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homology as a cellular theory and

some applications

Andrew Baker (Oslo & Glasgow)

(+ H. Gilmour & P. Reinhard)

Tbilisi May 2007 [25/05/2007]



References

[1] A. J. Baker & J. P. May, Minimal

atomic complexes, Topology 43.

[2] M. Basterra, André-Quillen cohomology
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1 Topological

André-Quillen homology

Let A be a commutative S-algebra (this is

equivalent to A being an E∞ ring spectrum).

For a commutative A-algebra A −→ B, we

write B/A. For such a pair B/A there is a

B-module ΩB/A which is well defined in the

homotopy category hMB and characterised by

the natural isomorphism

hCA/B(B, B ∨ M) ∼= hMB(ΩB/A, M).

Here hCA/B denotes the derived category of

commutative A-algebras over B. If M = ΩB/A,

the identity map corresponds to a morphism

B −→ B ∨ ΩB/A which projects onto the

universal derivation δB/A ∈ hMA(B, ΩB/A).

Associated to a sequence of morphisms of

commutative S-algebras A −→ B −→ C is a

natural cofibre sequence of C-modules

ΩB/A ∧B C −→ ΩC/A −→ ΩC/B.
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ΩB/A is defined in hMB by

ΩB/A = LQBRIB(Bc
∧A B),

where (−)c is a cofibrant replacement functor,

RIB is the right derived functor of the

augmentation ideal IB of the category of

B-algebras. The target of IB and RIB is the

category of B-nucas (non-unital B-algebras).

LQB is the left derived functor of QB which is

defined by the following strict pushout diagram

in the category of B-modules.

N ∧B N

��

// ∗

��

N // QB(N)
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The topological André-Quillen homology of

B/A with coefficients in a B-module M is

TAQ
∗
(B/A; M) = π∗ΩB/A ∧B M.

Associated to maps A −→ B −→ C as above, is

a natural long exact transitivity sequence

· · · −→ TAQk(B/A; M) −→ TAQk(C/A; M)

−→ TAQk(C/B; M) −→ TAQk−1(B/A; M)

−→ · · ·

We are interested in the situation where A and

B are connective and the map ϕ : A −→ B

induces an isomorphism A0

∼=
−→ B0 and we write

k = A0 = B0. There is an Eilenberg-Mac Lane

object Hk, which can be taken to be a CW

commutative A-algebra or B-algebra.
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The ordinary topological André-Quillen

homology of B/A is

HAQ
∗
(B/A) = TAQ

∗
(B/A; Hk)

= π∗ΩB/A ∧B Hk.

We introduce coefficients in a k-module M by

HAQ
∗
(B/A; M) = TAQ

∗
(B/A; HM)

= π∗ΩB/A ∧B HM.

When C0 = k, the transitivity sequence gives

· · · −→ HAQk(B/A) −→ HAQk(C/A)

−→ HAQk(C/B) −→ HAQk−1(B/A) −→ · · ·

Two fundamental results are due to Maria

Basterra [2].
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Lemma 1.1. Let ϕ : A −→ B be an

n-equivalence, where n > 1. Then ΩB/A is

n-connected and there is a map of A-modules

τ : Cϕ −→ ΩB/A for which

τ∗ : πn+1 Cϕ

∼=
−→ πn+1ΩB/A.

Corollary 1.2 (Hurewicz theorem). The

map τ induces isomorphisms

τ∗ : πk Cϕ

∼=
−→ HAQk(B/A) (k 6 n + 1).

Using δB/A we can define a Hurewicz

homomorphism

θ : π∗B −→ HAQ
∗
(B/A)

which factors through the usual Hurewicz

homomorphism. There are versions of the

Hurewicz theorem for θ. Also, for a morphism

of connective S-algebras ϕ : A −→ B with

A0 = B0 = Z, ϕ is a weak equivalence if and

only if ϕ∗ : HAQ
∗
(A/S) −→ HAQ

∗
(B/S) is an

isomorphism.
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To calculate HAQ we need to know about its

values on certain basic objects. For any

A-module X, there is a free commutative

A-algebra on X, PAX =
∨

i>0 X(i)/Σi. If

A −→ A′ is a morphism of commutative

S-algebras, then

PA′(A′
∧A X) ∼= A′

∧A PAX.

The A-algebra map PAX −→ PA∗ = A induced

by collapsing X to a point makes A into an

PAX-algebra and there is a cofibration

sequence of PAX-modules

P+
AX −→ PAX −→ PA∗ = A,

where P+
AX =

∨

i>1 X(i)/Σi. For the A-sphere

Sn = Sn
A (n > 0) we get the commutative

A-algebra PASn with augmentation

PASn −→ A, we may view an A-module or

algebra as a PASn-module or algebra.
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Proposition 1.3. Let X be a cell A-module,

so PAX is a q-cofibrant A-algebra. Then

ΩPAX/A = PAX ∧A X.

Hence

TAQ
∗
(PAX/A; M) = π∗X ∧A M.

In particular, when A is connective and k = A0,

HAQr(PASn/A) =







k if r = n,

0 otherwise.

A CW S-algebra A is a colimit of S-algebras

A[n], where A[0] = S and A[n+1] is the pushout

of a diagram

PSKn

{{ww
ww

ww
ww

w

%%JJJJJJJJJ

A[n] PSCKn

where Kn is a wedge of n-spheres. Since

CKn ∼ ∗, we also have PSCKn ∼ S. In fact,

A[n+1] = A[n]
∧PSKn

PSCKn.
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Properties of the transitivity sequence now give

a long exact sequence of the form

· · · −→ Hk+1(ΣKn) −→ HAQk(A[n]/S)

−→ HAQk(A[n+1]/S) −→ Hk(ΣKn) −→

where Hk(ΣKn) is only nonzero if k = n + 1.

So for a CW S-algebra, HAQ
∗
(A/S) behaves

like cellular homology for CW complexes. Of

course, we can take any coefficient group in

place of Z.

Bousfield localisations can be carried out on

S-algebras and their modules. In particular, we

can also localise at a prime p. So we could

work with the p-local sphere in place of S and

with p-local CW algebras.
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2 Minimal atomic

S-algebras

Assumptions From now on, we work p-locally.

S denotes the p-local sphere. All S-algebras A

are commutative and connective with A0 = Z(p)

and all homotopy groups f.g. over Z(p).

A is atomic if every S-algebra self map

A −→ A is a weak equivalence.

A is irreducible if every S-algebra map

B −→ A inducing a mono on π∗(−) is a weak

equivalence.

An atomic A is minimal atomic if every

S-algebra map B −→ A inducing a mono on

π∗(−) and with B atomic is a weak equivalence.

A CW S-algebra is minimal if for every n,

HAQn(A[n]/S; Fp) −→ HAQn(A[n+1]/S; Fp)

is an isomorphism.
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We use an important general fact (remember

our assumptions above).

Lemma 2.1. For every S-algebra A, there is a

weak equivalence B −→ A with B a minimal

CW S-algebra.

Theorem 2.2. Let A be an S-algebra. Then

the following are equivalent.

• A is minimal atomic.

• A is irreducible.

• For all k > 0, the Hurewicz homomorphism

θ : Ak −→ HAQ(A/S; Fp) is trivial.

The proofs are described in Helen Gilmour’s

thesis and are parallel to those of [1] for spectra

and simply connected spaces, but using HAQ

in place of ordinary homology.
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3 Some examples

If A is a commutative S-algebra that is

minimal atomic as an S-module, the usual

Hurewicz homomorphism πkA −→ Hk(A; Fp) is

trivial for k > 0. So ku, ko, HZ, HZ/pn are all

minimal atomic p-locally. If BP were a

commutative S-algebra it would be too but this

is still not known.

Many Thom spectra are amenable to study

using a result of Basterra & Mandell [3].

Theorem 3.1. Let f : X −→ BF be an

infinite loop map with associated Thom

spectrum Mf . Then ΩMf/S = Mf ∧ X, where

X is the spectrum with zeroth space X. Hence

HAQ
∗
(Mf/S) = H∗(X)

and the Hurewicz homomorphism θ (with any

coefficients) is the composition

π∗Mf −→ H∗(Mf)
Thom
−−−−→

∼=
H∗(X)

eval
−−→ H∗(X),

where eval annihilates decomposables in H∗(X).
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MU p-locally: H∗(MU ; Fp) = Fp[br : r > 1]

and

HAQ
∗
(MU/S; Fp) = H∗(Σ

2ku; Fp) ⊆ A(p)∗−2.

For p odd,

θ(br) =







ξs if r = ps,

0 otherwise,

while if p = 2

θ(br) =







ξ2
s if r = 2s,

0 otherwise.

So MU is never minimal atomic.

MSp/U 2-locally: The fibration

Sp/U −→ BU −→ BSp has an associated map

of Thom spectra MSp/U −→ MU and the

induced maps in homology and homotopy are

injective. In fact,

H∗(MSp/U) = Z(2)[y2r−1 : r > 1] ⊆ H∗(MU)

where y2r−1 ≡ b2r−1 (mod decomp). This time,

Sp/U = Σ2ko and θ is trivial here. So MSp/U

is minimal atomic and is a core of MU .
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MSp 2-locally: By a result of Floyd,

im[MSp∗ −→ MO∗] ⊆ (MO∗)
(2),

so it follows that

im[MSp∗ −→ H∗(MSp; F2)]

⊆ H∗(MSp; F2)
(2),

and so θ is trivial and therefore MSp is

minimal atomic.
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4 TAQ for some periodic

S-algebras

We can identify ΩKU/S using Snaith’s result

that the localization of Σ∞CP∞

+ with respect

to the generator β1 ∈ π2Σ
∞CP∞

+ is equivalent

to the periodic K-theory spectrum KU . This

result can be rigidified to give an equivalence of

commutative S-algebras Σ∞CP∞

+ ' KU .

Proposition 4.1. We have

ΩKU/S = KU ∧ Σ2HZ ' KUQ.

Proof. By [3],

ΩΣ∞CP∞

+
/S = Σ∞CP∞

+ ∧ Σ2HZ.

Since the functor Ω(−)/A commutes with

smashing localizations,

ΩΣ∞CP∞

+
[β−1]/S = Σ∞CP∞

+ [β−1] ∧ Σ2HZ.

We have the following consequence.
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Corollary 4.2. Let p be a prime and let K(1)

be the first Morava K-theory at p. In the

category of K(1)-local KU -modules,

ΩKU/S ' ∗.

Proof. Since ΩKU/S is already KU -local, its

K(1)-localization agrees with its p-completion,

and this is trivial since ΩKU/S is rationally a

wedge of suspensions of HQ.

For the Lubin-Tate spectrum En, we have

Proposition 4.3. In the category of

K(n)-local En-modules, ΩEn/S ' ∗.

Proof. This uses an argument of Rognes to

show that (even after Bousfield localization)

B ' THH(B/A) =⇒ ΩB/A ' ∗.

We can use a spectral sequence to show that

K(n)∗ THH(En/S) = K(n)∗En, hence

En −→ THH(En/S) is a K(n)-equivalence.
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