Fun and games with the Steenrod algebra Online Algebraic Topology Seminar, 27th April 2020

Printable version
www.maths.gla.ac.uk/~ajb/dvi-ps/Talks/OATS 2020.pdf
See also arXiv:2003.12003

Andrew Baker, University of Glasgow

last updated $27 / 04 / 2020$

Recollections on mod 2 (co)homology

Each of $H_{*}(-)=H_{*}\left(-; \mathbb{F}_{2}\right)$ and $H^{*}(-)=H^{*}\left(-; \mathbb{F}_{2}\right)$ is a homotopy functor from spaces to \mathbb{Z}-graded vector spaces. The reduced theories $\widetilde{H}_{*}(-)$ and $\widetilde{H}^{*}(-)$ gives functors from based spaces to \mathbb{Z}-graded vector spaces which extend to spectra. A stable cohomology operation θ of degree k is a sequence of natural transformations

$$
\theta_{n}: H^{n}(-) \rightarrow H^{n+k}(-) \quad(n \in \mathbb{Z})
$$

compatible with suspension isomorphisms, i.e., the following diagram commutes for all n and k.

$$
\begin{aligned}
& \tilde{H}^{n}(-) \xrightarrow{\theta_{n}} \widetilde{H}^{n+k}(-)
\end{aligned}
$$

The set of all such operations $\mathcal{A}^{k}=H^{k}(H)$ is an \mathbb{F}_{2}-vector space, and these form the mod 2 Steenrod algebra $\mathcal{A}=\mathcal{A}^{*}=H^{*}(H)$, a non-commutative graded algebra with composition as product. The structure of \mathcal{A} was determined by Serre, then Milnor showed that it was a cocommutative Hopf algebra and determined its dual Hopf algebra \mathcal{A}_{*} where $\mathcal{A}_{n}=\operatorname{Hom}_{\mathbb{F}_{2}}\left(\mathcal{A}^{n}, \mathbb{F}_{2}\right)$. As an algebra, \mathcal{A} is generated by the Steenrod operations $\mathrm{Sq}^{n} \in \mathcal{A}^{n}(n \geqslant 1)$ satisfying the Adem relations (here $\mathrm{Sq}^{0}=1$):

$$
\begin{gathered}
\text { For } 0<r<2 s, \quad \mathrm{Sq}^{r} \mathrm{Sq}^{s}=\sum_{0 \leqslant j \leqslant\lfloor r / 2\rfloor}\binom{s-1-j}{r-2 j} \mathrm{Sq}^{r+s-j} \mathrm{Sq}^{j} \\
\mathrm{Sq}^{1} \mathrm{Sq}^{1}=\binom{0}{1} \mathrm{Sq}^{2}=0, \quad \mathrm{Sq}^{1} \mathrm{Sq}^{2}=\binom{1}{1} \mathrm{Sq}^{3}=\mathrm{Sq}^{3} \\
\mathrm{Sq}^{2} \mathrm{Sq}^{2}=\binom{1}{2} \mathrm{Sq}^{4}+\binom{0}{0} \mathrm{Sq}^{3} \mathrm{Sq}^{1}=\mathrm{Sq}^{3} \mathrm{Sq}^{1} \\
\mathrm{Sq}^{2} \mathrm{Sq}^{3}=\binom{2}{2} \mathrm{Sq}^{5}+\binom{1}{0} \mathrm{Sq}^{4} \mathrm{Sq}^{1}=\mathrm{Sq}^{5}+\mathrm{Sq}^{4} \mathrm{Sq}^{1}
\end{gathered}
$$

It can be shown that the algebra indecomposables are the $\mathrm{Sq}^{2^{5}}$. There is a basis of admissible monomials

$$
S q^{\left(i_{1}, \ldots, i_{\ell}\right)}=\text { Sq }^{i_{1}} \mathrm{Sq}^{i_{2}} \cdots \mathrm{Sq}^{i_{\ell}}
$$

where $i_{r-1} \geqslant 2 i_{r}$ for $2 \leqslant r \leqslant \ell$ and $i_{\ell} \geqslant 1$. Here ℓ is the length of the monomial and there is one length zero element, the identity operation $\mathrm{Sq}^{0}=1$.
The cocommutative coproduct $\psi: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ and antipode $\chi: \mathcal{A} \rightarrow \mathcal{A}$ are given by the formulae

$$
\psi\left(\mathrm{Sq}^{n}\right)=\sum_{0 \leqslant r \leqslant n} \mathrm{Sq}^{r} \otimes \mathrm{Sq}^{n-r}, \quad \sum_{0 \leqslant r \leqslant n} \chi\left(\mathrm{Sq}^{r}\right) \mathrm{Sq}^{n-r}=0
$$

Note that the antipode is anti-commutative, i.e.,

$$
\chi(\alpha \beta)=\chi(\beta) \chi(\alpha)
$$

Here are the first few $\chi\left(\mathrm{Sq}^{2^{5}}\right)$:

$$
\chi\left(\mathrm{Sq}^{1}\right)=\mathrm{Sq}^{1}, \chi\left(\mathrm{Sq}^{2}\right)=\mathrm{Sq}^{2}, \chi\left(\mathrm{Sq}^{4}\right)=\mathrm{Sq}^{4}+\mathrm{Sq}^{1} \mathrm{Sq}^{4} \mathrm{Sq}^{1} .
$$

Theorem (Serre \& Milnor)

The commutative Hopf algebra \mathcal{A}_{*} is polynomial:

$$
\mathcal{A}_{*}=\mathbb{F}_{2}\left[\xi_{r}: r \geqslant 1\right]=\mathbb{F}_{2}\left[\zeta_{r}: r \geqslant 1\right],
$$

where $\xi_{r}, \zeta_{r} \in \mathcal{A}_{2^{r}-1}$ and $\zeta_{r}=\chi\left(\xi_{r}\right)$. The coproduct and antipode satisfy

$$
\begin{gathered}
\psi\left(\xi_{n}\right)=\sum_{0 \leqslant j \leqslant n} \xi_{n-j}^{2^{j}} \otimes \xi_{j}, \quad \psi\left(\zeta_{n}\right)=\sum_{0 \leqslant j \leqslant n} \zeta_{j} \otimes \zeta_{n-j}^{2^{j}} \\
\zeta_{n}=\sum_{1 \leqslant k \leqslant n} \xi_{k} \zeta_{n-k}^{2^{k}}
\end{gathered}
$$

The non-zero primitives are the elements $\xi_{1}^{2^{s}}=\zeta_{1}^{2^{s}}$.
The Poincaré series for \mathcal{A} and \mathcal{A}_{*} is $\prod\left(1-t^{2^{r}-1}\right)^{-1}$.

Finite sub-Hopf algebras of \mathcal{A}

Important fact: $\mathcal{A}=\bigcup_{n \geqslant 0} \mathcal{A}(n)$, where $\mathcal{A}(n) \subseteq \mathcal{A}$ is the finite sub-Hopf algebra of dimension $2\left(\begin{array}{c}\binom{n+2}{2}\end{array}\right.$ generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \mathrm{Sq}^{4}, \ldots, \mathrm{Sq}^{2^{n}}$ with dual quotient Hopf algebra

$$
\begin{aligned}
\mathcal{A}(n)_{*} & =\mathcal{A}_{*} /\left(\zeta_{1}^{2^{n+1}}, \zeta_{2}^{2^{n}}, \zeta_{3}^{2^{n-1}}, \ldots \zeta_{n+1}^{2}, \zeta_{n+2}, \ldots\right) \\
& =\mathcal{A}_{*} / / \mathbb{F}_{2}\left[\zeta_{1}^{2^{n+1}}, \zeta_{2}^{2^{n}}, \zeta_{3}^{2^{n-1}}, \ldots \zeta_{n+1}^{2}, \zeta_{n+2}, \ldots\right]
\end{aligned}
$$

Here $\mathcal{A}(n)$ and $\mathcal{A}(n)_{*}$ have Poincaré series

$$
\prod_{1 \leqslant r \leqslant n+1} \frac{\left(1-t^{2^{n+2-r}\left(2^{r}-1\right)}\right)}{\left(1-t^{2 r-1}\right)}
$$

The highest degree element in $\mathcal{A}(n)_{*}$ is the residue class of

$$
z_{n}=\zeta_{1}^{2^{n+1}-1} \zeta_{2}^{2^{n}-1} \zeta_{3}^{2^{n-1}-1} \cdots \zeta_{n+1}
$$

and dual to this is a generator of the 1-dimensional socle $\operatorname{soc} \mathcal{A}(n)$. Under the dual pairing, z_{n} defines a Frobenius form making $\mathcal{A}(n)$ a Poincaré duality algebra and thus self-injective.

The Wall relations

The Adem relations are not minimal, and also do not restrict to the $\mathcal{A}(n)$ subalgebras: for example, the identities

$$
S q^{2} S q^{3}=S q^{4} S q^{1}+S q^{5}=S q^{4} S q^{1}+S q^{1} S q^{4}
$$

are not meaningful in $\mathcal{A}(1)$ since $\mathrm{Sq}^{4} \notin \mathcal{A}(1)$. Wall found a minimal set of relations amongst the generators $\mathrm{Sq}^{\mathrm{q}^{s}}$ which do restrict to the $\mathcal{A}(n)$.
For $0 \leqslant s \leqslant r-2$ and $1 \leqslant t$, let

$$
\begin{aligned}
\Theta(r, s) & =\mathrm{Sq}^{2^{r}} \mathrm{Sq}^{2^{s}}+\mathrm{Sq}^{2^{s}} \mathrm{Sq}^{2^{r}} \\
\Phi(t) & =\mathrm{Sq}^{2^{t}} \mathrm{Sq}^{2^{t}}+\mathrm{Sq}^{2^{t-1}} \mathrm{Sq}^{2^{t}} \mathrm{Sq}^{2^{t-1}}+\mathrm{Sq}^{2^{t-1}} \mathrm{Sq}^{2^{t-1}} \mathrm{Sq}^{2^{t}}
\end{aligned}
$$

Then $\Theta(r, s) \in \mathcal{A}(r-1)$ and $\Phi(r) \in \mathcal{A}(r-1)$ so these can be expressed as polynomial expressions in the $\mathrm{Sq}^{2^{k}}$ for $0 \leqslant k \leqslant r-1$.

The elements

$$
\begin{aligned}
& \mathrm{Sq}^{2^{r}} \mathrm{Sq}^{2^{s}}+\mathrm{Sq}^{2^{s}} \mathrm{Sq}^{2^{r}}+\Theta(r, s), \\
& \mathrm{Sq}^{2^{t}} \mathrm{Sq}^{2^{t}}+\mathrm{Sq}^{2^{t-1}} \mathrm{Sq}^{2^{t}} \mathrm{Sq}^{2^{t-1}}+\mathrm{Sq}^{2^{t-1}} \mathrm{Sq}^{2^{t-1}} \mathrm{Sq}^{2^{t}}+\Phi(t)
\end{aligned}
$$

give a minimal set of relations for \mathcal{A}. In particular, such elements with $r, t \leqslant n$ form a minimal set of relations for $\mathcal{A}(n)$. In the first few cases the Wall relations are

$$
\begin{array}{rlrl}
\mathcal{A}(0): & & S q^{1} S q^{1} & =0 \\
\mathcal{A}(1): & S q^{1} S q^{1} & =S q^{2} S q^{2}+S q^{1} S q^{2} S q^{1}=0 \\
\mathcal{A}(2): & & S q^{1} S^{1} & =S q^{2} S q^{2}+S q^{1} S q^{2} S q^{1} \\
& & & =S q^{4} S q^{4}+S q^{2} S q^{4} S q^{2}+S q^{2} S q^{2} S q^{4} \\
& & =S q^{1} S q^{4}+S q^{4} S q^{1}+S q^{2} S q^{1} S q^{2}=0 .
\end{array}
$$

Using these it is possible to produce explicit bases for the $\mathcal{A}(n)$ s. For example, there is a formula for the top dimensional element, here are the cases $n=0,1,2$:

$$
S q^{1}, S q^{1} S q^{2} S q^{1} S q^{2}, S q^{1} S q^{2} S q^{1} S q^{2} S q^{4} S q^{2} S q^{1} S q^{4} S q^{2} S q^{4}
$$

Generalisations of the Steenrod algebra

Modern categories of spectra are symmetric monoidal with respect to smash products before passing to homotopy. The category of S-modules \mathscr{M}_{S} is an important example and provides a good model for the category of spectra.
A commutative monoid in this category is equivalent to an \mathcal{E}_{∞} ring spectrum and is called a commutative S-algebra. Examples include $S, H \mathbb{Z}, H \mathbb{F}_{p}, k \mathrm{O}, k \mathrm{U}, \mathrm{MU}$ and so on. Every commutative S-algebra R has a module category \mathscr{M}_{R} which is also closed symmetric monoidal with respect to a relative smash product \wedge_{R} and function object $F_{R}(-,-)$; it also has a model structure and homotopy category \mathscr{D}_{R} in which to do homotopy theory. If R is connective and $\pi_{0} R=\mathbb{Z}$ or $\pi_{0} R=\mathbb{Z}_{(p)}$ there is a morphism of commutative S-algebras $R \rightarrow H=H \mathbb{F}_{p}$ so H is a commutative R-algebra, and then there are relative homology and cohomology theories

$$
H_{*}^{R}(-)=\pi_{*}\left(H \wedge_{R}-\right), \quad H_{R}^{*}(-)=\pi_{-*}\left(F_{R}(-, H)\right)
$$

The relative Steenrod algebra $H_{R}^{*}(H)$ is the algebra of stable operations in $H_{R}^{*}(-)$. When $R=S$ it is \mathcal{A}.
When $p=2, H_{k O}^{*}(H)=\mathcal{A}(1)$ and $H_{\mathrm{tmf}}^{*}(H)=\mathcal{A}(2)$.
Realisation question: When working with spectra (or equivalently S-modules) we can ask whether an \mathcal{A}-module M is realisable as $H^{*}(X)$ for some S-module X. Similarly, for an $\mathcal{A}(1)$-module we can ask if it is $H_{k O}^{*}(Y)$ for a $k O$-module Y and for an $\mathcal{A}(2)$-module we can ask if it is $H_{\mathrm{tmf}}^{*}(Z)$ for a tmf-module Z. Example: When can we realise an \mathcal{A}-module of the following form with $0 \neq \theta \in \mathcal{A}$?

Algebraic observation: Module only exists if θ is indecomposable, i.e., $n=2^{s}$ and $\theta=\mathrm{Sq}^{2^{5}}+$ decomposables. Hopf invariant 1 Theorem (Adams): Only realisable if $s=0,1,2,3$.

Realisability of $\mathcal{A}(1)$-modules

We will work with left modules $M=M^{*}$ involving multiplication maps $\mathcal{A}(1)^{r} \otimes M^{n} \rightarrow M^{n+r}$. Here some pictures of $\mathcal{A}(1)$ which is a free cyclic module realisable as $H_{k O}^{*}(H)$.

Here are some more realisable $\mathcal{A}(1)$-modules. In each case we can form a finite CW spectrum W then take $k \mathrm{O} \wedge W$ to get $H_{k O}^{*}(k \mathrm{O} \wedge W) \cong H^{*}(W)$ with its \mathcal{A}-action restricted to an action of the subalgebra $\mathcal{A}(1) \subseteq \mathcal{A}$.

The Joker

$\mathcal{A}(1) / \mathcal{A}(1)\left\{\mathrm{Sq}^{1} \mathrm{Sq}^{2}\right\}$

The whiskered Joker

$\mathcal{A}(1) / \mathcal{A}(1)\left\{\mathrm{Sq}^{2} \mathrm{Sq}^{1} \mathrm{Sq}^{2}\right\}$

The construction of the Joker example uses the Toda bracket $\langle 2, \eta, 2\rangle=\left\{\eta^{2}\right\} \subseteq \pi_{2}\left(S^{0}\right)$. Later we'll see other examples of Toda brackets playing a rôle.

What about this one?

Let's first think about whether the above diagram can be realised as an \mathcal{A}-module. Notice that the top class is $\mathrm{Sq}^{2} \mathrm{Sq}^{1} \mathrm{Sq}^{2}$. Using Adem relations we have

$$
S q^{2} \mathrm{Sq}^{1} \mathrm{Sq} q^{2}=\mathrm{Sq}^{2} \mathrm{Sq}^{3}=\mathrm{Sq}^{5}+\mathrm{Sq}^{4} \mathrm{Sq}{ }^{1}=\mathrm{Sq}^{1} \mathrm{Sq}^{4}+\mathrm{Sq}^{4} \mathrm{Sq}{ }^{1}
$$

which is not possible.
Despite this, there is a $k \mathrm{O}$-module realising this module, namely $H \mathbb{Z}$ for which $H_{k O}^{*}(H \mathbb{Z}) \cong \mathcal{A}(1) / \mathcal{A}(1)\left\{\mathrm{Sq}^{1}\right\}$.

Another approach using a Toda bracket

The existence of a CW spectrum $W=S^{0} \cup e^{2} \cup e^{3} \cup e^{5}$ whose cohomology is $\mathcal{A} / \mathcal{A}\left\{\mathrm{Sq}^{1}\right\}$ is equivalent to the Toda bracket $\langle\eta, 2, \eta\rangle \subseteq \pi_{3}\left(S^{0}\right)$ containing 0 . But $\langle\eta, 2, \eta\rangle=\{ \pm 2 \nu\} \not \supset 0$. If we interpret the Toda bracket as being in $\pi_{3}(k O)$, since the image of ν is 0 , we can build a CW $k O$-module of this form using $k \mathrm{O}$ cells; the result is equivalent to $H \mathbb{Z}$ as a $k \mathrm{O}$-module.

There are many other examples of realisable cyclic $\mathcal{A}(1)$-modules! Of course there are also non-cyclic examples which can be realised by various methods such as by attaching cells or forming mapping cones of maps between $k \mathrm{O}$-modules.

Realisability of $\mathcal{A}(2)$-modules with tmf-modules

Here are some pictures of $\mathcal{A}(2)$.

All of the above examples for $k \mathrm{O}$ of the form $k \mathrm{O} \wedge W$ can be replaced by $\operatorname{tmf} \wedge W$ so that $H_{\text {tmf }}^{*}(\operatorname{tmf} \wedge W) \cong H^{*}(W)$ as $\mathcal{A}(2)$-modules. The Sq^{4} argument works to show there is no $\mathcal{A}(2)$-module of the form shown; the Toda bracket argument also applies as the image of ν in $\pi_{3}(\mathrm{tmf})$ is non-zero.

A good source of $\mathcal{A}(2)$-modules is by using doubling which exploits the fact that there is a degree halving surjective homomorphism of Hopf algebras $\mathcal{A}(2) \rightarrow \mathcal{A}(1)$ under which

$$
\mathrm{Sq}^{n} \mapsto \begin{cases}\mathrm{Sq}^{n / 2} & \text { if } n \text { is even } \\ 0 & \text { otherwise }\end{cases}
$$

By restricting and doubling degrees, every $\mathcal{A}(1)$-module M induces an $\mathcal{A}(2)$-module ${ }^{(1)} M$.

Doubling the Joker

Joker
${ }^{(1)}$ Joker

Andrew Baker, University of Glasgow

The following examples are of the form $H^{*}(W)$. Their constructions depending on $\eta \nu \in \pi_{4}\left(S^{0}\right)=0$. The two CW spectra are stably Spanier-Whitehead dual.

$$
\mathcal{A}(2) / \mathcal{A}(2)\left\{\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \mathrm{Sq}^{7}\right\} \mathcal{A}(2) / \mathcal{A}(2)\left\{\mathrm{Sq}^{1}, \mathrm{Sq}^{1} \mathrm{Sq}^{2}, \mathrm{Sq}^{4}\right\}
$$

It is also possible to realise the double of the (whiskered) Joker using the Toda bracket $\langle\eta, \nu, \eta\rangle=\left\{\nu^{2}\right\} \subseteq \pi_{6}\left(S^{0}\right)$. The double of $\mathcal{A}(1)$ is a also realisable as a spectrum so we can smash it with tmf to realise this $\mathcal{A}(2)$-module.

What about this one?

We can't rule this out with Steenrod operations. What about a Toda bracket argument? Constructing a suitable CW complex requires the Toda bracket $\langle\nu, \eta, \nu\rangle \subseteq \pi_{8}\left(S^{0}\right)$ to contain 0 . But

$$
\langle\nu, \eta, \nu\rangle=\{\bar{\nu}\}=\{\eta \sigma+\varepsilon\} \not \supset 0 .
$$

Here the image of σ in $\pi_{7}(\mathrm{tmf})$ is 0 but the image of ε is not. This means that there is no tmf-module with this cohomology! If it did exist its homotopy would be $\pi_{*}(k \mathrm{O})\left[\mathrm{v}_{2}\right]$.

Some tmf-modules related to $k \mathrm{O}$

The cohomology of the tmf-module $k \mathrm{O}$ is shown below.

$$
H_{\mathrm{tmf}}^{*}(k O) \cong \mathcal{A}(2) / \mathcal{A}(2)\left\{\mathrm{Sq}^{1}, \mathrm{Sq}^{2}\right\}
$$

We can realise $k \mathrm{O}$ as a CW tmf-module with cells corresponding to the basis shown. Each skeleton gives a tmf-module with corresponding $\mathcal{A}(2)$-module as its cohomology.

$$
\mathcal{A}(2) / \mathcal{A}(2)\left\{\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq} \mathrm{q}^{4}\right\} \quad \mathcal{A}(2) / \mathcal{A}(2)\left\{\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \mathrm{Sq}^{1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}{ }^{4}\right\}
$$

There are many other $\mathcal{A}(2)$-modules including many cyclic ones. Here is an interesting example that is realisable as the cohomology of a tmf-module.

$$
\mathcal{A}(2) / \mathcal{A}(2)\left\{\mathrm{Sq}^{1}, A, B\right\}
$$

$$
\begin{aligned}
& A=\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} \mathrm{Sq}^{2} \mathrm{Sq}^{1} \\
& B=\mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq} q^{4}+\mathrm{Sq}^{1} \mathrm{Sq}^{2} \mathrm{Sq}^{1} \mathrm{Sq}^{2} \mathrm{Sq}^{4}+\mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1} \mathrm{Sq}^{2} S q^{1}
\end{aligned}
$$

It doesn't come from an \mathcal{A}-module since Adem relations imply

$$
S q^{2} S q^{1} S q^{2} S q^{4} x_{0}=\left(S q^{8} S q^{1}+S q^{1} S q^{8}\right) x_{0}
$$

Exploiting dualisation

Many of the examples are 'self-dual'. For a left module M over a Hopf algebra H over a field \mathbb{k}, the dual $\mathrm{D} M=\operatorname{Hom}_{\mathbb{k}}(M, \mathbb{k})$ is naturally a right H -module but using the antipode this can be made into a left module. In the graded case,
$(D M)^{n}=\operatorname{Hom}_{\mathbb{k}}\left(M^{-n}, \mathbb{k}\right)$, and M is stably self-dual if for some k, $\mathrm{D} M \cong M[k]$.
Every finite dimensional Hopf algebra is a Frobenius algebra or in the graded case a Poincaré duality algebra, hence stably self-dual. Natural question: Which (cyclic) modules are stably self-dual? Partial answer: Any $\mathcal{A}(n)$-module of form $\mathcal{A}(n) \otimes{ }_{K} \mathbb{F}_{2}$ where $K \subseteq \mathcal{A}(n)$ is a subHopf algebra. If K is normal then $\mathcal{A}(n) / / K=\mathcal{A}(n) \otimes_{K} \mathbb{F}_{2}$ is a quotient Hopf algebra.
There is a version of Spanier-Whitehead duality for finite CW R-modules and $H_{R}^{*}\left(D_{R} X\right) \cong \mathrm{D}\left(H_{R}^{*}(X)\right)$ as left $H_{R}^{*}(H)$-modules. In particular, for a dualisable S-module $W, D_{R}(R \wedge W) \sim R \wedge D_{S} W$. This allows us to realise many examples, however dualising a cyclic module may not give a cyclic module.

Andrew Baker, University of Glasgow

Thanks for listening, stay safe and well!

