Fun and games with the Steenrod algebra
Online Algebraic Topology Seminar, 27th April 2020

Printable version
wuw.maths.gla.ac.uk/~ajb/dvi-ps/Talks/0ATS 2020.pdf
See also arXiv:2003.12003

Andrew Baker, University of Glasgow

last updated 27/04/2020

Andrew Baker, University of Glasgow



Recollections on mod 2 (co)homology

Each of H.(—) = H.(—;F2) and H*(—) = H*(—;F,) is a
homotopy functor from spaces to Z-graded vector spaces. The
reduced theories H,(—) and H*(—) gives functors from based
spaces to Z-graded vector spaces which extend to spectra. A
stable cohomology operation 6 of degree k is a sequence of natural
transformations

0,: H'(—) = H" (=) (nez)

compatible with suspension isomorphisms, i.e., the following
diagram commutes for all n and k.
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The set of all such operations A = HX(H) is an F»-vector space,
and these form the mod 2 Steenrod algebra A = A* = H*(H), a
non-commutative graded algebra with composition as product.
The structure of A was determined by Serre, then Milnor showed
that it was a cocommutative Hopf algebra and determined its dual
Hopf algebra A, where A, = Homy,(A",F>). As an algebra, A is
generated by the Steenrod operations Sq" € A" (n > 1) satisfying
the Adem relations (here Sq° = 1):

N o
For 0 < r<2s, Sq"Sq°= Z (S 2.1) Sq IS¢ .
oj<lr/2) ¥ T

0 1
Sq' Sq* = (1) Sq> =0, Sq'Sq* = (1> Sq® = S,

1

Sq°Sq” = (2) Sq* +<8> Sq®Sq' = Sq*Sq’,
2 1

Sq?Sq® = (2) Sq® + <0> Sq*Sq! =Sq° +Sq*Sqt .
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It can be shown that the algebra indecomposables are the Sq°°.
There is a basis of admissible monomials

Sq(il,...,l'[) — Sqil Sqi2 . Sqi[

where i,_1 > 2i, for 2 < r < ¢ and iy > 1. Here { is the length of
the monomial and there is one length zero element, the identity
operation Sq° = 1.

The cocommutative coproduct ¢: A — A ® A and antipode

x: A — A are given by the formulae

$(SqT) = >S4’ ®Sq" ", > x(Sq97)Sq" " =0.

ogr<n 0<r<n

Note that the antipode is anti-commutative, i.e.,
x(ef) = x(B)x()-
Here are the first few x(Sq?):
x(Sa') = Sa*, x(Sq?) = Sa?, x(Sq*) = Sq* +Sq" Sq* Sq* .
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Theorem (Serre & Milnor)

The commutative Hopf algebra A, is polynomial:
A =& r > 1) =TF[¢ - r > 1],

where &,,(, € Axr—1 and (, = x(&,). The coproduct and
antipode satisfy

YE) =Y &0 i)=Y o,

0<j<n 0<j<n
2k
Co= Y &l
1<k<n

The non-zero primitives are the elements £ = (¥'.

The Poincaré series for A and A, is H(l - tzrfl)fl-

r>1
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Finite sub-Hopf algebras of A

Important fact: A =J,,.A(n), where A(n) C A is the finite

sub-Hopf algebra of dimension (") generated by
Sq',Sq2,Sq*,...,Sq?" with dual quotient Hopf algebra

Aln)e = AJ(E GG Gan o)
- A*//F2[C2n+17 2n7 3 17 . Cg—l—l’ Cn+27 o ]
Here A(n) and A(n). have Poincaré series
H (1— t2"+2*f(2'71))

_ 42r—1
1<r<n+1 (1 t )

The highest degree element in A(n), is the residue class of

2n+1 1 .9n_1 20— 1 1
Zp = (3 G C 1
and dual to this is a generator of the 1-dimensional socle soc.A(n).

Under the dual pairing, z, defines a Frobenius form making .A(n) a
Poincaré duality algebra and thus self-injective.
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The Wall relations

The Adem relations are not minimal, and also do not restrict to
the A(n) subalgebras: for example, the identities

Sq?Sq® = Sq* Sqt + Sq® = Sq* Sq* + Sq! Sq*

are not meaningful in A(1) since Sq* ¢ A(1). Wall found a
minimal set of relations amongst the generators Sq which do
restrict to the A(n).
ForO<s<r—2and1<t,let
O(r,s) = 54> Sq* +5q> Sq”,
o(t) = Sq% Sa> +5a2 Sq2 Sq¥ T +5¢27 Sq2 7 Sq?".
Then ©(r,s) € A(r — 1) and ®(r) € A(r — 1) so these can be
. . . 2k
expressed as polynomial expressions in the Sq= for 0 < k < r— L.
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The elements
Sq% Sq% +5q% Sq% + O(r, 5),
Sq2t Sq2t +Sq2t71 Sq2t Sq2t71 +Sq2t71 qutfl Sq2t + q)(t)

give a minimal set of relations for A. In particular, such elements
with r, t < n form a minimal set of relations for .A(n).
In the first few cases the Wall relations are

A(0): Sq'Sq' =0,
A1) : Sq'Sq' =5q°Sq? +Sq' Sq?Sql =0
A2):  Sq'Sq' =Sq°Sq? +Sq' Sq? Sqt
= Sq* Sq* +Sq? Sq* Sq? + Sq? Sq? Sq*
= Sq' Sq* + Sq* Sq' + Sq° Sq* Sq? = 0.
Using these it is possible to produce explicit bases for the A(n)s.

For example, there is a formula for the top dimensional element,
here are the cases n =0,1,2:

Sq', Sq' Sq?Sq' Sa?, Sq' Sq® Sq' Sq” Sq* Sq® Sq* Sq* Sq? Sq* .



Generalisations of the Steenrod algebra

Modern categories of spectra are symmetric monoidal with respect
to smash products before passing to homotopy. The category of
S-modules .#s is an important example and provides a good
model for the category of spectra.

A commutative monoid in this category is equivalent to an £ ring
spectrum and is called a commutative S-algebra. Examples
include S, HZ, HF,, kO, kU, MU and so on. Every commutative
S-algebra R has a module category .#r which is also closed
symmetric monoidal with respect to a relative smash product Ag
and function object Fr(—, —); it also has a model structure and
homotopy category Zg in which to do homotopy theory.

If R is connective and mgR = Z or mgR = Zp) there is a morphism
of commutative S-algebras R -+ H = HIF, so H is a commutative
R-algebra, and then there are relative homology and cohomology
theories

Hi (=) =m(H A =), Hi(=) = m—(Fr(—. H)).
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The relative Steenrod algebra Hj(H) is the algebra of stable
operations in Hy(—). When R =S it is A.
When p =2, Hio(H) = A(1) and H;(H) = A(2).

Realisation question: When working with spectra (or equivalently
S-modules) we can ask whether an \A-module M is realisable

as H*(X) for some S-module X. Similarly, for an A(1)-module we
can ask if it is H;5(Y) for a kO-module Y and for an
A(2)-module we can ask if it is H} ((Z) for a tmf-module Z.
Example: When can we realise an A-module of the following form

with 0 # 6 € A?
6{
0

Algebraic observation: Module only exists if 8 is indecomposable,
i.e., n=2°and # = Sq* +decomposables.
Hopf invariant 1 Theorem (Adams): Only realisable if s =0, 1,2, 3.
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Realisability of .4(1)-modules

We will work with left modules M = M* involving multiplication
maps A(1)" @ M" — M"*". Here some pictures of A(1) which is a
free cyclic module realisable as Hj,(H).

"

.\ \
e —0

| |
| |
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Here are some more realisable 4(1)-modules. In each case we can
form a finite CW spectrum W then take kKO A W to get

Hi (kO A W) = H*(W) with its A-action restricted to an action
of the subalgebra A(1) C A.

SqZC
@

Fa = H*(S%) A(1)/A(1){Sa",Sa" Sq”} = H*(C,)

S 1
q Sq?

Sq?
Sqt

A(1)/A(1){Sa",Sq* Sa" Sq”} A(1)/ A1) {Sq*}
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The Joker The whiskered Joker

A(1)/A(1){Sq* S} A(1)/A(1){Sq’ Sa" Sq”}

The construction of the Joker example uses the Toda bracket
(2,1,2) = {n?} C m(S°). Later we'll see other examples of Toda
brackets playing a rble.
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What about this one?

A(1)/A1){Sq"}

Let’s first think about whether the above diagram can be realised
as an A-module. Notice that the top class is Sq° Sq' Sq?. Using
Adem relations we have

S4?Sq' Sa* = Sq” Sq* = Sq° +Sq* Sq" = Sq' Sq* +Sq* Sq*

which is not possible.
Despite this, there is a kO-module realising this module,
namely HZ for which Hj,(HZ) = A(1)/A(1){Sq'}.
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Another approach using a Toda bracket

The existence of a CW spectrum W = S% U e? U 3 U €® whose
cohomology is A/ A{Sq'} is equivalent to the Toda bracket
(n,2,m) C m3(S°) containing 0. But (1,2,n) = {+2v} # 0.

If we interpret the Toda bracket as being in w3(k0O), since the
image of v is 0, we can build a CW kO-module of this form
using kO cells; the result is equivalent to HZ as a kO-module.

There are many other examples of realisable cyclic A(1)-modules!
Of course there are also non-cyclic examples which can be realised
by various methods such as by attaching cells or forming mapping
cones of maps between kO-modules.
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Realisability of .4(2)-modules with tmf-modules

Here are some pictures of A(2).




All of the above examples for kO of the form kO A W can be
replaced by tmf A W so that H}_ (tmf A W) = H*(W) as
A(2)-modules. The Sq* argument works to show there is no
A(2)-module of the form shown; the Toda bracket argument also
applies as the image of v in w3(tmf) is non-zero.

Sqt

Sq?

A good source of A(2)-modules is by using doubling which exploits
the fact that there is a degree halving surjective homomorphism of
Hopf algebras A(2) — A(1) under which

Sq" s Sq"/2 if nis éven,
0 otherwise.

By restricting and doubling degrees, every A(1)-module M induces
an_A(2).-module (U /.
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Doubling the Joker

Joker M Joker

Sq*
Sq? Sq?
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The following examples are of the form H*(W). Their
constructions depending on nv € 74(S%) = 0. The two CW
spectra are stably Spanier-Whitehead dual.

Sq2
Sq4

A(2)/A(2){Sq',5a% Sa"} A(2)/A(2){Sa", Sq" S, Sq*}

It is also possible to realise the double of the (whiskered) Joker

using the Toda bracket (n,v,n) = {v?} C m6(S°). The double of
A(1) is a also realisable as a spectrum so we can smash it with

tmf to realise this A(2)-module.
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What about this one?

Sq?

A(2)/ A(2){Sq*, S’}

We can't rule this out with Steenrod operations. What about a
Toda bracket argument? Constructing a suitable CW complex
requires the Toda bracket (v, n,v) C 73(S°) to contain 0. But

{v,m,v) = {7} = {no +¢} 2 0.

Here the image of o in m7(tmf) is 0 but the image of ¢ is not.
This means that there is no tmf-module with this cohomology! If
it did exist its homotopy would be 7, (kO)[v2].
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Some tmf-modules related to kKO

The cohomology of the tmf-module kO is shown below.

17

Hy 1 (kO) =2 A(2)/A(2){Sq",Sa”}
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We can realise kO as a CW tmf-module with cells corresponding
to the basis shown. Each skeleton gives a tmf-module with
corresponding A(2)-module as its cohomology.

kOl kol kOl
10
7
6 6 6
4 4 4
0 0 0

A(2)/ A(2){Sa",Sa%,Sa* Sa® Sa*}  A(2)/ A(2){Sa’,Sq?, Sa® Sq* Sa? Sq*}
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There are many other A(2)-modules including many cyclic ones.
Here is an interesting example that is realisable as the cohomology

of a tmf-module.

A(2)/A(2){Sq', A, B}

A=5q"Sq> +Sq* Sq' S Sq',
B = Sq*Sq% Sq* + Sq' Sq% Sq' Sq% Sq* + Sq* Sq% Sq' Sq% Sq' .

It doesn’t come from an .A-module since Adem relations imply

Sq? Sq' Sq? Sq* xo = (Sq® Sq* + Sq* Sq®)xo.
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Exploiting dualisation

Many of the examples are ‘self-dual’. For a left module M over a
Hopf algebra H over a field k, the dual DM = Homy (M, k) is
naturally a right H-module but using the antipode this can be
made into a left module. In the graded case,

(DM)" = Homy(M~",k), and M is stably self-dual if for some k,
DM = M[K].

Every finite dimensional Hopf algebra is a Frobenius algebra or in
the graded case a Poincaré duality algebra, hence stably self-dual.
Natural question: Which (cyclic) modules are stably self-dual?
Partial answer: Any A(n)-module of form A(n) @k F> where

K C A(n) is a subHopf algebra. If K is normal then

A(n)//K = A(n) ®k F2 is a quotient Hopf algebra.

There is a version of Spanier-Whitehead duality for finite CW
R-modules and Hi(DrX) = D(Hg(X)) as left Hg(H)-modules. In
particular, for a dualisable S-module W, Dr(R A W) ~ RA DsW.
This allows us to realise many examples, however dualising a cyclic

module may not give a cyclic module.
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Thanks for listening, stay safe and well!
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