sequence for calculating homotopy classes of maps has the form

$$
\mathrm{E}_{2}^{s, t}(X, Y)=\operatorname{Coext}_{\mathcal{A}_{*}}^{s, t}\left(H_{*}(X), H_{*}(Y)\right) \Longrightarrow Y^{s-t}(X)=[X, Y]^{s-t}
$$

Here are some examples.
Take $X=B P$ (the Brown-Peterson spectrum) and $Y=S^{0}$ where $H_{*}(B P)=\mathcal{A}_{*}^{(1)}$ and $H_{*}\left(S^{0}\right)=\mathbb{F}_{2}$. To calculate the E_{2}-term we use a Cartan-Eilenberg spectral sequence

$$
\mathrm{E}_{2}^{s, t}=\operatorname{Coext}_{\mathcal{A}_{*}^{(1)}}^{s}\left(\mathcal{A}_{*}^{(1)}, \operatorname{Cotor}_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(1)}}^{t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right) \Longrightarrow \operatorname{Coext}_{\mathcal{A}_{*}}^{s+t}\left(\mathcal{A}_{*}^{(1)}, \mathbb{F}_{2}\right)
$$

Here we have suppressed the internal grading on $\operatorname{Cotor}^{t, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ which is concentrated in $* \leqslant 0$. Since $\mathcal{A}_{*}^{(1)}$ is projective over itself $\mathrm{E}_{2}^{s, *}=0$ when $s>0$. Later we will show that $\mathrm{E}_{2}^{0, t}=0$.

Comparing some Bousfield classes

In his seminal paper on localization of spectra, Ravenel introduced a family of ring spectra and maps

$$
S^{0}=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow B P
$$

and showed that their Bousfield classes satisfied

$$
\left\langle S^{0}\right\rangle=\left\langle X_{0}\right\rangle>\left\langle X_{1}\right\rangle>\left\langle X_{2}\right\rangle>\cdots>\left\langle X_{s}\right\rangle>\left\langle X_{s+1}\right\rangle>\cdots>\langle B P\rangle
$$

The proof requires showing that for example $X_{n}^{*}(B P)=0$. Again we can reduce this to showing that

$$
\operatorname{Cohom}_{\mathcal{A}_{*}^{(1)} / / \mathcal{P}(n)_{*}^{(1)}}\left(\mathcal{A}_{*}^{(1)}, \operatorname{Cotor}_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(1)}}^{t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right)=0
$$

To do this we need to know more about $\operatorname{Cotor}_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(1)}}^{t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ as a $\mathcal{A}_{*}^{(1)} / / \mathcal{P}(n){ }_{*}^{(1)}$-comodule where $0 \leqslant n$.

We will focus on the case $n=0$, the general case is similar. First we recall that

$$
\operatorname{Cotor}_{\mathcal{A}_{*}^{*} / / \mathcal{A}_{*}^{(1)}}^{*}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[q_{0}, q_{1}, q_{2}, \ldots\right]
$$

where $q_{k} \in \operatorname{Cotor}_{\mathcal{A}_{*} / / / \mathcal{A}_{*}^{(1)}}^{1,2^{k+1}-1}$. Next we can determine the induced $\mathcal{A}_{*}^{(1)} / / \mathcal{A}_{*}^{(2)}$-coaction: q_{0} is primitive and for $k \geqslant 1$,

$$
\mu\left(q_{k}\right)=\xi_{k}^{2} \otimes q_{0}+1 \otimes q_{k}
$$

This means that we can filter each Cotor $\mathcal{A}_{*}^{t, *} / / \mathcal{A}_{*}^{(1)}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ by a finite increasing sequence of subcomodules

$$
\mathrm{F}^{t, k}=\mathbb{F}_{2}\left\{q_{0}^{r_{0}} q_{1}^{r_{1}} \cdots q_{\ell}^{r_{\ell}}: r_{0} \geqslant t-k, \sum_{0 \leqslant i \leqslant \ell} r_{i}=t\right\} .
$$

where the coaction on $\mathrm{F}^{t, k} / \mathrm{F}^{t, k-1}$ is trivial.

Now any non-zero $\mathcal{A}_{*}^{(1)} / / \mathcal{A}^{(2)}$-comodule homomorphism $\mathcal{A}_{*}^{(1)} \rightarrow \operatorname{Cotor}_{\underset{\mathcal{A}}{*} / / \mathcal{A}_{*}^{(1)}}^{t, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ has to factor through a filtration $F^{t, k_{0}}$ where k_{0} is minimal. Hence we can compose with the quotient homomorphism to find a non-trivial homomorphism $\mathcal{A}_{*}^{(1)} \rightarrow \mathrm{F}^{t, k_{0}} / \mathrm{F}^{t, k_{0}-1}$ and the project onto a suspension of \mathbb{F}_{2}. But since $\mathcal{A}_{*}^{(1)}$ is a cofree $\mathcal{A}_{*}^{(1)} / / \mathcal{A}^{(2)}$-comodule over a P_{*}-algebra, this contradicts earlier results.

Some new results

It is known that locally at $2,\langle M S p\rangle \geqslant\langle B P\rangle$.
Theorem

$$
\left\langle S^{0}\right\rangle>\langle M S p\rangle>\langle B P\rangle
$$

The proof that $\langle M S p\rangle>\langle B P\rangle$ involves showing that

$$
\text { Coext }_{\mathcal{A}_{*}^{*}}^{*, *}\left(H_{*}(B P), H_{*}(M S p)\right)=0
$$

and this reduces to showing that

$$
\operatorname{Cohom}_{\mathcal{A}_{*}^{(1)}}\left(\mathcal{A}_{*}^{(1)}, \mathcal{A}_{*}^{(2)} \stackrel{\mathcal{A}}{*}_{(1)}^{\wedge} \operatorname{Cotor}_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(1)}}^{t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right)=0
$$

and this can be reduced to the vanishing of
$\operatorname{Cohom}_{\mathcal{A}_{*}^{(1)}}\left(\mathcal{A}_{*}^{(1)}, \mathcal{A}_{*}^{(1)} \square_{\mathcal{A}_{*}^{(1)} / / \mathcal{A}_{*}^{(2)}} \operatorname{Cotor}_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(1)}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right)$

$$
\cong \operatorname{Cohom}_{\mathcal{A}_{*}^{(1)} / / \mathcal{A}_{*}^{(2)}}\left(\mathcal{A}_{*}^{(1)}, \operatorname{Cotor}_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(1)}}^{t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right)
$$

The proof that $\left.\left\langle S^{0}\right\rangle\right\rangle\langle M S p\rangle$ is harder because it involves the vanishing of

$$
\operatorname{Cohom}_{\mathcal{A}_{*}^{(2)}}\left(\mathcal{A}_{*}^{(2)}, \operatorname{Cotor}_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(2)}}^{t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right)
$$

and this can be done by reducing to

$$
\operatorname{Cohom}_{\mathcal{A}_{*}^{(2)} / / \mathcal{A}_{*}^{(3)}}\left(\mathcal{A}_{*}^{(2)}, \operatorname{Cotor}_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(2)}}^{t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right)
$$

and defining a suitable filtration on the $\mathcal{A}_{*}^{(1)} / / \mathcal{A}_{*}^{(3)}$-comodule Cotor $_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(2)}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$. This requires analysis of the $\mathcal{A}_{*}^{(1)} / / \mathcal{A}_{*}^{(3)}$-comodules Cotor ${ }_{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(1)}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ and
Cotor $_{\mathcal{A}_{*}^{(1)} / / \mathcal{A}_{*}^{(2)}}^{t}\left(\mathbb{F}_{2}\right.$, Cotor $\left._{\mathcal{A}_{*} / / \mathcal{A}_{*}^{(1)}}^{t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right)$.

Dinlediğiniz için teșekkürler!

