MSp: something old and something new

electronic Computational Homotopy Theory Seminar (16th September 2021)

Printable version available at www.maths.gla.ac.uk/~ajb/dvi-ps/Talks/eCHT2021.pdf Preprint see arXiv:2103.01253

Andrew Baker, University of Glasgow

last updated 16/09/2021

MSp: some history

The compact symplectic groups $\operatorname{Sp}(n) \leq U(2n) \leq O(4n)$ give rise to the classifying space of virtual symplectic (= quaternionic) vector bundles which admits an \mathcal{E}_{∞} map $B\operatorname{Sp} \to BO$ and a Thom spectrum $M\operatorname{Sp}$ which an \mathcal{E}_{∞} ring spectrum.

Since the 1960s the homotopy ring $\pi_*(MSp)$ has been studied intensively and Kochman determined its classical Adams spectral sequence for p = 2. The ring $\pi_*(MSp)$ is complicated: there is 2-torsion of arbitrary 2-exponent and it is all nilpotent.

At an odd prime p, MSp is a wedge of suspensions of BP, so we'll (mostly) work 2-locally from now on.

The image of $\pi_*(MSp) \to H_*(MSp; \mathbb{F}_2)$ is known by work of Floyd and Kochman; its first non-trivial positive part is in degree 32 so MSp is not 'minimal atomic' in the sense of Baker & May. On the other hand, the TAQ Hurewicz homomorphism

 $\pi_*(M\mathrm{Sp}) \to \mathsf{TAQ}_*(M\mathrm{Sp}; \mathbb{F}_2) \cong H_*(k\mathrm{O}; \mathbb{F}_2)[4]$

is trivial, so $M\mathrm{Sp}$ is minimal atomic as a 2-local \mathcal{E}_∞ ring spectrum.

Kochman determined the image of $\pi_*(S) \to \pi_*(MSp)$ modulo higher Adams filtration: its only non-zero positive degree elements are the images of the Adams $\mu_{8k+\varepsilon}$ family where $k \ge 0$, $\varepsilon = 1, 2$. Earlier, Ray showed that apart from $\eta \in \pi_1(S)$, the image of the classical *J*-homomorphism mapped trivially. We will see that this has interesting consequences for the K-localisation MSp_{K} . Ray also produced an infinite family of indecomposable elements $\varphi_k \in \pi_{8k-3}(MSp)$ of order 2 and much of the known structure of $\pi_*(MSp)$ depends on these. They are detected by the Hurewicz homomorphism $\pi_*(MSp) \to KO_*(MSp)$. We can lift φ_k to $\widetilde{\varphi}_k \in \pi_{8k-2}(M \operatorname{Sp} \wedge M(2))$ and consider its image in $BP_*(MSp \wedge M(2))$. For $s \ge 1$,

· -· *(····>P / ····(-))· · ·· · · > -;

 $\widetilde{\varphi}_{2^{s-1}} \mapsto v_{s+1} + v_s N_{2^{s-1}} \mod (I_{s-1} + \text{decomposables}),$

where $BP_*(MSp) = BP_*[N_k : k \ge 1]$ and $N_k \in BP_{4k}(MSp)$. So these elements are in some sense 'transchromatic'.

Some recent results

An example left unresolved in Ravenel's localisation paper is the Bousfield class of MSp. It is known that globally

 $\langle S^{0} \rangle \geqslant \langle M \mathrm{Sp} \rangle \geqslant \langle M \mathrm{U} \rangle$

so 2-locally,

 $\langle S^0 \rangle \ge \langle M \mathrm{Sp} \rangle \ge \langle BP \rangle.$

Theorem (B., arXiv:2103.01253) Globally $\langle S^0 \rangle > \langle MSp \rangle > \langle MU \rangle$. and 2-locally, $\langle S^0 \rangle > \langle MSp \rangle > \langle BP \rangle$.

K and K(1)-localisations

We will consider two Bousfield localisations where $K = K U_{(2)}$:

$$(-)_{\kappa} = (-)_{\kappa O_{(2)}}, \quad (-)_{\kappa(1)} = ((-)_{\kappa})_{2}^{\widehat{}}.$$

We recall (here $s \in \mathbb{Z}$)

$$\pi_n(S_K) = \begin{cases} \mathbb{Z}_{(2)} \oplus \mathbb{Z}/(2) & \text{if } n = 0, \\ \mathbb{Z}/(2^{\infty}) = \mathbb{Q}/\mathbb{Z}_{(2)} & \text{if } n = -2, \\ \mathbb{Z}/(2^{\nu_2(s)+4}) & \text{if } n = 8s - 1 \text{ and } s \neq 0, \\ \mathbb{Z}/(2) & \text{if } n = 8s \text{ and } s \neq 0, \\ \mathbb{Z}/(2) \oplus \mathbb{Z}/(2) & \text{if } n = 8s + 1, \\ \mathbb{Z}/(2) & \text{if } n = 8s + 2, \\ \mathbb{Z}/(8) & \text{if } n = 8s + 3, \\ 0 & \text{otherwise.} \end{cases}$$

In positive degrees these groups detect the image of the classical J-homomorphism under the localisation map $\pi_*(S) \to \pi_*(S_K)$.

Ravenel showed that for $s \in \mathbb{N}$, the multiplication pairing

$$\mu_{s} \colon \pi_{8s-1}(S_{\mathcal{K}}) \otimes \pi_{-8s-1}(S_{\mathcal{K}}) o \pi_{-2}(S_{\mathcal{K}}) \cong \mathbb{Z}/(2^{\infty})$$

is injective and it follows that the images of the maps μ_s exhaust $\pi_{-2}(S_{\mathcal{K}})$,

$$\pi_{-2}(S_{\mathcal{K}}) = \bigcup_{s \ge 1} \operatorname{im} \mu_s.$$

On passing to $\pi_*(S_{\mathcal{K}(1)})$ we get the same groups except that

$$\pi_n(S_{K(1)}) = \begin{cases} \mathbb{Z}_2 \oplus \mathbb{Z}/(2) & \text{if } n = 0, \\ \mathbb{Z}_2 = \mathbb{Z}_2\{\zeta_2\} = \mathbb{Z}_2\{\zeta\} & \text{if } n = -1, \\ 0 & \text{if } n = -2, \end{cases}$$

where \mathbb{Z}_2 denotes the 2-adic integers. Here

$$\pi_{-1}(S_{\mathcal{K}(1)}) = \operatorname{Hom}(\mathbb{Z}/(2^{\infty}), \pi_{-2}(S_{\mathcal{K}}))$$

and more generally, for any spectrum X, there is a functorial short exact sequence (which splits):

$$\begin{split} 0 &\to \mathsf{Ext}(\mathbb{Z}/(2^{\infty}), \pi_*(X_{\mathcal{K}})) \to \pi_*(X_{\mathcal{K}(1)}) \\ &\to \mathsf{Hom}(\mathbb{Z}/(2^{\infty}), \pi_{*-1}(X_{\mathcal{K}})) \to 0. \end{split}$$

The \mathcal{E}_∞ morphism $\mathcal{S}_{\mathcal{K}} o \mathcal{M}\mathrm{Sp}_{\mathcal{K}}$ induces a commutative diagram

in which the dashed arrow is trivial by results of Ray and

$$\widetilde{\mu}_{s}: \pi_{8s-1}(M\mathrm{Sp}_{\mathcal{K}})\otimes\pi_{-8s-1}(M\mathrm{Sp}_{\mathcal{K}}) o \pi_{-2}(M\mathrm{Sp}_{\mathcal{K}})$$

is the multiplication. It follows that $\pi_{-2}(\mathcal{S}_{\mathcal{K}}) o \pi_{-2}(\mathcal{M}\mathrm{Sp}_{\mathcal{K}})$ is trivial. There is a commutative diagram

which shows that $\pi_{-1}(S_{\mathcal{K}(1)}) \to \pi_{-1}(M\mathrm{Sp}_{\mathcal{K}(1)})$ is also trivial, so the generator $\zeta \in \pi_{-1}(S_{\mathcal{K}(1)})$ maps to zero and $M\mathrm{Sp}_{\mathcal{K}(1)}$ has characteristic ζ in the sense of Szymik, i.e., there is a morphism of \mathcal{E}_{∞} ring spectra $S_{\mathcal{K}(1)}//(\zeta) \to M\mathrm{Sp}_{\mathcal{K}(1)}$.

The \mathcal{E}_∞ cone for u and σ

The following results are joint work with Gerd Laures and Jan Holz. Since ν and σ both map to zero in MSp there is an \mathcal{E}_{∞} morphism $S//(\nu, \sigma) \rightarrow MSp$ which is a 9-equivalence in two different ways.

If we realise both spectra with minimal CW structures then it induces an equivalence of 8-skeleta; i.e.,

$$H_k(S//(\nu, \sigma); \mathbb{F}_2) \xrightarrow{\cong} H_k(M \operatorname{Sp}; \mathbb{F}_2) \text{ if } 0 \leqslant k \leqslant 8.$$

If we realise both E_∞ ring spectra with minimal CW structures then it induces an equivalence of 8-skeleta; i.e.,
TAQ_k(S //(ν, σ); F₂) ≅ TAQ_k(MSp; F₂) if 0 ≤ k ≤ 8.

Here Dyer-Lashof monomials only start appearing in degree 9 and

$$\begin{aligned} & \mathcal{H}_{*}(S/\!/(\nu,\sigma);\mathbb{F}_{2}) = \mathbb{F}_{2}\{1,x_{4},x_{4}^{2},x_{8},\ldots\}, \\ & \mathcal{H}_{*}(M\mathrm{Sp};\mathbb{F}_{2}) = \mathbb{F}_{2}\{1,q_{1},q_{1}^{2},q_{2},\ldots\}, \\ & \mathsf{TAQ}_{*}(S/\!/(\nu,\sigma);\mathbb{F}_{2}) = \mathbb{F}_{2}\{x_{4},x_{8}\}, \\ & \mathsf{TAQ}_{*}(M\mathrm{Sp};\mathbb{F}_{2}) = \mathbb{F}_{2}\{1,\xi_{1}^{4},\ldots\}[4]. \end{aligned}$$

To see what is going on, the (usual) 8-skeleton of $S//(\nu)$ has the cell structure shown with Steenrod operations in homology.

So here σ on the bottom cell is not dead but it has order 4 and Adams filtration 2. So the extra 8-cell in $S//(\nu, \sigma)$ and MSp has to be attached to kill it.

Theorem (Holz, PhD thesis)

The \mathcal{E}_{∞} ring spectrum $(S/\!/(\nu,\sigma))_{\mathcal{K}(1)}$ has characteristic ζ .

The proof involves a geometric construction of an Artin-Schreier class $a \in \pi_0((KO \land S //(\nu, \sigma))_{K(1)})$ for which

$$\psi^9 a = a + 1.$$

Corollary (Holz & Laures)

There are equivalences of \mathcal{E}_∞ ring spectra

 $(S//(\nu,\sigma))_{\mathcal{K}(1)} \sim S_{\mathcal{K}(1)}//(\zeta) \wedge (?), \quad M \mathrm{Sp}_{\mathcal{K}(1)} \sim S_{\mathcal{K}(1)}//(\zeta) \wedge (??).$

Independently I used a different approach to these results by using the θ -algebra structure of the 2-completed K-homology to show that there is a K(1)-equivalence

$$S//(\nu) \sim \prod_{j} \sigma^{4\rho(j)} KO.$$

Some new results (very provisional)

Here are some recent results which provide a very general context for understanding what is happening.

Theorem (B. & Laures)

Let p be a prime and work p-locally.

- If p = 2 and $j_{4m-1} \in \pi_{4m-1}(S)$ is a generator of im $J_{4m-1} \subseteq \pi_{4m-1}(S)$, then $K_0^{\vee}(S//(j_{4m-1}))$ contains an Artin-Schreier element so $(S//(j_{4m-1}))_{K(1)}$ has characteristic ζ .
- If p is odd and j_{2(p-1)n-1} ∈ π_{2(p-1)n-1}(S) is a generator of im J_{2(p-1)n-1} ⊆ π_{2(p-1)n-1}(S), then K₀[∨](S//(j_{2(p-1)n-1})) contains an Artin-Schreier element so (S//(j_{2(p-1)n-1}))_{K(1)} has characteristic ζ.

For p = 2, it follows that $(S/(\nu))_{K(1)}$, $(S/(\sigma))_{K(1)}$, $(S/(\sigma))_{K(1)}$ have characteristic ζ . There is a map $S/(\nu) \to S/(\eta)$, so $(S/(\eta))_{K(1)}$ also has characteristic ζ .

Thanks for listening!

Some references can be found on the next slide.

References

- N. Ray, The symplectic J-homomorphism, Invent. Math., 12 (1971), 237-248.
- D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 106 (1984), 351-414.
- A. Baker, Some chromatic phenomena in the homotopy of MSp, Adams Memorial Symposium on Algebraic Topology, Vol. 2, Ed. N. Ray and G. Walker, London Mathematical Society Lecture Note Series, **175** (1992), 263–280.
- ▶ G. Laures, An E_{∞} splitting of spin bordism, Amer. J. Math., **125** (2003), 977–1027.
- A. J. Baker & J. P. May, Minimal atomic complexes, Topology, 43 (2004), 645–665.
- A. Baker, H. Gilmour & P. Reinhard, Topological André-Quillen homology for cellular commutative S-algebras, Abhand. Math. Sem. Univ. Hamburg, 78 (2008), 27–50.