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1 Topological

André-Quillen homology

Let A be a commutative S-algebra (this is
equivalent to A being an F., ring spectrum).
For a commutative A-algebra A — B, we
write B/A. For such a pair B/A there is a
B-module Q2p,4 which is well defined in the
homotopy category h.#p and characterised by
the natural isomorphism

h€s/B(B,BV M) = http(Qp/a, M).

Here h%'4 /B denotes the derived category of
commutative A-algebras over B. If M = Qp /4,
the identity map corresponds to a morphism

B — BV {2p,4 which projects onto the
universal derivation dpg 4 € h#4(B, Qpa)

Associated to a sequence of morphisms of
commutative S-algebras A — B — (' is a
natural cofibre sequence of C'-modules

Qp/aNpC — Qcja — Qo/B-




Q0,4 is defined in h s by

QB/A — LQBRIB(BC N\ A B),

where (—)¢ is a cofibrant replacement functor,
RIp is the right derived functor of the
augmentation ideal Ip of the category of
B-algebras. The target of Iz and RIp is the
category of B-nucas (non-unital B-algebras).
L@ pg is the left derived functor of () which is
defined by the following strict pushout diagram
in the category of B-modules.

N A N




The topological André-Quillen homology of
B/A with coefficients in a B-module M is

TAQ.(B/A; M) = m.Qp,4 N M.

Associated to maps A — B — (' as above, is

a natural long exact transitivity sequence

- — TAQ(B/A; M) — TAQ,(C/A; M)
— TAQ,(C/B; M) — TAQ,_,(B/A; M)

We are interested in the situation where A and

B are connective and the map ¢: A — B

induces an isomorphism Ay =, Bo and we write
k = Ag = Bg. There is an Eilenberg-Mac Lane

object Hk, which can be taken to be a CW
commutative A-algebra or B-algebra.




The ordinary topological André-Quillen
homology of B/A is

HAQ,(B/A) = TAQ,(B/A; Hk)
= W*QB/A AN HK.

We introduce coefficients in a k-module M by

HAQ, (B/A; M) = TAQ. (B/A; HM)
= W*QB/A AN HM.

When Cy = k, the transitivity sequence gives

.. — HAQ,(B/A) — HAQ,(C/A)
— HAQ,(C/B) — HAQ;_(B/A) — - -

Two fundamental results are due to Maria
Basterra [2].




Lemma 1.1. Let ¢: A — B be an
n-equivalence, where n > 1. Then Qg 4 is
n-connected and there is a map of A-modules

7: Cp — Qpsa for which

Tk « 7Tn_|_1 C(p — 7Tn—|—1QB/A°

Corollary 1.2 (Hurewicz theorem). The

map T induces isomorphisms

7 e Cp — HAQ,(B/A) (K <n+1).

Using dp/4 we can define a Hurewicz

homomorphism
0: m.B— HAQ,(B/A)

which factors through the usual Hurewicz
homomorphism. There are versions of the
Hurewicz theorem for 6. Also, for a morphism
of connective S-algebras ¢: A — B with

Ayg = By = 7Z, ¢ is a weak equivalence if and
only if ¢,: HAQ,(A/S) — HAQ,(B/S) is an

isomorphism.




To calculate HAQ we need to know about its
values on certain basic objects. For any
A-module X, there is a free commutative
A-algebra on X, PaX =\/,o, XW/5;. If

A — A’ is a morphism of commutative

S-algebras, then
]P)A/(A/ N A X) ~ A’ ANaPaX.

The A-algebra map P4 X — Ps*x = A induced
by collapsing X to a point makes A into an

P4 X-algebra and there is a cofibration
sequence of P4 X-modules

PIX — PaX — Pax = A,

where P, X = Vis1 X /33, For the A-sphere
S™ = S8% (n>0) we get the commutative

A-algebra P4 S™ with augmentation
P4S™ — A, we may view an A-module or

algebra as a P 4.5"™-module or algebra.




Proposition 1.3. Let X be a cell A-module,
so P, X is a g-cofibrant A-algebra. Then

Q]P’AX/A =PaX Ny X.
Hence

TAQ,(PAX/A; M) =7, X ANq M.
In particular, when A is connective and k = Ay,

k ifr=n,
HAQ,(P4S™/A) =

0O otherwise.

A CW S-algebra A is a colimit of S-algebras
A" where A% = § and A"t is the pushout
of a diagram

Pk,
Aln) PsCK,

where K, is a wedge of n-spheres. Since
CK,, ~ *, we also have PgCK,, ~ S. In fact,

Alrtll = Alnl A e PoCK,,.




Properties of the transitivity sequence now give
a long exact sequence of the form

. — Hp1(2K,) — HAQ, (A" /8)
— HAQ, (A"TY/8) — H,(EK,) —

where Hy(XK,,) is only nonzero if k =n + 1.

So for a CW S-algebra, HAQ, (A/S) behaves
like cellular homology for CW complexes. Of
course, we can take any coeflicient group in
place of Z.

Bousfield localisations can be carried out on
S-algebras and their modules. In particular, we
can also localise at a prime p. So we could
work with the p-local sphere in place of S and
with p-local CW algebras.




2 Minimal atomic

S-algebras

Assumptions From now on, we work p-locally.
S denotes the p-local sphere. All S-algebras A
are commutative and connective with Ag = Zp)
and all homotopy groups f.g. over Z.

A is atomic if every S-algebra self map
A — A is a weak equivalence.

A is irreducible if every S-algebra map
B — A inducing a mono on 7,(—) is a weak

equivalence.

An atomic A is minimal atomic if every
S-algebra map B — A inducing a mono on
7« (—) and with B atomic is a weak equivalence.

A CW S-algebra is minimal if for every n,
HAQ, (A" /S:F,) — HAQ, (A"*Y/S:F)

is an isomorphism.




We use an important general fact (remember

our assumptions above).

Lemma 2.1. For every S-algebra A, there is a

weak equivalence B — A with B a minimal
CW S-algebra.

Theorem 2.2. Let A be an S-algebra. Then

the following are equivalent.
o A is mintmal atomic.
o A is irreducible.

e for all k > 0, the Hurewicz homomorphism

0: A, — HAQ(A/S;F,) is trivial.

The proofs are described in Helen Gilmour’s

thesis and are parallel to those of [1] for spectra

and simply connected spaces, but using HAQ
in place of ordinary homology.

10



3 Some examples

If A is a commutative S-algebra that is
minimal atomic as an S-module, the usual
Hurewicz homomorphism my; A — Hy(A;F,) is
trivial for & > 0. So ku, ko, HZ, HZ /p™ are all
minimal atomic p-locally. If BP were a
commutative S-algebra it would be too but this
is still not known.

Many Thom spectra are amenable to study
using a result of Basterra & Mandell [3].
Theorem 3.1. Let f: X — BF be an
infinite loop map with associated Thom
spectrum M f. Then Qpry/s = M f N X, where
X 1s the spectrum with zeroth space X. Hence

HAQ, (Mf/S) = H.(X)

and the Hurewicz homomorphism 0 (with any
coefficients) is the composition

where eval annihilates decomposables in H,(X).

11



MU p-locally: H,(MU;F,) =F,[b, : r > 1]
and

HAQ,(MU/S;F,) = H.(X?ku;Fp) C A(p)s_o.
For p odd,

if r = p°,
otherwise,
while if p = 2

2 if r = 928
H(br) 58 1r ?

0 otherwise.

So MU is never minimal atomic.

MSp/U 2-locally: The fibration

Sp/U — BU — BSp has an associated map
of Thom spectra M Sp/U — MU and the
induced maps in homology and homotopy are
injective. In fact,

where yo,._1 = ba—1 (mod decomp). This time,
Sp/U = ¥?ko and 0 is trivial here. So M Sp/U

is minimal atomic and is a core of MU.

12



M Sp 2-locally: By a result of Floyd,

so it follows that
lm[MSp* — H, (MSp; IE“2)]
C H.(MSp;Fy) 2,

and so 6 is trivial and therefore M Sp is

minimal atomic.
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4 TAQ for some periodic
S-algebras

We can identify Q27,5 using Snaith’s result
that the localization of X°°CP2° with respect
to the generator 3; € mpX*>°CP° is equivalent
to the periodic K-theory spectrum KU. This
result can be rigidified to give an equivalence of
commutative S-algebras .>°CP ~ KU.

Proposition 4.1. We have

Qry/s = KUANY?HZ ~ KUQ.
Proof. By [3],

Qsioecpee /g = LCCPE A Y2HZ.

Since the functor 2(_y,4 commutes with

smashing localizations,

Qsoocpe(g-1]/s = 2 CPE[BTAY HZ. O

We have the following consequence.
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Corollary 4.2. Let p be a prime and let K(1)
be the first Morava K-theory at p. In the
category of K(1)-local KU-modules,

QKU/S ~ k,

Proof. Since /5 is already KU-local, its

K (1)-localization agrees with its p-completion,
and this is trivial since g7/ g is rationally a
wedge of suspensions of HQ. []

For the Lubin-Tate spectrum FE,,, we have

Proposition 4.3. In the category of

K(n)-local E,-modules, Qp, /s ~ *.

Proof. This uses an argument of Rognes to
show that (even after Bousfield localization)

We can use a spectral sequence to show that
K(n). THH(E,/S) = K(n).FE,, hence
E, — THH(FE,/S) is a K(n)-equivalence. [
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