Topological André-Quillen homology as a cellular theory and some applications

Andrew Baker (Oslo & Glasgow)

(+ H. Gilmour & P. Reinhard)

Tbilisi May 2007

[25/05/2007]

References

- [1] A. J. Baker & J. P. May, Minimal atomic complexes, Topology **43**.
- [2] M. Basterra, André-Quillen cohomology of commutative S-algebras, J. Pure Appl. Algebra, 144.
- [3] M. Basterra & M. Mandell, Homology and cohomology of E_{∞} ring spectra, Math. Z. **249**.
- [4] P. Hu, I. Kriz & J. P. May, Cores of spaces, spectra and E_{∞} ring spectra, Homology, Homotopy and App. **3**.

1 Topological André-Quillen homology

Let A be a commutative S-algebra (this is equivalent to A being an E_{∞} ring spectrum). For a commutative A-algebra $A \longrightarrow B$, we write B/A. For such a pair B/A there is a B-module $\Omega_{B/A}$ which is well defined in the homotopy category $\overline{h}\mathscr{M}_B$ and characterised by the natural isomorphism

$$\overline{h}\mathscr{C}_A/B(B, B \vee M) \cong \overline{h}\mathscr{M}_B(\Omega_{B/A}, M).$$

Here $\overline{h}\mathscr{C}_A/B$ denotes the derived category of commutative A-algebras over B. If $M = \Omega_{B/A}$, the identity map corresponds to a morphism $B \longrightarrow B \lor \Omega_{B/A}$ which projects onto the universal derivation $\delta_{B/A} \in \overline{h}\mathscr{M}_A(B, \Omega_{B/A})$.

Associated to a sequence of morphisms of commutative S-algebras $A \longrightarrow B \longrightarrow C$ is a natural cofibre sequence of C-modules

$$\Omega_{B/A} \wedge_B C \longrightarrow \Omega_{C/A} \longrightarrow \Omega_{C/B}.$$

 $\Omega_{B/A}$ is defined in $\overline{h}\mathscr{M}_B$ by

$$\Omega_{B/A} = \mathcal{L}Q_B \mathcal{R}I_B(B^c \wedge_A B),$$

where $(-)^c$ is a cofibrant replacement functor, RI_B is the right derived functor of the augmentation ideal I_B of the category of B-algebras. The target of I_B and RI_B is the category of B-nucas (non-unital B-algebras). LQ_B is the left derived functor of Q_B which is defined by the following strict pushout diagram in the category of B-modules.

The topological André-Quillen homology of B/A with coefficients in a B-module M is

 $TAQ_*(B/A; M) = \pi_*\Omega_{B/A} \wedge_B M.$

Associated to maps $A \longrightarrow B \longrightarrow C$ as above, is a natural long exact *transitivity sequence*

$$\cdots \longrightarrow \mathrm{TAQ}_{k}(B/A; M) \longrightarrow \mathrm{TAQ}_{k}(C/A; M)$$
$$\longrightarrow \mathrm{TAQ}_{k}(C/B; M) \longrightarrow \mathrm{TAQ}_{k-1}(B/A; M)$$
$$\longrightarrow \cdots$$

We are interested in the situation where A and B are connective and the map $\varphi \colon A \longrightarrow B$ induces an isomorphism $A_0 \xrightarrow{\cong} B_0$ and we write $\Bbbk = A_0 = B_0$. There is an Eilenberg-Mac Lane object $H\Bbbk$, which can be taken to be a CW commutative A-algebra or B-algebra. The ordinary topological André-Quillen homology of B/A is

$$HAQ_*(B/A) = TAQ_*(B/A; H\Bbbk)$$
$$= \pi_*\Omega_{B/A} \wedge_B H\Bbbk.$$

We introduce coefficients in a \Bbbk -module M by

$$HAQ_*(B/A; M) = TAQ_*(B/A; HM)$$
$$= \pi_*\Omega_{B/A} \wedge_B HM.$$

When $C_0 = \mathbb{k}$, the transitivity sequence gives

$$\cdots \longrightarrow \operatorname{HAQ}_{k}(B/A) \longrightarrow \operatorname{HAQ}_{k}(C/A)$$
$$\longrightarrow \operatorname{HAQ}_{k}(C/B) \longrightarrow \operatorname{HAQ}_{k-1}(B/A) \longrightarrow \cdots$$

Two fundamental results are due to Maria Basterra [2]. **Lemma 1.1.** Let $\varphi \colon A \longrightarrow B$ be an *n*-equivalence, where $n \ge 1$. Then $\Omega_{B/A}$ is *n*-connected and there is a map of A-modules $\tau \colon C_{\varphi} \longrightarrow \Omega_{B/A}$ for which

$$\tau_* \colon \pi_{n+1} \operatorname{C}_{\varphi} \xrightarrow{\cong} \pi_{n+1} \Omega_{B/A}.$$

Corollary 1.2 (Hurewicz theorem). The map τ induces isomorphisms

$$\tau_* \colon \pi_k \operatorname{C}_{\varphi} \xrightarrow{\cong} \operatorname{HAQ}_k(B/A) \quad (k \leqslant n+1).$$

Using $\delta_{B/A}$ we can define a Hurewicz homomorphism

$$\theta \colon \pi_* B \longrightarrow \operatorname{HAQ}_*(B/A)$$

which factors through the usual Hurewicz homomorphism. There are versions of the Hurewicz theorem for θ . Also, for a morphism of connective S-algebras $\varphi \colon A \longrightarrow B$ with $A_0 = B_0 = \mathbb{Z}, \varphi$ is a weak equivalence if and only if $\varphi_* \colon \operatorname{HAQ}_*(A/S) \longrightarrow \operatorname{HAQ}_*(B/S)$ is an isomorphism. To calculate HAQ we need to know about its values on certain basic objects. For any A-module X, there is a free commutative A-algebra on X, $\mathbb{P}_A X = \bigvee_{i \ge 0} X^{(i)} / \Sigma_i$. If $A \longrightarrow A'$ is a morphism of commutative S-algebras, then

$$\mathbb{P}_{A'}(A' \wedge_A X) \cong A' \wedge_A \mathbb{P}_A X.$$

The A-algebra map $\mathbb{P}_A X \longrightarrow \mathbb{P}_A * = A$ induced by collapsing X to a point makes A into an $\mathbb{P}_A X$ -algebra and there is a cofibration sequence of $\mathbb{P}_A X$ -modules

 $\mathbb{P}_A^+ X \longrightarrow \mathbb{P}_A X \longrightarrow \mathbb{P}_A * = A,$

where $\mathbb{P}_A^+ X = \bigvee_{i \ge 1} X^{(i)} / \Sigma_i$. For the A-sphere $S^n = S_A^n \ (n > 0)$ we get the commutative A-algebra $\mathbb{P}_A S^n$ with augmentation $\mathbb{P}_A S^n \longrightarrow A$, we may view an A-module or algebra as a $\mathbb{P}_A S^n$ -module or algebra.

Proposition 1.3. Let X be a cell A-module, so $\mathbb{P}_A X$ is a q-cofibrant A-algebra. Then

$$\Omega_{\mathbb{P}_A X/A} = \mathbb{P}_A X \wedge_A X.$$

Hence

$$\operatorname{TAQ}_*(\mathbb{P}_A X/A; M) = \pi_* X \wedge_A M.$$

In particular, when A is connective and $k = A_0$,

$$\operatorname{HAQ}_{r}(\mathbb{P}_{A}S^{n}/A) = \begin{cases} \mathbb{k} & \text{if } r = n, \\ 0 & \text{otherwise} \end{cases}$$

A CW S-algebra A is a colimit of S-algebras $A^{[n]}$, where $A^{[0]} = S$ and $A^{[n+1]}$ is the pushout of a diagram

where K_n is a wedge of *n*-spheres. Since $CK_n \sim *$, we also have $\mathbb{P}_S CK_n \sim S$. In fact,

$$A^{[n+1]} = A^{[n]} \wedge_{\mathbb{P}_S K_n} \mathbb{P}_S \mathcal{C} K_n.$$

Properties of the transitivity sequence now give a long exact sequence of the form

$$\cdots \longrightarrow H_{k+1}(\Sigma K_n) \longrightarrow \operatorname{HAQ}_k(A^{[n]}/S)$$
$$\longrightarrow \operatorname{HAQ}_k(A^{[n+1]}/S) \longrightarrow H_k(\Sigma K_n) \longrightarrow$$

where $H_k(\Sigma K_n)$ is only nonzero if k = n + 1. So for a CW S-algebra, $HAQ_*(A/S)$ behaves like cellular homology for CW complexes. Of course, we can take any coefficient group in place of \mathbb{Z} .

Bousfield localisations can be carried out on S-algebras and their modules. In particular, we can also localise at a prime p. So we could work with the p-local sphere in place of S and with p-local CW algebras.

2 Minimal atomic S-algebras

Assumptions From now on, we work p-locally. S denotes the p-local sphere. All S-algebras A are commutative and connective with $A_0 = \mathbb{Z}_{(p)}$ and all homotopy groups f.g. over $\mathbb{Z}_{(p)}$.

A is *atomic* if every S-algebra self map $A \longrightarrow A$ is a weak equivalence.

A is *irreducible* if every S-algebra map $B \longrightarrow A$ inducing a mono on $\pi_*(-)$ is a weak equivalence.

An atomic A is minimal atomic if every S-algebra map $B \longrightarrow A$ inducing a mono on $\pi_*(-)$ and with B atomic is a weak equivalence. A CW S-algebra is minimal if for every n, $\operatorname{HAQ}_n(A^{[n]}/S; \mathbb{F}_p) \longrightarrow \operatorname{HAQ}_n(A^{[n+1]}/S; \mathbb{F}_p)$

is an isomorphism.

We use an important general fact (remember our assumptions above).

Lemma 2.1. For every S-algebra A, there is a weak equivalence $B \longrightarrow A$ with B a minimal CW S-algebra.

Theorem 2.2. Let A be an S-algebra. Then the following are equivalent.

- A is minimal atomic.
- A is irreducible.
- For all k > 0, the Hurewicz homomorphism $\theta: A_k \longrightarrow \operatorname{HAQ}(A/S; \mathbb{F}_p)$ is trivial.

The proofs are described in Helen Gilmour's thesis and are parallel to those of [1] for spectra and simply connected spaces, but using HAQ in place of ordinary homology.

3 Some examples

If A is a commutative S-algebra that is minimal atomic as an S-module, the usual Hurewicz homomorphism $\pi_k A \longrightarrow H_k(A; \mathbb{F}_p)$ is trivial for k > 0. So ku, ko, $H\mathbb{Z}$, $H\mathbb{Z}/p^n$ are all minimal atomic p-locally. If BP were a commutative S-algebra it would be too but this is still not known.

Many Thom spectra are amenable to study using a result of Basterra & Mandell [3]. **Theorem 3.1.** Let $f: X \longrightarrow BF$ be an infinite loop map with associated Thom spectrum Mf. Then $\Omega_{Mf/S} = Mf \wedge \underline{X}$, where \underline{X} is the spectrum with zeroth space X. Hence

 $\mathrm{HAQ}_*(Mf/S) = H_*(\underline{X})$

and the Hurewicz homomorphism θ (with any coefficients) is the composition

 $\pi_*Mf \longrightarrow H_*(Mf) \xrightarrow{\text{Thom}} H_*(X) \xrightarrow{\text{eval}} H_*(\underline{X}),$

where eval annihilates decomposables in $H_*(X)$.

MU p-locally: $H_*(MU; \mathbb{F}_p) = \mathbb{F}_p[b_r : r \ge 1]$ and

 $\operatorname{HAQ}_*(MU/S; \mathbb{F}_p) = H_*(\Sigma^2 ku; \mathbb{F}_p) \subseteq A(p)_{*-2}.$ For p odd,

$$\theta(b_r) = \begin{cases} \xi_s & \text{if } r = p^s, \\ 0 & \text{otherwise,} \end{cases}$$

while if p = 2

$$\theta(b_r) = \begin{cases} \xi_s^2 & \text{if } r = 2^s, \\ 0 & \text{otherwise.} \end{cases}$$

So MU is never minimal atomic.

MSp/U 2-locally: The fibration $Sp/U \longrightarrow BU \longrightarrow BSp$ has an associated map of Thom spectra $MSp/U \longrightarrow MU$ and the induced maps in homology and homotopy are injective. In fact,

$$H_*(MSp/U) = \mathbb{Z}_{(2)}[y_{2r-1} : r \ge 1] \subseteq H_*(MU)$$

where $y_{2r-1} \equiv b_{2r-1} \pmod{\text{decomp}}$. This time, $\frac{Sp/U}{Sp} = \Sigma^2 ko \text{ and } \theta$ is trivial here. So MSp/U is minimal atomic and is a core of MU. MSp 2-locally: By a result of Floyd,

$$\operatorname{im}[MSp_* \longrightarrow MO_*] \subseteq (MO_*)^{(2)},$$

so it follows that

$$\operatorname{im}[MSp_* \longrightarrow H_*(MSp; \mathbb{F}_2)]$$
$$\subseteq H_*(MSp; \mathbb{F}_2)^{(2)},$$

and so θ is trivial and therefore MSp is minimal atomic.

4 TAQ for some periodic S-algebras

We can identify $\Omega_{KU/S}$ using Snaith's result that the localization of $\Sigma^{\infty} \mathbb{CP}^{\infty}_{+}$ with respect to the generator $\beta_1 \in \pi_2 \Sigma^{\infty} \mathbb{CP}^{\infty}_{+}$ is equivalent to the periodic K-theory spectrum KU. This result can be rigidified to give an equivalence of commutative S-algebras $\Sigma^{\infty} \mathbb{CP}^{\infty}_{+} \simeq KU$. **Proposition 4.1.** We have

$$\Omega_{KU/S} = KU \wedge \Sigma^2 H\mathbb{Z} \simeq KU\mathbb{Q}.$$

Proof. By [3],

$$\Omega_{\Sigma^{\infty} \mathbb{C}\mathrm{P}^{\infty}_{+}/S} = \Sigma^{\infty} \mathbb{C}\mathrm{P}^{\infty}_{+} \wedge \Sigma^{2} H\mathbb{Z}.$$

Since the functor $\Omega_{(-)/A}$ commutes with smashing localizations,

 $\Omega_{\Sigma^{\infty}\mathbb{C}\mathrm{P}^{\infty}_{+}[\beta^{-1}]/S} = \Sigma^{\infty}\mathbb{C}\mathrm{P}^{\infty}_{+}[\beta^{-1}] \wedge \Sigma^{2}H\mathbb{Z}.$

We have the following consequence.

Corollary 4.2. Let p be a prime and let K(1)be the first Morava K-theory at p. In the category of K(1)-local KU-modules, $\Omega_{KU/S} \simeq *$.

Proof. Since $\Omega_{KU/S}$ is already KU-local, its K(1)-localization agrees with its p-completion, and this is trivial since $\Omega_{KU/S}$ is rationally a wedge of suspensions of $H\mathbb{Q}$.

For the Lubin-Tate spectrum E_n , we have **Proposition 4.3.** In the category of K(n)-local E_n -modules, $\Omega_{E_n/S} \simeq *$.

Proof. This uses an argument of Rognes to show that (even after Bousfield localization)

$$B \simeq \operatorname{THH}(B/A) \Longrightarrow \Omega_{B/A} \simeq *.$$

We can use a spectral sequence to show that $K(n)_* \operatorname{THH}(E_n/S) = K(n)_* E_n$, hence $E_n \longrightarrow \operatorname{THH}(E_n/S)$ is a K(n)-equivalence.