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P-algebras

Let | be a �eld. A graded cocommutative Hopf algebra A = A� is
a P-algebra if

I it is connected (i.e., An = 0 if n < 0 and A0 = |);

I �nite type;

I a union of �nite dimensional subHopf algebras A(n) = A(n)�

where A(n) � A(n + 1).

Here each A(n) is a Poincar�e (duality) algebra and A(n + 1) is a
free left/right A(n)-module.

Theorem
Let A be P-algebra.
(a) A is a free and injective left/right A(n)-module.
(b) A is a coherent |-algebra.
(c) A is self-injective. More generally, every bounded below free
module is injective.

Andrew Baker, University of Glasgow



More properties

Every coherent A-module M is �nitely presented and there is a
�nite presentation

P1 ! P0 ! M ! 0

which is induced up from a �nite presentation

P 01 ! P 00 ! M 0 ! 0

of a �nitely generated A(m)-module for some m, so there is an
exact sequence

A
A(m) P
0
1 ! A
A(m) P

0
0 ! M ! 0:

Similarly, every homomorphism M ! N between coherent
A-modules are induced up from homomorphisms between �nitely
generated A(n)-modules for some n.
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Proposition

Let M be a coherent A-module. Then there is an embedding of M
into a �nitely generated free A-module which is also injective.
Hence M has an injective resolution by �nitely generated free
A-modules.

Proof.
Let M0 be a �nitely generated A(n)-module with M �= A
A(n) M0.
By a standard result M0 ,! F where F is a �nitely generated free
A(n)-module, so M �= A
A(n) M0 ,! A
A(n) F is a monic since A
is A(n)-at.
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An A-module is called �nite if it is �nite dimensional over |.

Proposition

Let M be a �nite A-module and N an A-module.

I If N is bounded below and free, then

Ext�A(M;N) = HomA(M;N) = 0;

I If N is coherent, then

Ext�A(M;N) = 0:
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Proof.
Since bounded below free modules are injective, ExtsA(M;N) = 0
when s > 0, so it su�ces to show that HomA(M;A) = 0. For this,
note that the image of a non-trivial homomorphism must lie in
some A(n) and have a highest degree element. But also
A(n) � A(n + 1) and so by Poincar�e duality there is a non-trivial
product with an element of A(n + 1).
For the other part use an injective resolution of N consisting of
�nitely generated free modules.

Note: This proof exploits a special case of the following general
property of a P-algebra: for each non-zero a 2 A there are positive
degree elements u; v for which ua; av are non-zero.
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P�-algebras

A P�-algebra A� is the degree-wise dual of a P-algebra A, i.e.,
An = Hom|(A

n; |). It inherits the structure of a commutative
Hopf algebra.
Every left A�-comodule M� is naturally a right A-module, but we
can also dualise it to give a left A-module M� where
Mn = Hom|(Mn;|).
A A�-comodule M� is coherent if M� is a coherent A-module.
Because we have assumed A and A� are �nite type, A� is a
projective A�-comodule. Furthermore, every coherent comodule
admits a projective comodule resolution by �nitely generated
cofree comodules.
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Proposition

Let M� be a �nite A�-comodule and N� an A�-comodule.

I If N� is bounded below and cofree, then

Coext�A�(N�;M�) = Cohom�
A�(N�;M�) = 0;

I If N� is coherent, then

Coext�A�(N�;M�) = 0:

We will need some `change of rings' spectral sequences for
computing such Coext groups. It is well known that
Coext�A�(N�;�) is computable using injective resolutions where a
comodule is injective if it is a retract of a cofree comodule
A� 
W . Usually projective comodules are not available for in�nite
dimensional A�, although we have seen that in certain situations
they may exist. In general this means that Coext�A�(�;�) is not a
balanced functor.
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Let Mod\; f:t:
A denote the category of �nite type bounded below

homologically graded A�-modules (with A� acting by decreasing

degree), Mod[; f:t:
A� denote the category of �nite type bounded

below cohomologically graded A�-modules and ModA� denoting
the category of all A�-modules. There is a commutative diagram
of functors in which all functors are exact.

Mod
]; f:t:
A�

(�)���

Comod
[; f:t:
A�

(�)� //

//

//

(Mod[; f:t:
A� )op

(�)�
oo

(�)�

OO

��
Mod

op
A�

So in the case of �nite type bounded below comodules we can set

Coext�A�(N�;M�) = Ext�A�(M
�;N�)

where Ext�A�(�;�) is a balanced bifunctor on ModA� . There are
four Cartan-Eilenberg spectral sequences for computing this, two
depending on injective resolutions and two on projective ones.
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Cartan-Eilenberg spectral sequences

There are two ways to set up Cartan-Eilenberg spectral sequences
for computing Ext�S(M;N) where R ! S ! S==R = S 
R | is a
normal sequence of Hopf algebras over a �eld | and S is a free
R-module. For a left S==R-module L and a left S-module M there
is a spectral sequence

E
s;t
2 = ExtsS==R(L;Ext

t
R(|;M)) =) Exts+t

S (L;M):

For left S-module M and left S==R-module N there is a spectral
sequence

E
s;t
2 = ExtsS==R(Tor

t
R(|;M);N) =) Exts+t

S (M;N):

These can be de�ned as composite functor spectral sequences using
injective and projective resolutions of M and standard adjunctions

HomS(L;�) �= HomS==R(L;HomR(|;�));

HomS(�;N) �= HomS==R(|
R (�);N):
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For the comodule version, suppose KnnH � H � K , is a sequence
of commutative Hopf algebras over |, where

KnnH = |�KH = H�K| � H:

There are adjunctions

CohomH(M;�) �= HomKnnH(M;|�K (�));

CohomH(�;N) �= HomS(|�K (�);N):

Let M be a left KnnH-comodule and N a left H-comodule. Then
there is a spectral sequence

E
s;t
2 = CoextsKnnH(M;CotortK (|;N)) =) Coexts+t

H (M;N):

If N is a trivial K -comodule then

E
s;t
2
�= CoextsKnnH(M;CotortK (|; |)

KnnH
^ N):

Here U
C
^ V indicates the tensor product of two comodules over a

commutative Hopf algebra C with diagonal coaction

U 
 V ! (C 
 U)
 (C 
 V )
�=
�! C 
 C 
 U 
 V ! C 
 U 
 V :
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Let M be a left H-comodule which admits a projective resolution
and let N be a left KnnH-comodule. There is a spectral sequence

E
s;t
2 = CoextsKnnH(Cotor

t
K (|;M);N) =) Coexts+t

H (M;N):

If M is a trivial K -comodule then

E
s;t
2
�= CoextsKnnH(Cotor

t
K (|;|)

KnnH
^ M;N):

The condition that M admits a projective resolution is crucial;
when H is a P�-algebra it is satis�ed by a coherent comodule M.
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Topological examples

For each prime p, the mod p Steenrod algebra is a P-algebra.
When p = 2,

A =
[

n>0

A(n)

where A(n) is the �nite dimensional subHopf algebra generated by
Sq1;Sq2; : : : ;Sq2

n
, with

dimA(0) = 2; dimA(1) = 8; dimA(2) = 64; : : :

Many subHopf algebras and quotient Hopf algebras of A are
P-algebras; for example, the primitively generated subHopf algebra
E � A generated by the Milnor primitives.
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The dual Steenrod algebra

The commutative Hopf algebra A� is polynomial:

A� = F2[�r : r > 1] = F2[�r : r > 1];

where �r ; �r 2 A2r�1 and �r = �(�r ). The coproduct and antipode
satisfy

 (�n) =
X

06j6n

�2
j

n�j 
 �j ;  (�n) =
X

06j6n

�j 
 �2
j

n�j ;

�n =
X

16k6n

�k�
2k

n�k :

The non-zero primitives are the elements �2
s

1 = �2
s

1 .
The dual of A(n) is the quotient Hopf algebra

A(n)� = A�=(�
2n+1

1 ; �2
n

2 ; : : : ; �
2
n+1; �n+2; : : :)

= A�==F2[�
2n+1

1 ; �2
n

2 ; : : : ; �
2
n+1; �n+2; : : :]:

Andrew Baker, University of Glasgow



For each s > 0 there is a subHopf algebra

A
(s)
� = F2[�

2s
1 ; �

2s
2 ; : : : ; �

2s
n ; : : :] � A�

with dual A(s) = A�
(s) a quotient Hopf algebra of A. Each A(s) is

a P-algebra and A
(s)
� is a P�-algebra.

There is also a family of �nitely subHopf algebras

P(n)
(s)
� = F2[�

2s
1 ; �

2s
2 ; : : : ; �

2s
n ] � P(1)

(s)
� = A

(s)
� :

All of these are P�-algebras as are the quotients A
(s)
� ==P(n)

(s)
� .
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Some sample calculations

The Adams spectral sequence for calculating homotopy classes of
maps has the form

E
s;t
2 (X ;Y ) = Coexts;tA�(H�(X );H�(Y )) =) Y s�t(X ) = [X ;Y ]s�t :

Here are some examples.
Take X = BP (the Brown-Peterson spectrum) and Y = S0 where

H�(BP) = A
(1)
� and H�(S

0) = F2. To calculate the E2-term we
use a Cartan-Eilenberg spectral sequence

E
s;t
2 = Coexts

A
(1)
�

(A
(1)
� ;Cotort

A�==A
(1)
�

(F2;F2)) =) Coexts+t
A�

(A
(1)
� ;F2):

Here we have suppressed the internal grading on Cotort;�(F2;F2)

which is concentrated in � 6 0. Since A
(1)
� is projective over itself

E
s;�
2 = 0 when s > 0. Later we will show that E0;t

2 = 0.

Andrew Baker, University of Glasgow



Comparing some Bous�eld classes

In his seminal paper on localization of spectra, Ravenel introduced
a family of ring spectra and maps

S0 = X0 ! X1 ! X2 ! � � � ! BP

and showed that their Bous�eld classes satis�ed

hS0i = hX0i > hX1i > hX2i > � � � > hXsi > hXs+1i > � � � > hBPi:

The proof requires showing that for example X �
n (BP) = 0. Again

we can reduce this to showing that

Cohom
A

(1)
�

==P(n)
(1)
�

(A
(1)
� ;Cotort

A�==A
(1)
�

(F2;F2)) = 0:

To do this we need to know more about Cotort
A�==A

(1)
�

(F2;F2) as a

A
(1)
� ==P(n)

(1)
� -comodule where 0 6 n.
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We will focus on the case n = 0, the general case is similar. First
we recall that

Cotor�;�
A�==A

(1)
�

(F2;F2) = F2[q0; q1; q2; : : :]

where qk 2 Cotor1;2
k+1�1

A�==A
(1)
�

. Next we can determine the induced

A
(1)
� ==A

(2)
� -coaction: q0 is primitive and for k > 1,

�(qk) = �2k 
 q0 + 1
 qk :

This means that we can �lter each Cotort;�
A�==A

(1)
�

(F2;F2) by a �nite

increasing sequence of subcomodules

Ft;k = F2fq
r0
0 q

r1
1 � � � q

r`
` : r0 > t � k ;

X

06i6`

ri = tg:

where the coaction on Ft;k=Ft;k�1 is trivial.
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Now any non-zero A
(1)
� ==A(2)-comodule homomorphism

A
(1)
� ! Cotort;�

A�==A
(1)
�

(F2;F2) has to factor through a �ltration

Ft;k0 where k0 is minimal. Hence we can compose with the
quotient homomorphism to �nd a non-trivial homomorphism

A
(1)
� ! Ft;k0=Ft;k0�1 and the project onto a suspension of F2. But

since A
(1)
� is a cofree A

(1)
� ==A(2)-comodule over a P�-algebra, this

contradicts earlier results.
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Some new results

It is known that locally at 2, hMSpi > hBPi.

Theorem

hS0i > hMSpi > hBPi:

The proof that hMSpi > hBPi involves showing that

Coext�;�A�(H�(BP);H�(MSp)) = 0

and this reduces to showing that

Cohom
A

(1)
�

(A
(1)
� ;A

(2)
�

A
(1)
�

^ Cotort
A�==A

(1)
�

(F2;F2)) = 0

and this can be reduced to the vanishing of

Cohom
A

(1)
�

(A
(1)
� ;A

(1)
� �A(1)

�
==A

(2)
�

Cotort
A�==A

(1)
�

(F2;F2))

�= Cohom
A

(1)
�

==A
(2)
�

(A
(1)
� ;Cotort

A�==A
(1)
�

(F2;F2)):
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The proof that hS0i > hMSpi is harder because it involves the
vanishing of

Cohom
A

(2)
�

(A
(2)
� ;Cotort

A�==A
(2)
�

(F2;F2))

and this can be done by reducing to

Cohom
A

(2)
�

==A
(3)
�

(A
(2)
� ;Cotort

A�==A
(2)
�

(F2;F2))

and de�ning a suitable �ltration on the A
(1)
� ==A

(3)
� -comodule

Cotort
A�==A

(2)
�

(F2;F2). This requires analysis of the

A
(1)
� ==A

(3)
� -comodules Cotort

A�==A
(1)
�

(F2;F2) and

Cotort
A

(1)
�

==A
(2)
�

(F2;Cotor
t

A�==A
(1)
�

(F2;F2)).
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Dinledi�giniz i�cin te�sekk�urler!
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