Fun and games with the Steenrod algebra Online Algebraic Topology Seminar, 27th April 2020

Printable version www.maths.gla.ac.uk/~ajb/dvi-ps/Talks/OATS 2020.pdf See also arXiv:2003.12003

Andrew Baker, University of Glasgow

last updated 27/04/2020

Recollections on mod 2 (co)homology

Each of $H_*(-) = H_*(-; \mathbb{F}_2)$ and $H^*(-) = H^*(-; \mathbb{F}_2)$ is a homotopy functor from spaces to \mathbb{Z} -graded vector spaces. The reduced theories $\widetilde{H}_*(-)$ and $\widetilde{H}^*(-)$ gives functors from based spaces to \mathbb{Z} -graded vector spaces which extend to spectra. A stable cohomology operation θ of degree k is a sequence of natural transformations

$$\theta_n \colon H^n(-) \to H^{n+k}(-) \quad (n \in \mathbb{Z})$$

compatible with suspension isomorphisms, i.e., the following diagram commutes for all n and k.

$$\begin{array}{c} \widetilde{H}^{n}(-) \xrightarrow{\theta_{n}} \widetilde{H}^{n+k}(-) \\ \cong & \downarrow & \downarrow \cong \\ \widetilde{H}^{n+1}(\Sigma(-)) \xrightarrow{\theta_{n+1}} \widetilde{H}^{n+k+1}(\Sigma(-)) \end{array}$$

The set of all such operations $\mathcal{A}^k = H^k(H)$ is an \mathbb{F}_2 -vector space, and these form the mod 2 *Steenrod algebra* $\mathcal{A} = \mathcal{A}^* = H^*(H)$, a non-commutative graded algebra with composition as product. The structure of \mathcal{A} was determined by Serre, then Milnor showed that it was a cocommutative Hopf algebra and determined its dual Hopf algebra \mathcal{A}_* where $\mathcal{A}_n = \operatorname{Hom}_{\mathbb{F}_2}(\mathcal{A}^n, \mathbb{F}_2)$. As an algebra, \mathcal{A} is generated by the *Steenrod operations* Sqⁿ $\in \mathcal{A}^n$ $(n \ge 1)$ satisfying the *Adem relations* (here Sq⁰ = 1):

For
$$0 < r < 2s$$
, $\operatorname{Sq}^{r} \operatorname{Sq}^{s} = \sum_{0 \leq j \leq \lfloor r/2 \rfloor} {s-1-j \choose r-2j} \operatorname{Sq}^{r+s-j} \operatorname{Sq}^{j}$.

$$\begin{split} &\mathsf{Sq}^{1}\,\mathsf{Sq}^{1}\,=\,\begin{pmatrix} 0\\1 \end{pmatrix}\mathsf{Sq}^{2}\,=\,0, \quad \mathsf{Sq}^{1}\,\mathsf{Sq}^{2}\,=\,\begin{pmatrix} 1\\1 \end{pmatrix}\mathsf{Sq}^{3}\,=\,\mathsf{Sq}^{3}, \\ &\mathsf{Sq}^{2}\,\mathsf{Sq}^{2}\,=\,\begin{pmatrix} 1\\2 \end{pmatrix}\mathsf{Sq}^{4}\,+\,\begin{pmatrix} 0\\0 \end{pmatrix}\mathsf{Sq}^{3}\,\mathsf{Sq}^{1}\,=\,\mathsf{Sq}^{3}\,\mathsf{Sq}^{1}, \\ &\mathsf{Sq}^{2}\,\mathsf{Sq}^{3}\,=\,\begin{pmatrix} 2\\2 \end{pmatrix}\mathsf{Sq}^{5}\,+\,\begin{pmatrix} 1\\0 \end{pmatrix}\mathsf{Sq}^{4}\,\mathsf{Sq}^{1}\,=\,\mathsf{Sq}^{5}\,+\,\mathsf{Sq}^{4}\,\mathsf{Sq}^{1}\,. \end{split}$$

It can be shown that the algebra indecomposables are the Sq^{2^s} . There is a basis of *admissible monomials*

$$\mathsf{Sq}^{(i_1,\ldots,i_\ell)} = \mathsf{Sq}^{i_1} \, \mathsf{Sq}^{i_2} \cdots \mathsf{Sq}^{i_\ell}$$

where $i_{r-1} \ge 2i_r$ for $2 \le r \le \ell$ and $i_\ell \ge 1$. Here ℓ is the *length* of the monomial and there is one length zero element, the identity operation Sq⁰ = 1.

The cocommutative coproduct $\psi : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ and antipode $\chi : \mathcal{A} \to \mathcal{A}$ are given by the formulae

$$\psi(\mathsf{Sq}^n) = \sum_{0 \leqslant r \leqslant n} \mathsf{Sq}^r \otimes \mathsf{Sq}^{n-r}, \quad \sum_{0 \leqslant r \leqslant n} \chi(\mathsf{Sq}^r) \, \mathsf{Sq}^{n-r} = 0.$$

Note that the antipode is anti-commutative, i.e.,

$$\chi(\alpha\beta) = \chi(\beta)\chi(\alpha).$$

Here are the first few $\chi(Sq^{2^s})$:

$$\chi(\mathsf{Sq}^1) = \mathsf{Sq}^1, \ \chi(\mathsf{Sq}^2) = \mathsf{Sq}^2, \ \chi(\mathsf{Sq}^4) = \mathsf{Sq}^4 + \mathsf{Sq}^1 \, \mathsf{Sq}^4 \, \mathsf{Sq}^1 \, .$$

Theorem (Serre & Milnor)

The commutative Hopf algebra A_* is polynomial:

$$\mathcal{A}_* = \mathbb{F}_2[\xi_r : r \ge 1] = \mathbb{F}_2[\zeta_r : r \ge 1],$$

where $\xi_r, \zeta_r \in A_{2^r-1}$ and $\zeta_r = \chi(\xi_r)$. The coproduct and antipode satisfy

$$\psi(\xi_n) = \sum_{0 \leq j \leq n} \xi_{n-j}^{2^j} \otimes \xi_j, \quad \psi(\zeta_n) = \sum_{0 \leq j \leq n} \zeta_j \otimes \zeta_{n-j}^{2^j},$$

$$\zeta_n = \sum_{1 \leqslant k \leqslant n} \xi_k \zeta_{n-k}^{2^k}.$$

The non-zero primitives are the elements $\xi_1^{2^s} = \zeta_1^{2^s}$.

The Poincaré series for \mathcal{A} and \mathcal{A}_* is $\prod_{r \ge 1} (1 - t^{2^r - 1})^{-1}$.

Finite sub-Hopf algebras of $\mathcal A$

Important fact: $\mathcal{A} = \bigcup_{n \ge 0} \mathcal{A}(n)$, where $\mathcal{A}(n) \subseteq \mathcal{A}$ is the finite sub-Hopf algebra of dimension $2^{\binom{n+2}{2}}$ generated by $\operatorname{Sq}^1, \operatorname{Sq}^2, \operatorname{Sq}^4, \ldots, \operatorname{Sq}^{2^n}$ with dual quotient Hopf algebra

$$\mathcal{A}(n)_* = \mathcal{A}_* / (\zeta_1^{2^{n+1}}, \zeta_2^{2^n}, \zeta_3^{2^{n-1}}, \dots, \zeta_{n+1}^2, \zeta_{n+2}, \dots)$$

= $\mathcal{A}_* / / \mathbb{F}_2[\zeta_1^{2^{n+1}}, \zeta_2^{2^n}, \zeta_3^{2^{n-1}}, \dots, \zeta_{n+1}^2, \zeta_{n+2}, \dots].$

Here $\mathcal{A}(n)$ and $\mathcal{A}(n)_*$ have Poincaré series

$$\prod_{1 \leqslant r \leqslant n+1} \frac{(1-t^{2^{n+2-r}(2^r-1)})}{(1-t^{2^r-1})}$$

The highest degree element in $\mathcal{A}(n)_*$ is the residue class of

$$z_n = \zeta_1^{2^{n+1}-1} \zeta_2^{2^n-1} \zeta_3^{2^{n-1}-1} \cdots \zeta_{n+1}$$

and dual to this is a generator of the 1-dimensional socle soc $\mathcal{A}(n)$. Under the dual pairing, z_n defines a Frobenius form making $\mathcal{A}(n)$ a *Poincaré duality algebra* and thus self-injective.

The Adem relations are not minimal, and also do not restrict to the $\mathcal{A}(n)$ subalgebras: for example, the identities

$$\mathsf{Sq}^2\,\mathsf{Sq}^3=\mathsf{Sq}^4\,\mathsf{Sq}^1+\mathsf{Sq}^5=\mathsf{Sq}^4\,\mathsf{Sq}^1+\mathsf{Sq}^1\,\mathsf{Sq}^4$$

are not meaningful in $\mathcal{A}(1)$ since Sq⁴ $\notin \mathcal{A}(1)$. Wall found a minimal set of relations amongst the generators Sq^{2^s} which do restrict to the $\mathcal{A}(n)$. For $0 \leq s \leq r - 2$ and $1 \leq t$, let

$$\Theta(r, s) = Sq^{2^{r}} Sq^{2^{s}} + Sq^{2^{s}} Sq^{2^{r}},$$

$$\Phi(t) = Sq^{2^{t}} Sq^{2^{t}} + Sq^{2^{t-1}} Sq^{2^{t}} Sq^{2^{t-1}} + Sq^{2^{t-1}} Sq^{2^{t-1}} Sq^{2^{t}}$$

Then $\Theta(r,s) \in \mathcal{A}(r-1)$ and $\Phi(r) \in \mathcal{A}(r-1)$ so these can be expressed as polynomial expressions in the Sq^{2^k} for $0 \leq k \leq r-1$.

The elements

$$Sq^{2^{t}} Sq^{2^{s}} + Sq^{2^{s}} Sq^{2^{t}} + \Theta(r, s),$$

$$Sq^{2^{t}} Sq^{2^{t}} + Sq^{2^{t-1}} Sq^{2^{t}} Sq^{2^{t-1}} + Sq^{2^{t-1}} Sq^{2^{t-1}} Sq^{2^{t}} + \Phi(t)$$

give a minimal set of relations for \mathcal{A} . In particular, such elements with $r, t \leq n$ form a minimal set of relations for $\mathcal{A}(n)$. In the first few cases the Wall relations are

$$\begin{aligned} \mathcal{A}(0) &: & \mathsf{Sq}^1 \, \mathsf{Sq}^1 = \mathsf{0}, \\ \mathcal{A}(1) &: & \mathsf{Sq}^1 \, \mathsf{Sq}^1 = \mathsf{Sq}^2 \, \mathsf{Sq}^2 + \mathsf{Sq}^1 \, \mathsf{Sq}^2 \, \mathsf{Sq}^1 = \mathsf{0} \\ \mathcal{A}(2) &: & \mathsf{Sq}^1 \, \mathsf{Sq}^1 = \mathsf{Sq}^2 \, \mathsf{Sq}^2 + \mathsf{Sq}^1 \, \mathsf{Sq}^2 \, \mathsf{Sq}^1 \\ &= \mathsf{Sq}^4 \, \mathsf{Sq}^4 + \mathsf{Sq}^2 \, \mathsf{Sq}^4 \, \mathsf{Sq}^2 + \mathsf{Sq}^2 \, \mathsf{Sq}^2 \, \mathsf{Sq}^4 \\ &= \mathsf{Sq}^1 \, \mathsf{Sq}^4 + \mathsf{Sq}^4 \, \mathsf{Sq}^1 + \mathsf{Sq}^2 \, \mathsf{Sq}^1 \, \mathsf{Sq}^2 = \mathsf{0}. \end{aligned}$$

Using these it is possible to produce explicit bases for the $\mathcal{A}(n)$ s. For example, there is a formula for the top dimensional element, here are the cases n = 0, 1, 2:

 ${\sf Sq}^1, \; {\sf Sq}^1\,{\sf Sq}^2\,{\sf Sq}^1\,{\sf Sq}^2, \; {\sf Sq}^1\,{\sf Sq}^2\,{\sf Sq}^1\,{\sf Sq}^2\,{\sf Sq}^4\,{\sf Sq}^2\,{\sf Sq}^2\,{\sf Sq}^2\,{\sf Sq}^2\,{\sf Sq}^2\,{\sf Sq}^2\,{\sf S$

Generalisations of the Steenrod algebra

Modern categories of spectra are symmetric monoidal with respect to smash products before passing to homotopy. The category of *S*-modules \mathcal{M}_S is an important example and provides a good model for the category of spectra.

A commutative monoid in this category is equivalent to an \mathcal{E}_{∞} ring spectrum and is called a *commutative S-algebra*. Examples include *S*, $H\mathbb{Z}$, $H\mathbb{F}_p$, kO, kU, MU and so on. Every commutative *S*-algebra *R* has a module category \mathcal{M}_R which is also closed symmetric monoidal with respect to a relative smash product \wedge_R and function object $F_R(-, -)$; it also has a model structure and homotopy category \mathcal{D}_R in which to do homotopy theory. If *R* is connective and $\pi_0 R = \mathbb{Z}$ or $\pi_0 R = \mathbb{Z}_{(p)}$ there is a morphism of commutative *S*-algebras $R \to H = H\mathbb{F}_p$ so *H* is a commutative *R*-algebra, and then there are relative homology and cohomology

theories

$$H^R_*(-) = \pi_*(H \wedge_R -), \quad H^*_R(-) = \pi_{-*}(F_R(-, H)).$$

The relative Steenrod algebra $H_R^*(H)$ is the algebra of stable operations in $H_R^*(-)$. When R = S it is \mathcal{A} . When p = 2, $H_{kO}^*(H) = \mathcal{A}(1)$ and $H_{tmf}^*(H) = \mathcal{A}(2)$.

Realisation question: When working with spectra (or equivalently S-modules) we can ask whether an \mathcal{A} -module M is realisable as $H^*(X)$ for some S-module X. Similarly, for an $\mathcal{A}(1)$ -module we can ask if it is $H^*_{kO}(Y)$ for a kO-module Y and for an $\mathcal{A}(2)$ -module we can ask if it is $H^*_{tmf}(Z)$ for a tmf-module Z. **Example:** When can we realise an \mathcal{A} -module of the following form with $0 \neq \theta \in \mathcal{A}$?

Algebraic observation: Module only exists if θ is indecomposable, i.e., $n = 2^s$ and $\theta = Sq^{2^s}$ +decomposables. Hopf invariant 1 Theorem (Adams): Only realisable if s = 0, 1, 2, 3.

Realisability of $\mathcal{A}(1)$ -modules

We will work with left modules $M = M^*$ involving multiplication maps $\mathcal{A}(1)^r \otimes M^n \to M^{n+r}$. Here some pictures of $\mathcal{A}(1)$ which is a free cyclic module realisable as $H^*_{k\Omega}(H)$.

Here are some more realisable $\mathcal{A}(1)$ -modules. In each case we can form a finite CW spectrum W then take $kO \wedge W$ to get $H_{kO}^*(kO \wedge W) \cong H^*(W)$ with its \mathcal{A} -action restricted to an action of the subalgebra $\mathcal{A}(1) \subseteq \mathcal{A}$.

 $\mathcal{A}(1)/\mathcal{A}(1)\{\mathsf{Sq}^{1}\,\mathsf{Sq}^{2}\} \qquad \mathcal{A}(1)/\mathcal{A}(1)\{\mathsf{Sq}^{2}\,\mathsf{Sq}^{1}\,\mathsf{Sq}^{2}\}$

The construction of the Joker example uses the Toda bracket $\langle 2, \eta, 2 \rangle = \{\eta^2\} \subseteq \pi_2(S^0)$. Later we'll see other examples of Toda brackets playing a rôle.

What about this one?

Let's first think about whether the above diagram can be realised as an \mathcal{A} -module. Notice that the top class is Sq² Sq¹ Sq². Using Adem relations we have

$$\mathsf{Sq}^2\,\mathsf{Sq}^1\,\mathsf{Sq}^2=\mathsf{Sq}^2\,\mathsf{Sq}^3=\mathsf{Sq}^5+\mathsf{Sq}^4\,\mathsf{Sq}^1=\mathsf{Sq}^1\,\mathsf{Sq}^4+\mathsf{Sq}^4\,\mathsf{Sq}^1$$

which is not possible. Despite this, there is a *k*O-module realising this module, namely $H\mathbb{Z}$ for which $H_{kO}^*(H\mathbb{Z}) \cong \mathcal{A}(1)/\mathcal{A}(1)\{Sq^1\}$.

Another approach using a Toda bracket

The existence of a CW spectrum $W = S^0 \cup e^2 \cup e^3 \cup e^5$ whose cohomology is $\mathcal{A}/\mathcal{A}\{Sq^1\}$ is equivalent to the Toda bracket $\langle \eta, 2, \eta \rangle \subseteq \pi_3(S^0)$ containing 0. But $\langle \eta, 2, \eta \rangle = \{\pm 2\nu\} \not\supseteq 0$. If we interpret the Toda bracket as being in $\pi_3(kO)$, since the image of ν is 0, we can build a CW kO-module of this form using kO cells; the result is equivalent to $H\mathbb{Z}$ as a kO-module.

There are many other examples of realisable cyclic $\mathcal{A}(1)$ -modules! Of course there are also non-cyclic examples which can be realised by various methods such as by attaching cells or forming mapping cones of maps between kO-modules.

Realisability of $\mathcal{A}(2)$ -modules with tmf-modules

Here are some pictures of $\mathcal{A}(2)$.

All of the above examples for kO of the form $kO \wedge W$ can be replaced by $tmf \wedge W$ so that $H^*_{tmf}(tmf \wedge W) \cong H^*(W)$ as $\mathcal{A}(2)$ -modules. The Sq⁴ argument works to show there is no $\mathcal{A}(2)$ -module of the form shown; the Toda bracket argument also applies as the image of ν in $\pi_3(tmf)$ is non-zero.

A good source of $\mathcal{A}(2)$ -modules is by using *doubling* which exploits the fact that there is a degree halving surjective homomorphism of Hopf algebras $\mathcal{A}(2) \twoheadrightarrow \mathcal{A}(1)$ under which

$$\operatorname{Sq}^n\mapsto egin{cases} \operatorname{Sq}^{n/2} & ext{if }n ext{ is even},\ 0 & ext{otherwise}. \end{cases}$$

By restricting and doubling degrees, every $\mathcal{A}(1)$ -module M induces an $\mathcal{A}(2)$ -module ${}^{(1)}M$.

The following examples are of the form $H^*(W)$. Their constructions depending on $\eta \nu \in \pi_4(S^0) = 0$. The two CW spectra are stably Spanier-Whitehead dual.

It is also possible to realise the double of the (whiskered) Joker using the Toda bracket $\langle \eta, \nu, \eta \rangle = \{\nu^2\} \subseteq \pi_6(S^0)$. The double of $\mathcal{A}(1)$ is a also realisable as a spectrum so we can smash it with tmf to realise this $\mathcal{A}(2)$ -module.

What about this one?

We can't rule this out with Steenrod operations. What about a Toda bracket argument? Constructing a suitable CW complex requires the Toda bracket $\langle \nu, \eta, \nu \rangle \subseteq \pi_8(S^0)$ to contain 0. But

$$\langle \nu, \eta, \nu \rangle = \{ \overline{\nu} \} = \{ \eta \sigma + \varepsilon \} \not\supseteq \mathbf{0}.$$

Here the image of σ in $\pi_7(\text{tmf})$ is 0 but the image of ε is not. This means that there is no tmf-module with this cohomology! If it did exist its homotopy would be $\pi_*(kO)[v_2]$.

Some tmf-modules related to kO

The cohomology of the tmf-module kO is shown below.

We can realise kO as a CW tmf-module with cells corresponding to the basis shown. Each skeleton gives a tmf-module with corresponding $\mathcal{A}(2)$ -module as its cohomology.

There are many other $\mathcal{A}(2)$ -modules including many cyclic ones. Here is an interesting example that is realisable as the cohomology of a tmf-module.

$$\mathcal{A}(2)/\mathcal{A}(2)\{\mathsf{Sq}^1, A, B\}$$

$$\begin{split} A &= \mathsf{Sq}^4\,\mathsf{Sq}^2 + \mathsf{Sq}^2\,\mathsf{Sq}^1\,\mathsf{Sq}^2\,\mathsf{Sq}^1\,,\\ B &= \mathsf{Sq}^4\,\mathsf{Sq}^2\,\mathsf{Sq}^4 + \mathsf{Sq}^1\,\mathsf{Sq}^2\,\mathsf{Sq}^1\,\mathsf{Sq}^2\,\mathsf{Sq}^4 + \mathsf{Sq}^4\,\mathsf{Sq}^2\,\mathsf{Sq}^1\,\mathsf{Sq}^2\,\mathsf{Sq}^1\,. \end{split}$$

It doesn't come from an \mathcal{A} -module since Adem relations imply

$$Sq^2 Sq^1 Sq^2 Sq^4 x_0 = (Sq^8 Sq^1 + Sq^1 Sq^8)x_0.$$

Exploiting dualisation

Many of the examples are 'self-dual'. For a left module M over a Hopf algebra H over a field \mathbb{k} , the dual $DM = \text{Hom}_{\mathbb{k}}(M, \mathbb{k})$ is naturally a right H-module but using the antipode this can be made into a left module. In the graded case,

 $(DM)^n = \text{Hom}_{\Bbbk}(M^{-n}, \Bbbk)$, and M is *stably self-dual* if for some k, $DM \cong M[k]$.

Every finite dimensional Hopf algebra is a Frobenius algebra or in the graded case a Poincaré duality algebra, hence stably self-dual. Natural question: Which (cyclic) modules are stably self-dual? **Partial answer**: Any $\mathcal{A}(n)$ -module of form $\mathcal{A}(n) \otimes_{\mathcal{K}} \mathbb{F}_2$ where $K \subseteq \mathcal{A}(n)$ is a subHopf algebra. If K is normal then $\mathcal{A}(n)//\mathcal{K} = \mathcal{A}(n) \otimes_{\mathcal{K}} \mathbb{F}_2$ is a quotient Hopf algebra. There is a version of Spanier-Whitehead duality for finite CW *R*-modules and $H^*_{\mathcal{P}}(D_R X) \cong D(H^*_{\mathcal{P}}(X))$ as left $H^*_{\mathcal{P}}(H)$ -modules. In particular, for a dualisable S-module W, $D_R(R \wedge W) \sim R \wedge D_S W$. This allows us to realise many examples, however dualising a cyclic module may not give a cyclic module.

Thanks for listening, stay safe and well!