MSp: something old and something new

electronic Computational Homotopy Theory Seminar (16th September 2021)

Printable version available at
พพพ.maths.gla.ac.uk/~ajb/dvi-ps/Talks/eCHT2021.pdf
Preprint see arXiv:2103.01253

Andrew Baker, University of Glasgow

last updated $16 / 09$ /2021

MSp: some history

The compact symplectic groups $\mathrm{Sp}(n) \leqslant U(2 n) \leqslant \mathrm{O}(4 n)$ give rise to the classifying space of virtual symplectic (= quaternionic) vector bundles which admits an \mathcal{E}_{∞} map $B \mathrm{Sp} \rightarrow B \mathrm{O}$ and a Thom spectrum $M S$ p which an \mathcal{E}_{∞} ring spectrum.
Since the 1960s the homotopy ring $\pi_{*}(M \mathrm{Sp})$ has been studied intensively and Kochman determined its classical Adams spectral sequence for $p=2$. The ring $\pi_{*}(M \mathrm{Sp})$ is complicated: there is 2-torsion of arbitrary 2-exponent and it is all nilpotent. At an odd prime $p, M S p$ is a wedge of suspensions of $B P$, so we'll (mostly) work 2-locally from now on.
The image of $\pi_{*}(M \mathrm{Sp}) \rightarrow H_{*}\left(M \mathrm{Sp} ; \mathbb{F}_{2}\right)$ is known by work of Floyd and Kochman; its first non-trivial positive part is in degree 32 so $M S p$ is not 'minimal atomic' in the sense of Baker \& May. On the other hand, the TAQ Hurewicz homomorphism

$$
\pi_{*}(M S p) \rightarrow \mathrm{TAQ}_{*}\left(M \mathrm{Sp} ; \mathbb{F}_{2}\right) \cong H_{*}\left(k \mathrm{O} ; \mathbb{F}_{2}\right)[4]
$$

is trivial, so $M S$ p is minimal atomic as a 2 -local \mathcal{E}_{∞} ring spectrum.

Kochman determined the image of $\pi_{*}(S) \rightarrow \pi_{*}(\mathrm{MSp})$ modulo higher Adams filtration: its only non-zero positive degree elements are the images of the Adams $\mu_{8 k+\varepsilon}$ family where $k \geqslant 0, \varepsilon=1,2$. Earlier, Ray showed that apart from $\eta \in \pi_{1}(S)$, the image of the classical J-homomorphism mapped trivially. We will see that this has interesting consequences for the K-localisation $M S p_{K}$.
Ray also produced an infinite family of indecomposable elements $\varphi_{k} \in \pi_{8 k-3}(M S p)$ of order 2 and much of the known structure of $\pi_{*}(\mathrm{MSp})$ depends on these. They are detected by the Hurewicz homomorphism $\pi_{*}(M S p) \rightarrow K \mathrm{O}_{*}(M \mathrm{Sp})$.
We can lift φ_{k} to $\widetilde{\varphi}_{k} \in \pi_{8 k-2}(M \operatorname{Sp} \wedge M(2))$ and consider its image in $B P_{*}(M S p \wedge M(2))$. For $s \geqslant 1$,

$$
\widetilde{\varphi}_{2^{s-1}} \mapsto v_{s+1}+v_{s} N_{2^{s-1}} \quad \bmod \left(I_{s-1}+\text { decomposables }\right),
$$

where $B P_{*}(M \mathrm{Sp})=B P_{*}\left[N_{k}: k \geqslant 1\right]$ and $N_{k} \in B P_{4 k}(M S p)$. So these elements are in some sense 'transchromatic'.

Some recent results

An example left unresolved in Ravenel's localisation paper is the Bousfield class of MSp. It is known that globally

$$
\left\langle S^{0}\right\rangle \geqslant\langle M S p\rangle \geqslant\langle M \mathrm{U}\rangle
$$

so 2-locally,

$$
\left\langle S^{0}\right\rangle \geqslant\langle M S p\rangle \geqslant\langle B P\rangle
$$

Theorem (B., arXiv:2103.01253)
Globally

$$
\left\langle S^{0}\right\rangle>\langle M S \mathrm{p}\rangle>\langle M \mathrm{U}\rangle
$$

and 2-locally,

$$
\left\langle S^{0}\right\rangle>\langle M S p\rangle>\langle B P\rangle
$$

K and $K(1)$-localisations

We will consider two Bousfield localisations where $K=K \mathrm{U}_{(2)}$:

$$
(-)_{K}=(-)_{K O_{(2)}}, \quad(-)_{K(1)}=\left((-)_{K}\right)_{2} \widehat{.}
$$

We recall (here $s \in \mathbb{Z}$)

$$
\pi_{n}\left(S_{K}\right)= \begin{cases}\mathbb{Z}_{(2)} \oplus \mathbb{Z} /(2) & \text { if } n=0, \\ \mathbb{Z} /\left(2^{\infty}\right)=\mathbb{Q} / \mathbb{Z}_{(2)} & \text { if } n=-2, \\ \mathbb{Z} /\left(2^{\nu_{2}(s)+4}\right) & \text { if } n=8 s-1 \text { and } s \neq 0, \\ \mathbb{Z} /(2) & \text { if } n=8 s \text { and } s \neq 0, \\ \mathbb{Z} /(2) \oplus \mathbb{Z} /(2) & \text { if } n=8 s+1, \\ \mathbb{Z} /(2) & \text { if } n=8 s+2, \\ \mathbb{Z} /(8) & \text { if } n=8 s+3, \\ 0 & \text { otherwise. }\end{cases}
$$

In positive degrees these groups detect the image of the classical J-homomorphism under the localisation map $\pi_{*}(S) \rightarrow \pi_{*}\left(S_{K}\right)$.

Ravenel showed that for $s \in \mathbb{N}$, the multiplication pairing

$$
\mu_{s}: \pi_{8 s-1}\left(S_{K}\right) \otimes \pi_{-8 s-1}\left(S_{K}\right) \rightarrow \pi_{-2}\left(S_{K}\right) \cong \mathbb{Z} /\left(2^{\infty}\right)
$$

is injective and it follows that the images of the maps μ_{s} exhaust $\pi_{-2}\left(S_{K}\right)$,

$$
\pi_{-2}\left(S_{K}\right)=\bigcup_{s \geqslant 1} \operatorname{im} \mu_{s}
$$

On passing to $\pi_{*}\left(S_{K(1)}\right)$ we get the same groups except that

$$
\pi_{n}\left(S_{K(1)}\right)= \begin{cases}\mathbb{Z}_{2} \oplus \mathbb{Z} /(2) & \text { if } n=0 \\ \mathbb{Z}_{2}=\mathbb{Z}_{2}\left\{\zeta_{2}\right\}=\mathbb{Z}_{2}\{\zeta\} & \text { if } n=-1 \\ 0 & \text { if } n=-2\end{cases}
$$

where \mathbb{Z}_{2} denotes the 2-adic integers.
Here

$$
\pi_{-1}\left(S_{K(1)}\right)=\operatorname{Hom}\left(\mathbb{Z} /\left(2^{\infty}\right), \pi_{-2}\left(S_{K}\right)\right)
$$

and more generally, for any spectrum X, there is a functorial short exact sequence (which splits):

$$
\begin{aligned}
0 \rightarrow \operatorname{Ext}\left(\mathbb{Z} /\left(2^{\infty}\right), \pi_{*}\left(X_{K}\right)\right) \rightarrow & \pi_{*}\left(X_{K(1)}\right) \\
& \rightarrow \operatorname{Hom}\left(\mathbb{Z} /\left(2^{\infty}\right), \pi_{*-1}\left(X_{K}\right)\right) \rightarrow 0
\end{aligned}
$$

The \mathcal{E}_{∞} morphism $S_{K} \rightarrow M \operatorname{Sp}_{K}$ induces a commutative diagram

in which the dashed arrow is trivial by results of Ray and

$$
\tilde{\mu}_{s}: \pi_{8 s-1}\left(M \mathrm{Sp}_{K}\right) \otimes \pi_{-8 s-1}\left(M \mathrm{Sp}_{K}\right) \rightarrow \pi_{-2}\left(M \mathrm{Sp}_{K}\right)
$$

is the multiplication.
It follows that $\pi_{-2}\left(S_{K}\right) \rightarrow \pi_{-2}\left(M \operatorname{Sp}_{K}\right)$ is trivial.

There is a commutative diagram

which shows that $\pi_{-1}\left(S_{K(1)}\right) \rightarrow \pi_{-1}\left(M \mathrm{Sp}_{K(1)}\right)$ is also trivial, so the generator $\zeta \in \pi_{-1}\left(S_{K(1)}\right)$ maps to zero and $M \mathrm{Sp}_{K(1)}$ has characteristic ζ in the sense of Szymik, i.e., there is a morphism of \mathcal{E}_{∞} ring spectra $S_{K(1)} / /(\zeta) \rightarrow M \operatorname{Sp}_{K(1)}$.

The \mathcal{E}_{∞} cone for ν and σ

The following results are joint work with Gerd Laures and Jan Holz. Since ν and σ both map to zero in MSp there is an \mathcal{E}_{∞} morphism $S / /(\nu, \sigma) \rightarrow M S p$ which is a 9 -equivalence in two different ways.

- If we realise both spectra with minimal CW structures then it induces an equivalence of 8 -skeleta; i.e.,

$$
H_{k}\left(S / /(\nu, \sigma) ; \mathbb{F}_{2}\right) \xrightarrow{\cong} H_{k}\left(M S p ; \mathbb{F}_{2}\right) \text { if } 0 \leqslant k \leqslant 8 .
$$

- If we realise both \mathcal{E}_{∞} ring spectra with minimal CW structures then it induces an equivalence of 8 -skeleta; i.e., $\mathrm{TAQ}_{k}\left(S / /(\nu, \sigma) ; \mathbb{F}_{2}\right) \xrightarrow{\cong} \mathrm{TAQ}_{k}\left(M S p ; \mathbb{F}_{2}\right)$ if $0 \leqslant k \leqslant 8$.
Here Dyer-Lashof monomials only start appearing in degree 9 and

$$
\begin{aligned}
H_{*}\left(S / /(\nu, \sigma) ; \mathbb{F}_{2}\right) & =\mathbb{F}_{2}\left\{1, x_{4}, x_{4}^{2}, x_{8}, \ldots\right\}, \\
H_{*}\left(M S p ; \mathbb{F}_{2}\right) & =\mathbb{F}_{2}\left\{1, q_{1}, q_{1}^{2}, q_{2}, \ldots\right\}, \\
\operatorname{TAQ}_{*}\left(S / /(\nu, \sigma) ; \mathbb{F}_{2}\right) & =\mathbb{F}_{2}\left\{x_{4}, x_{8}\right\}, \\
\operatorname{TAQ}_{*}\left(M S p ; \mathbb{F}_{2}\right) & =\mathbb{F}_{2}\left\{1, \xi_{1}^{4}, \ldots\right\}[4] .
\end{aligned}
$$

To see what is going on, the (usual) 8-skeleton of $S / /(\nu)$ has the cell structure shown with Steenrod operations in homology.

So here σ on the bottom cell is not dead but it has order 4 and Adams filtration 2. So the extra 8 -cell in $S / /(\nu, \sigma)$ and $M S p$ has to be attached to kill it.

Theorem (Holz, PhD thesis)

The \mathcal{E}_{∞} ring spectrum $(S / /(\nu, \sigma))_{K(1)}$ has characteristic ζ.
The proof involves a geometric construction of an Artin-Schreier class $a \in \pi_{0}\left((K \mathrm{O} \wedge S / /(\nu, \sigma))_{K(1)}\right.$ for which

$$
\psi^{9} a=a+1
$$

Corollary (Holz \& Laures)

There are equivalences of \mathcal{E}_{∞} ring spectra
$(S / /(\nu, \sigma))_{K(1)} \sim S_{K(1)} / /(\zeta) \wedge(?), \quad M \operatorname{Sp}_{K(1)} \sim S_{K(1)} / /(\zeta) \wedge(? ?)$.

Independently I used a different approach to these results by using the θ-algebra structure of the 2 -completed K-homology to show that there is a $K(1)$-equivalence

$$
S / /(\nu) \sim \prod_{j} \sigma^{4 \rho(j)} K \mathrm{O}
$$

Some new results (very provisional)

Here are some recent results which provide a very general context for understanding what is happening.

Theorem (B. \& Laures)

Let p be a prime and work p-locally.

- If $p=2$ and $j_{4 m-1} \in \pi_{4 m-1}(S)$ is a generator of $\operatorname{im} J_{4 m-1} \subseteq \pi_{4 m-1}(S)$, then $K_{0}^{\vee}\left(S / /\left(j_{4 m-1}\right)\right)$ contains an Artin-Schreier element so $\left(S / /\left(j_{4 m-1}\right)\right)_{K(1)}$ has characteristic ζ.
- If p is odd and $j_{2(p-1) n-1} \in \pi_{2(p-1) n-1}(S)$ is a generator of $\operatorname{im} J_{2(p-1) n-1} \subseteq \pi_{2(p-1) n-1}(S)$, then $K_{0}^{\vee}\left(S / /\left(j_{2(p-1) n-1}\right)\right)$ contains an Artin-Schreier element so $\left(S / /\left(j_{2(p-1) n-1}\right)\right)_{K(1)}$ has characteristic ζ.

For $p=2$, it follows that $(S / /(\nu))_{K(1)},(S / /(\sigma))_{K(1)},(S / /(\sigma))_{K(1)}$ have characteristic ζ. There is a map $S / /(\nu) \rightarrow S / /(\eta)$, so $(S / /(\eta))_{K(1)}$ also has characteristic ζ.

Thanks for listening!

Some references can be found on the next slide.

References

- N. Ray, The symplectic J-homomorphism, Invent. Math., 12 (1971), 237-248.
- D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 106 (1984), 351-414.
- A. Baker, Some chromatic phenomena in the homotopy of MSp, Adams Memorial Symposium on Algebraic Topology, Vol. 2, Ed. N. Ray and G. Walker, London Mathematical Society Lecture Note Series, 175 (1992), 263-280.
- G. Laures, An E_{∞} splitting of spin bordism, Amer. J. Math., 125 (2003), 977-1027.
- A. J. Baker \& J. P. May, Minimal atomic complexes, Topology, 43 (2004), 645-665.
- A. Baker, H. Gilmour \& P. Reinhard, Topological André-Quillen homology for cellular commutative S-algebras, Abhand. Math. Sem. Univ. Hamburg, 78 (2008), 27-50.

