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MSp: some history

The compact symplectic groups Sp(n) 6 U(2n) 6 O(4n) give rise
to the classifying space of virtual symplectic (= quaternionic)
vector bundles which admits an E1 map BSp! BO and a Thom
spectrum MSp which an E1 ring spectrum.
Since the 1960s the homotopy ring ��(MSp) has been studied
intensively and Kochman determined its classical Adams spectral
sequence for p = 2. The ring ��(MSp) is complicated: there is
2-torsion of arbitrary 2-exponent and it is all nilpotent.
At an odd prime p, MSp is a wedge of suspensions of BP, so we'll
(mostly) work 2-locally from now on.
The image of ��(MSp)! H�(MSp;F2) is known by work of Floyd
and Kochman; its �rst non-trivial positive part is in degree 32 so
MSp is not `minimal atomic' in the sense of Baker & May. On the
other hand, the TAQ Hurewicz homomorphism

��(MSp)! TAQ�(MSp;F2) �= H�(kO;F2)[4]

is trivial, so MSp is minimal atomic as a 2-local E1 ring spectrum.
Andrew Baker, University of Glasgow MSp: something old and something new



Kochman determined the image of ��(S)! ��(MSp) modulo
higher Adams �ltration: its only non-zero positive degree elements
are the images of the Adams �8k+" family where k > 0, " = 1; 2.
Earlier, Ray showed that apart from � 2 �1(S), the image of the
classical J-homomorphism mapped trivially. We will see that this
has interesting consequences for the K -localisation MSpK .
Ray also produced an in�nite family of indecomposable elements
'k 2 �8k�3(MSp) of order 2 and much of the known structure
of ��(MSp) depends on these. They are detected by the Hurewicz
homomorphism ��(MSp)! KO�(MSp).
We can lift 'k to e'k 2 �8k�2(MSp^M(2)) and consider its image
in BP�(MSp ^M(2)). For s > 1,

e'2s�1 7! vs+1 + vsN2s�1 mod (Is�1 + decomposables);

where BP�(MSp) = BP�[Nk : k > 1] and Nk 2 BP4k(MSp). So
these elements are in some sense `transchromatic'.
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Some recent results

An example left unresolved in Ravenel's localisation paper is the
Bous�eld class of MSp. It is known that globally

hS0i > hMSpi > hMUi

so 2-locally,
hS0i > hMSpi > hBPi:

Theorem (B., arXiv:2103.01253)

Globally

hS0i > hMSpi > hMUi:

and 2-locally,
hS0i > hMSpi > hBPi:
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K and K (1)-localisations

We will consider two Bous�eld localisations where K = KU(2):

(�)K = (�)KO(2)
; (�)K(1) = ((�)K )b2:

We recall (here s 2 Z)

�n(SK ) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Z(2) � Z=(2) if n = 0,

Z=(21) = Q=Z(2) if n = �2,

Z=(2�2(s)+4) if n = 8s � 1 and s 6= 0,

Z=(2) if n = 8s and s 6= 0,

Z=(2)� Z=(2) if n = 8s + 1,

Z=(2) if n = 8s + 2,

Z=(8) if n = 8s + 3,

0 otherwise.

In positive degrees these groups detect the image of the classical
J-homomorphism under the localisation map ��(S)! ��(SK ).
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Ravenel showed that for s 2 N, the multiplication pairing

�s : �8s�1(SK )
 ��8s�1(SK )! ��2(SK ) �= Z=(21)

is injective and it follows that the images of the maps �s
exhaust ��2(SK ),

��2(SK ) =
[
s>1

im�s :
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On passing to ��(SK(1)) we get the same groups except that

�n(SK(1)) =

8><
>:
Z2 � Z=(2) if n = 0,

Z2 = Z2f�2g = Z2f�g if n = �1,

0 if n = �2,

where Z2 denotes the 2-adic integers.
Here

��1(SK(1)) = Hom(Z=(21); ��2(SK ))

and more generally, for any spectrum X , there is a functorial short
exact sequence (which splits):

0! Ext(Z=(21); ��(XK ))! ��(XK(1))

! Hom(Z=(21); ���1(XK ))! 0:
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The E1 morphism SK ! MSpK induces a commutative diagram

�8s�1(SO)
 ��8s�1(SK )
J
Id

//

0

))

�8s�1(S)
 ��8s�1(SK )

�= **

��

im�s

��

im e�s
�8s�1(MSp)
 ��8s�1(MSpK )

44

in which the dashed arrow is trivial by results of Ray and

e�s : �8s�1(MSpK )
 ��8s�1(MSpK )! ��2(MSpK )

is the multiplication.
It follows that ��2(SK )! ��2(MSpK ) is trivial.
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There is a commutative diagram

Hom(Q=Z(2); ��2(SK ))
�=

//

0

��

��1(SK(1))

��

Hom(Q=Z(2); ��2(MSpK )) // ��1(MSpK(1))

which shows that ��1(SK(1))! ��1(MSpK(1)) is also trivial, so
the generator � 2 ��1(SK(1)) maps to zero and MSpK(1) has
characteristic � in the sense of Szymik, i.e., there is a morphism of
E1 ring spectra SK(1)==(�)! MSpK(1).
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The E1 cone for � and �

The following results are joint work with Gerd Laures and Jan Holz.

Since � and � both map to zero in MSp there is an E1 morphism
S==(�; �)! MSp which is a 9-equivalence in two di�erent ways.

I If we realise both spectra with minimal CW structures then it
induces an equivalence of 8-skeleta; i.e.,

Hk(S==(�; �);F2)
�=
�! Hk(MSp;F2) if 0 6 k 6 8.

I If we realise both E1 ring spectra with minimal CW structures
then it induces an equivalence of 8-skeleta; i.e.,

TAQk(S==(�; �);F2)
�=
�! TAQk(MSp;F2) if 0 6 k 6 8.

Here Dyer-Lashof monomials only start appearing in degree 9 and

H�(S==(�; �);F2) = F2f1; x4; x
2
4 ; x8; : : :g;

H�(MSp;F2) = F2f1; q1; q
2
1 ; q2; : : :g;

TAQ�(S==(�; �);F2) = F2fx4; x8g;

TAQ�(MSp;F2) = F2f1; �
4
1 ; : : :g[4]:
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To see what is going on, the (usual) 8-skeleton of S==(�) has the
cell structure shown with Steenrod operations in homology.

x24

�+f2�

Sq8

��

x4

�Sq4

��
1

So here � on the bottom cell is not dead but it has order 4 and
Adams �ltration 2. So the extra 8-cell in S==(�; �) and MSp has
to be attached to kill it.
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Theorem (Holz, PhD thesis)

The E1 ring spectrum (S==(�; �))K(1) has characteristic �.

The proof involves a geometric construction of an Artin-Schreier

class a 2 �0((KO ^ S==(�; �))K(1) for which

 9a = a+ 1:

Corollary (Holz & Laures)

There are equivalences of E1 ring spectra

(S==(�; �))K(1) � SK(1)==(�)^ (?); MSpK(1) � SK(1)==(�)^ (??):

Independently I used a di�erent approach to these results by using
the �-algebra structure of the 2-completed K -homology to show
that there is a K (1)-equivalence

S==(�) �
Y
j

�4�(j)KO:
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Some new results (very provisional)

Here are some recent results which provide a very general context
for understanding what is happening.

Theorem (B. & Laures)

Let p be a prime and work p-locally.

I If p = 2 and j4m�1 2 �4m�1(S) is a generator of

im J4m�1 � �4m�1(S), then K_0 (S==(j4m�1)) contains an

Artin-Schreier element so (S==(j4m�1))K(1) has

characteristic �.

I If p is odd and j2(p�1)n�1 2 �2(p�1)n�1(S) is a generator of

im J2(p�1)n�1 � �2(p�1)n�1(S), then K_0 (S==(j2(p�1)n�1))
contains an Artin-Schreier element so (S==(j2(p�1)n�1))K(1)

has characteristic �.

For p = 2, it follows that (S==(�))K(1), (S==(�))K(1), (S==(�))K(1)

have characteristic �. There is a map S==(�)! S==(�), so
(S==(�))K(1) also has characteristic �.
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Thanks for listening!

Some references can be found on the next slide.
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