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Introduction

The picture of the stable homotopy category dramatically changed after the publication of [2]
and improvements in [5]. These new technics lead to an easy and conceptual definition of the
Bockstein operations associated to a quotient A of a commutative S-algebra R, see [5].

The aim of this paper is to discussed the algebra (and coalgebra) of operations associated to
R-modules and their relationship with the stable operations. Most of the results of this paper
are known to experts but the proofs are spread in various papers. Here we present elementary
proofs and give various examples.

1. Background

In this paper we freely use the notation and terminology of [2, 5]. Let R be a commutative
S-algebra, with R∗ concentrated in even dimension, MR be the category of R-modules and DR

its derived category.
A R-ring is a ring A in the category DR and

ϕA : A ∧R A −→ A

denotes the product.
The functor A∗R(−) = DR(−, A) defines a cohomology theory while AR∗ (−) = π∗(A∧R−)

defines a homology theory on either of the categories MR or DR. Let f : A −→ B be a map in
MR. Then f induces homology and cohomology operations

f : AR
∗ (−) −→ BR

∗ (−), f : A∗R(−) −→ B∗
R(−).

Also for any homology theory ER∗ (−) or cohomology theory E∗
R(−) there are E∗-module homo-

morphisms
f∗ : ER

∗ (A) −→ ER
∗ (B), f∗ : E∗

R(B) −→ E∗
R(A).

When A = B = E it may very well happen that the operations f do not coincide with the
morphisms f∗ or f∗.

Recall some further definitions. Let X and Y be R-modules and a ∈ AR∗ (X), b ∈ AR∗ (Y ).
Then

a⊗ b = (ϕ ∧ 1 ∧ 1) ◦ (1 ∧ τ ∧ 1) ◦ (a ∧ b) ∈ AR
∗ (X ∧R Y ),

where τ denotes the switch map, and if x ∈ A∗R(X), y ∈ A∗R(Y ), then

x⊗ y = ϕ ◦ (x ∧ y) ∈ A∗R(X ∧R Y ).

The Kronecker pairing
A∗R(X) −→ HomA∗(A

R
∗ (X), A∗)

is defined by
〈x, a〉 = ϕ ◦ (1 ∧ x) ◦ a.

If A is commutative (up to homotopy) then

〈x⊗ y, a⊗ b〉 = 〈x, a〉 〈y, b〉 ,
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if A is non commutative then the situation is much more delicate, see Lemma 3.4.
We now consider quotients of the commutative S-algebra R. Let x ∈ Rd be an element which

is not a zero divisor (recall that d is even). By construction R/x fits into the cofibre sequence

ΣdR
x−→ R

ρx−→ R/x
βx−→ Σd+1R.

Let ϕ : R/x ∧R R/x −→ R/x be a product, then any other product ϕ′ on R/x is given by

ϕ′ = ϕ + u ◦ (β ∧ β)

for some u ∈ π2d+2R/x, in particular for the opposite product

ϕop = ϕ ◦ τ = ϕ + u ◦ (β ∧ β).

The symbol Aop will denote the ring A endowed with the opposite product ϕop.
Let S = {x1, x2, . . .} be a regular sequence in R∗ generating an ideal I / R∗. We define the

R-module A = R/I or A = R/S to be the smash product taken over R:

(1.1) A =
xi∈S∧

R

R/xi.

If we splice together all the products ϕi (on the various R/xi) we obtain a product ϕA on A.
The product ϕA as well as the ϕi are unital and associative up to homotopy; for details see [2, 5].

2. Brave new Bockstein operations

Let A be defined as in (1.1). We first fix some notation. By construction R/xi fits into the
cofibre sequence

(2.1) ΣdiR
xi−→ R

ρi−→ R/xi
βi−→ Σdi+1R

with di = deg(xi). The composition

qi = ρi ◦ βi : R/xi −→ Σdi+1R/xi

is an R-module morphism known as a Bockstein operation. We then define Qi : A −→ A as qi

on the i-th smash factor and the identity on the others. With respect to the product ϕi on R/xi

and ϕA on A, the operations qi and Qi are derivations by [5], that is

qi ◦ ϕi = ϕi ◦ (id∧qi ∨ qi ∧ id),(2.2)

Qi ◦ ϕA = ϕA ◦ (id∧Qi ∨Qi ∧ id).(2.3)

We will consider the map Qi ∈ A∗R(A) more closely. A test spectrum for Qi is R/xi. From
the cofibration (2.1) we easily deduce that

0 → A∗R(R)
β∗i−→ A∗R(R/xi)

ρ∗i−→ A∗R(R) → 0

and
0 → AR

∗ (R)
(ρi)∗−−−→ AR

∗ (R/xi)
(βi)∗−−−→ AR

∗ (R) → 0
are split short exact sequences of AR∗ (R) = A∗-modules. Writing 1 for the unit in A∗ (represented
by the natural projection R −→ A) and recalling that Rodd = 0, we find that there is a unique
element gi ∈ A0

R(R/xi) for which ρ∗i (gi) = 1. Defining

ei = β∗i (1) ∈ A−di−1
R (R/xi),

observe that ei is just the composite

(2.4) R/xi
qi−→ Σdi+1R/xi

gi−→ Σdi+1A.

As a consequence
A∗R(R/xi) ∼= A∗gi ⊕A∗ei.

We write γi for (ρi)∗(1). Let εi be the unique class in AR∗ (R/xi) for which (βi)∗(εi) = 1
(uniqueness follows from the fact that Rodd = 0), moreover deg(εi) = di + 1. Therefore

AR
∗ (R/xi) ∼= A∗γi ⊕A∗εi.
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The Kronecker pairing

〈−,−〉 : A∗R(R/xi) −→ HomA∗(A
R
∗ (R/xi), A∗)

is easily seen to be an isomorphism. The basis {gi, ei} is dual to {γi, εi}. This follows from the
naturality of the pairing. For instance,

〈ei, εi〉 = 〈β∗i (1), εi〉 = 〈1, (βi)∗(εi)〉 = 〈1, 1〉 = 1.

The same shows that 〈gi, γi〉 = 1. The equality 〈ei, γi〉 = 0 holds for dimensional reasons.
We now determine the action of the Bockstein maps Qi : A −→ Σdi+1A on the test spectra

R/xi and A. First we consider the case where we kill off a single element x ∈ Rd, that is
A = R/x. In this situation

A∗R(A) ∼= A∗g ⊕A∗e

with g = id: A −→ A and e = q : A −→ Σd+1A. Here we find that q∗(g) = e = q(g) and that
q∗(e) = 0 = q(e), that is

q∗ = q : A∗R(A) −→ A∗R(A).

In the general case A = R/I with I = (x1, x2, . . .) we observe that the map R/xi −→ A
induces the vertical quotient maps in the following commutative diagram.

(R/xi)∗R(R/xi)
∼=−−−−→ R∗/(xi)gi

⊕
R∗/(xi)eiy

y
A∗R(R/xi)

∼=−−−−→ A∗gi
⊕

A∗ei

The map Qi is induced by qi therefore, since qi = q∗i in R/xi-homology, we obtain

Qi = q∗i : A∗R(R/xi) −→ A∗R(R/xi).

Moreover Qi(gi) = ei and Qi(ei) = 0. Thus the operation Qi is non-trivial in the homotopy
category DR.

Dually in homology, we find that

Qi = (qi)∗ : AR
∗ (R/xi) −→ AR

∗ (R/xi),

Qi(εi) = γi and Qi(γi) = 0.

3. The operations and cooperations

In this section we describe AR∗ (A) and A∗R(A) together with the various structures they carry.
By the definition of A in (1.1) together with induction and passage to the limit, there is an
isomorphism of A∗-modules,

(3.1) AR
∗ (A) ∼=

⊗
AR
∗ (R/xi) ∼= ΛA∗(αi : xi ∈ S),

where αi is the image of εi under the map gi : R/xi −→ A which satisfies

deg(αi) = deg(εi) = di + 1.

Here ΛA∗(−) denotes an exterior algebra over A∗.
Dually we also have isomorphisms of A∗-modules:

(3.2) A∗R(A) ∼=
⊗̂

A∗R(R/xi) ∼= Λ̂A∗(Qi : xi ∈ S).

Here the completed tensor product is needed when the regular sequence S = {x1, x2, . . .} is
infinite. The first isomorphism is induced by the maps gi : R/xi −→ A, therefore Qi is mapped
to ei under g∗i . Finally, Λ̂A∗(−) denotes the completed exterior algebra.

The duality morphism

(3.3) 〈−,−〉 : A∗R(A) −→ HomA∗(A
R
∗ (A), A∗)
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is an isomorphism which satisfies

Qi(αj) = 〈Qi, αj〉 =

{
1 if i = j,

0 if i 6= j.

The same arguments as above show that

AR
∗ (A ∧R A) ∼= AR

∗ (A)
⊗

AR
∗ (A),(3.4)

A∗R(A ∧R A) ∼= A∗R(A)
⊗

A∗R(A).(3.5)

Now we consider the various structures on A∗R(A) and AR∗ (A). First define η as

η : A = R ∧R A
1∧id−−−→ A ∧R A

where 1: R −→ A (the projection) is the unit of A. The composition of R-module homomor-
phisms induces an algebra structure on A∗R(A). Thanks to the isomorphism of (3.5) the product
of x, y ∈ A∗R(A) can be described as the composite

A
η−→ A ∧R A

x∧y−−→ A ∧R A
ϕA−−→ A.

So the product is given by

A∗R(A)
⊗

A∗R(A) ∼= A∗R(A ∧R A)
η∗−→ A∗R(A).

It is also possible to define a coalgebra structure on A∗R(A). The coproduct is induced by ϕA,
that is

A∗R(A)
ϕ∗A−−→ A∗R(A ∧R A) ∼= A∗R(A)

⊗
A∗R(A).

In homology the product is induced by ϕA, i.e.,

AR
∗ (A)

⊗
AR
∗ (A) ∼= AR

∗ (A ∧R A)
(ϕA)∗−−−→ AR

∗ (A)

and the coproduct by η, i.e.,

AR
∗ (A)

η∗−→ AR
∗ (A ∧R A) ∼= AR

∗ (A)
⊗

AR
∗ (A).

We can also define the same type of structures on A∗R(Aop) and AR∗ (Aop).
By naturality of the Kronecker pairing, A∗R(A) is dual as algebra (resp. coalgebra) to the

coalgebra (resp. algebra) AR∗ (A). The same holds between A∗R(Aop) and AR∗ (Aop). Observe
however that none of AR∗ (A), AR∗ (Aop), A∗R(A) or A∗R(Aop) are Hopf algebras, for the following
reason. It is easy to check that η is multiplicative, since

A ∧R A
ϕA−−−−→ A

η∧η

y η

y
A ∧R A ∧R A ∧R A −−−−→ A ∧R A

commutes, where the bottom horizontal map is (ϕA ∧ ϕA) ◦ (1 ∧ τ ∧ 1). The problem is that
τ does not induced in cohomology and homology the usual switch map T on tensor product
T : V ⊗W −→ W ⊗ V . In fact the following diagram commutes.

A∗R(X)
⊗

A∗R(Y ) T−−−−→ (Aop)∗R(Y )
⊗

(Aop)∗R(X)

∼=
y ∼=

y
A∗R(X ∧R Y ) τ−−−−→ (Aop)∗R(Y ∧R X)

A similar result applies in homology.
If A is commutative (up to homotopy), then A∗R(A) is dual to AR∗ (A) as Hopf algebras.

Theorem 3.1. As algebras over A∗,

A∗R(A) ∼= Λ̂A∗(Qi : xi ∈ S).

The Qi and the unit are primitives with respect to the coalgebra structure.
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Proof. The algebra structure is easily established. By construction, the Qi anti-commute,

QiQj = −QjQi.

Therefore A∗R(A) is an exterior algebra. For any i the product

ϕi : R/xi ∧R R/xi −→ R/xi

induces a coalgebra structure on A∗R(R/xi) satisfying

ϕ∗i (gi) = gi ⊗ gi,

ϕ∗i (ei) = gi ⊗ ei + ei ⊗ gi.

These equalities follow from the definition of gi and ei in (2.4) and the derivation rule (2.2).
Then we paste all the A∗R(R/xi) together to obtain the result. ¤

Recall that for any i there exists a well defined class ui ∈ π∗R/xi such that ϕop
i = ϕi + ui ◦

(βi ∧ βi).

Theorem 3.2. As algebras over A∗,

A∗R(Aop) ∼= Λ̂A∗(Qi : xi ∈ S).

The Qi are primitives with respect to the coalgebra structure while the coproduct of 1 satisfies

(ϕop
A )∗(1) = 1⊗ 1 +

∑
ui ·Qi ⊗Qi.

Proof. The algebra structure of A∗R(Aop) is independent of ϕop
A , thus A∗R(Aop) ∼= A∗R(A) as

algebras.
The product ϕop

i : R/xi ∧R R/xi −→ R/xi induces a coalgebra structure on A∗R(R/xop
i ), we

easily check that
(ϕop

i )∗(ei) = ϕ∗i (ei) + ei ◦ ui ◦ (βi ∧ βi)

but ei ◦ ui = 0, by (2.4) together with the fact that qi acts trivially on elements coming from
R∗. Now

(ϕop
i )∗(gi) = ϕ∗i (gi) + gi ◦ ui ◦ (βi ∧ βi)

= gi ⊗ gi + ui · ei ⊗ ei.

The second equality follows from the definitions of ei and gi. Now we can paste all the A∗R(R/xop
i )

together to obtain the result. ¤

The case of homology seems much more interesting.

Theorem 3.3. As algebras over A∗,

AR
∗ (Aop) = ΛA∗(αi : xi ∈ S).

The αi and the unit are primitives with respect to the coalgebra structure.

We first restrict our attention to the case where A = R/x and x ∈ Rd. We have the cofibre
sequence

ΣdR
x−→ R

ρ−→ A
β−→ Σd+1R.

Let ϕ : A∧RA −→ A be a product and

ϕop = ϕ ◦ τ = ϕ + u ◦ (β ∧ β)

for some well defined class u ∈ A2d+2.
The following Lemma is the crucial step in the proof of Theorem 3.3.

Lemma 3.4. For a ∈ AR∗ (X), b ∈ AR∗ (Y ), x ∈ A∗R(X) and y ∈ A∗R(Y ), the Kronecker pairing
satisfies

〈x, a〉 〈y, b〉 = 〈x⊗ y, a⊗ b〉 − uβ∗(x∗(a))β(y∗(b)).
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Proof. The reader is encouraged to draw the diagrams corresponding to the following compli-
cated equalities.

〈x, a〉 〈y, b〉 = ϕ ◦ (ϕ ∧ ϕ) ◦ (1 ∧ x ∧ 1 ∧ y) ◦ (a ∧ b)

= ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ ϕ ∧ 1) ◦ (1 ∧ x ∧ 1 ∧ y) ◦ (a ∧ b)

= ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ ϕop ∧ 1) ◦ (1 ∧ x ∧ 1 ∧ y) ◦ (a ∧ b)

− ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ (u ◦ (β ∧ β)) ∧ 1) ◦ (1 ∧ x ∧ 1 ∧ y) ◦ (a ∧ b).

The first equality follows from the definition, the second by associativity of the product and the
third by definition of the opposite product.

We consider separately the two summands of the last term. The first one is

ϕ ◦ (1 ∧ ϕ)◦(1 ∧ ϕop ∧ 1) ◦ (1 ∧ x ∧ 1 ∧ y) ◦ (a ∧ b)

= ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ ϕ ∧ 1) ◦ (1 ∧ τ ∧ 1) ◦ (1 ∧ x ∧ 1 ∧ y) ◦ (a ∧ b)

= ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ ϕ ∧ 1) ◦ (1 ∧ 1 ∧ x ∧ y) ◦ (1 ∧ τ ∧ 1) ◦ (a ∧ b)

= ϕ ◦ (1 ∧ ϕ) ◦ (ϕ ∧ 1 ∧ 1) ◦ (1 ∧ 1 ∧ x ∧ y) ◦ (1 ∧ τ ∧ 1) ◦ (a ∧ b)

= ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ x ∧ y) ◦ (ϕ ∧ 1 ∧ 1) ◦ (1 ∧ τ ∧ 1) ◦ (a ∧ b)

= ϕ ◦ (x⊗ y) ◦ (a⊗ b)

= 〈x⊗ y, a⊗ b〉 .
The first equality follows from the definition of the opposite product, the second is obvious, the
third uses associativity of the product, the fourth is obvious, the fifth follows from the definition
of the exterior product in homology and cohomology and the last one is the definition of the
Kronecker pairing.

In the second summand,

ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ (u◦(β ∧ β)) ∧ 1) ◦ (1 ∧ x ∧ 1 ∧ y) ◦ (a ∧ b)

= ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ (u ◦ (β ∧ β)) ∧ 1) ◦ (x∗(a) ∧ y∗(b))
= ϕ ◦ (1 ∧ ϕ) ◦ (1 ∧ u ∧ 1) ◦ (β∗(x∗(a)) ∧ β(y∗(b)))
= uβ∗(x∗(a))β(y∗(b)).

The first equality follows from the definition of an induced morphism, the second from the
definitions of induced morphism and induced operation while the last one is obvious. Now
combining these results, the Lemma is proven. ¤

Proof of Theorem 3.3. We first restrict our attention to the special case A = R/x with notation
as above. We have already shown that

A∗R(A) ∼= ΛA∗(q)

as A∗-algebras, where q stands for the composite ρ ◦ β and

AR
∗ (Aop) ∼= ΛA∗(α)

as A∗-modules with deg(α) = d + 1. Moreover {1, q} is the dual basis of {1, α}. Now to show
that AR∗ (Aop) is an exterior algebra it is sufficient to prove that

〈
x, α2

〉
= 0 for any x ∈ A∗R(A).

We only need to consider the cases x = q and x = 1. In general we have
〈
x, α2

〉
= 〈x, ϕop

∗ (α⊗ α)〉 = 〈(ϕop)∗(x), α⊗ α〉 .
When x = q, since q is a derivation with respect to any product on A we find

(ϕop)∗(q) = ϕ∗(q) + (u ◦ (β ∧ β))∗(q)
= q ⊗ 1 + 1⊗ q + q ◦ (u ◦ (β ∧ β))
= q ⊗ 1 + 1⊗ q,

since Aodd = 0, q ◦ u = 0. Applying Lemma 3.4 we obtain

〈q ⊗ 1, α⊗ α〉 = uβ∗(q∗(α))β(q∗(α)) = 0,
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since β ◦ q = 0. A similar calculation shows that 〈1⊗ q, α⊗ α〉 = 0.
Next in the case x = 1, we have

〈
1, α2

〉
= 〈1⊗ 1, α⊗ α〉+ 〈1 ◦ u ◦ (β ∧ β), α⊗ α〉 .

We will show that the first summand is equal to u. The element 1 ∈ A∗R(A) is represented by the
identity, hence because of Lemma 3.4 it suffices to show that β∗(α) = 1 = β(α). As A∗ = R∗/(x),
the algebra AR∗ (Aop) has A∗ in its center, thus the two homomorphisms ρ, ρ∗ : A∗ −→ AR∗ (Aop)
coincide. We have already shown that

q(α) = q∗(α) = 1,

so since ρ is injective it follows that

β(α) = β∗(α) = 1.

The second summand satisfies

〈1 ◦ u ◦ (β ∧ β), α⊗ α〉 = −u.

This holds since β∗(α) = 1, the sign comes from the fact that the twist map

τ : Σd+1A ∧A −→ A ∧ Σd+1A

is a map of degree −1 since d is even.
Now consider the general case A = R/I and I = (x1, x2, . . .). For any i,

ϕop
i = ϕi ◦ τ = ϕi + ui ◦ (βi ∧ βi).

The morphisms of R ring spectra R/xi −→ A induce ring homomorphisms

(R/xi)R
∗ (R/xop

i ) −→ AR
∗ (R/xop

i )

and we now easily deduce that as algebras over A∗,

AR
∗ (R/xop

i ) ∼= ΛA∗(αi).

By construction of the product ϕA on A, the elements αi commute to each other, therefore

AR
∗ (Aop) ∼= ΛA∗(αi : xi ∈ S).

The coalgebra structure follows easily from the naturality of the pairing

〈x⊗ y, η(αi)〉 = 〈x · y, αi〉
for x, y ∈ A∗R(Aop). Thus

η(αi) = αi ⊗ 1 + 1⊗ αi

and η(1) = 1⊗ 1. ¤

A similar calculation establishes

Theorem 3.5. As algebras over A∗,

AR
∗ (A) ∼= A∗[αi : xi ∈ S]/(α2

i − ui),

where the αi and the unit are primitives with respect to the coalgebra structure.

Remark 3.6. The R ring spectra A and Aop are usually not isomorphic because the rings
AR∗ (A) and AR∗ (Aop) are not isomorphic. As illustrated in the examples below, in some cases
A and Aop may be isomorphic as S ring spectra, i.e., there is a morphism of S ring spectra
A −→ Aop that is not a morphism of R ring spectra.
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4. Spectral sequences

In this section we consider the two spectral sequences converging to A∗R(A) and AR∗ (A) re-
spectively. Here, as usual, A satisfies (1.1).

From [2], there is a multiplicative spectral sequence

E∗∗2 = Ext∗R∗(A∗, A∗) ⇒ A∗R(A).

We determine the E∗∗2 -term with the aid of the Koszul resolution of A∗:

(4.1) ΛR∗(ωi : xi ∈ S) −→ A∗ → 0,

with differentials d(ωi) = xi. The Ext module is the homology of the complex

HomR∗(ΛR∗(ωi : xi ∈ S)) → 0.

Then we easily obtain
Ext∗R∗(A∗, A∗) ∼= Λ̂A∗(τi : xi ∈ S)

as A∗-algebras. For dimensional reasons, the differentials act trivially on the τi, and so by
multiplicativity the spectral sequence collapses. It is not hard to identify the Bockstein Qi in
this spectral sequence

Theorem 4.1. The cofibre E of Qi satisfies

π∗(E) ∼= R∗/(x1, x2, . . . , x
2
i , . . .)

and the extension
0 → A∗ −→ E∗ −→ A∗ → 0

represents Qi in Ext∗R∗(A∗, A∗).

Proof. By construction of the Qi the following diagram commutes.

Σ−di−1R/xi
βi−−−−→ R

xi−−−−→ R
ρi−−−−→ R/xiy

y
y

y
Σ−di−1A

Qi−−−−→ A −−−−→ E −−−−→ A

In homotopy it induces the diagram

0 −−−−→ R∗
xi−−−−→ R∗ −−−−→ R∗/(xi) −−−−→ 0y

y
y

0 −−−−→ A∗ −−−−→ E∗ −−−−→ A∗ −−−−→ 0
which shows that E∗ is the push-out of the left-handed square, because the left vertical morphism
is the natural projection, hence E∗ has the desired form.

Observe that the extension

0 → A∗ −→ E∗ −→ A∗ → 0

is classified by τi ∈ Ext1R∗(A∗, A∗), where by construction, τi is represented by the composition
⊕

i

R∗ωi −→ R∗ωi −→ A∗

of the projection on the i-th factor and of the quotient map.
It remains to prove that Qi is represented by τi in the spectral sequence. First we consider

the spectral sequence for A∗R(R/xi):

E∗∗2 = Ext∗R∗(R∗/(xi), A∗) ⇒ A∗R(R/xi).

We have Ext∗R∗(R∗/(xi), A∗) ∼= ΛA∗(τi) and A∗R(R/xi) ∼= ΛA∗(ei). The spectral sequence col-
lapses for dimensional reason and ei is represented by τi because we do not have elements of
filtration greater than one and obviously it is not of filtration zero.
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For any quotient A of R, the Koszul resolution of (4.1) can be realized geometrically

· · · −→
∨

i,j

Rωiωj −→
∨

i

Rωi −→ A.

This is the main ingredient in the construction of the spectral sequence in our cases. To show that
Qi is represented by τi ∈ Ext1R∗(A∗, A∗), it suffices to compare the two geometrical resolutions

R −−−−→ R −−−−→ R/xiy
y

y
· · · −−−−→ ∨

Rωi −−−−→ R −−−−→ A

in which the left vertical morphism is the inclusion on the i-th factor. Now we easily deduce
the result. ¤

We now turn to homology and consider the Künneth spectral sequence of [2],

(4.2) E2
∗∗ ∼= TorR∗∗∗ (A∗, A∗) =⇒ AR

∗ (A).

As in the cohomological case, we use a Koszul resolution to compute the E2-term. We obtain

TorR∗∗ (A∗, A∗) ∼= ΛA∗(ti : xi ∈ S).

In this situation the spectral sequence is known to be multiplicative by [1], and we easily deduce
that it collapses. Observe however that we do not need the multiplicative structure to show
that it collapses. We may proceed as follows.

Observe first that it is sufficient to consider the case where we kill off only a finite number of
elements in R∗ (this is legitimate because we are working in homology). In this case, the Koszul
resolution (4.1) is free and of finite type, this implies that the exact couples used to construct
the spectral sequences (in homology and in cohomology) are dual to each other and the modules
involved are free of finite rank. The collapse of the cohomology spectral sequence then implies
the collapse of the homology spectral sequence.

We can also consider the spectral sequence

(4.3) E2
∗∗ ∼= TorR∗∗∗ (A∗, Aop

∗ ) =⇒ AR
∗ (Aop).

Similar arguments show that it collapses. Because A∗ = Aop
∗ , the spectral sequences (4.2)

and (4.3) coincide. In this example we see that even though the spectral sequence is multiplica-
tive we cannot recover AR∗ (A) and AR∗ (Aop) from it.

5. Some examples

In this section we will be mostly interested in the morphism

F ∗ : A∗R(A) = DR(A,A) −→ A∗(A) = DS(A,A)

induced by the forgetful functor DR −→ DS . The problem is to determine under which con-
ditions the maps Qi are non-trivial in the category DS . We will also consider the dual map
F∗ : A∗(A) −→ AR∗ (A) induced from the evident natural transformation between the smash
product bifunctors

(−)∧
S
(−) −→ (−)∧

R
(−).

Throughout the section we will make use of the following remark.

Remark 5.1. Let S̃ ⊂ S be regular sequences in R∗. Then

R/S = R/S̃∧
R

xi∈S−eS∧

R

R/xi.

If ϕ : R/S̃ −→ R/S̃ is a morphism of R-modules then ϕ ∧ id : R/S −→ R/S is also a morphism
of R-modules, therefore we obtain a ring map

DR(R/S̃, R/S̃) = R/S̃∗R(R/S̃) −→ DR(R/S, R/S) = R/S∗R(R/S).
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If X̄ ⊂ X are any sequences in R∗ then the inclusion X̄ ⊂ X induces a morphism of R-modules
X̄−1R −→ X−1R. Thus we obtain the following lattice of ring maps.

DR(X̄−1R/S̃, X̄−1R/S̃) −−−−→ DR(X̄−1R/S, X̄−1R/S)y
y

DR(X−1R/S̃, X−1R/S̃) −−−−→ DR(X−1R/S, X−1R/S)

We begin with the commutative S-algebra R = MU , the spectrum of the complex cobor-
dism [2]. Let p be a prime number and MU(p) be the p-localization of MU ; MU(p) is again a
commutative S-algebra satisfying

π∗(MU(p)) ∼= Z(p)[x1, x2, . . .],

with deg(xi) = 2i. We can choose the generators xi such that xpi−1 is the i-th Hazewinkel
generator of BP∗, we write vi rather than xpi−1. Here we recall that BP is a summand of
MU(p) for which

BP∗ ∼= Z(p)[v1, v2, . . .] ⊂ MU(p)∗.

We consider the regular sequence S = {xi : i 6= pk − 1, i ∈ N}. The quotient MU(p)/S is a
model for BP . Then we compute

BP ∗
MU(p)

(BP ) ∼= Λ̂BP∗(Ki : xi ∈ S).

We denote the Bockstein operations by Ki rather than Qi. Observe that the Ki are trivial in
the stable category DS since the ring homomorphism

F ∗ : BP ∗
MU(p)

(BP ) −→ BP ∗(BP )

is trivial (in positive dimension) because BP odd(BP ) = 0. Therefore we will not be interested
in the generators Ki. If BP were a commutative S-algebra (this is not known to be true at the
time of writing) we could start with R = BP and the situation would be cleaner.

Dually in homology and because BP is commutative

(5.1) BP
MU(p)
∗ (BP ) ∼= ΛBP∗(κi : xi ∈ S)

and the the morphism
F∗ : BP ∗(BP ) −→ BP

MU(p)
∗ (BP )

is trivial in positive dimension.
Let S̃ = {t1, t2, . . .} be a regular sequence in BP∗ and let A be the quotient

A = MU(p)/{S ∪ S̃} = BP
∧

MU(p)

MU(p)/S̃.

We have
A∗MU(p)

(A) ∼= Λ̂A∗(Ki : xi ∈ S)⊗̂Λ̂A∗(Qi : xi ∈ S̃).

Theorem 5.2. Let F ∗ : A∗MU(p)
(A) −→ A∗(A) be the forgetful map. Then with the above nota-

tion, the Ki are in the kernel of F ∗ while the Qi are not.

Proof. Let H denote the mod p Eilenberg-Mac Lane spectrum

H = K(Fp; 0) = MU(p)/(p, x1, x2, . . .) = BP
∧

MU(p)

MU(p)/(p, v1, v2, . . .).

We write BP/ti for BP
∧

MU(p)
MU(p)/ti. Since the mod p homology Hurewicz homomorphism

for BP is trivial, the cofibration

Σ|ti|MU(p)
ti−→ MU(p)

ρi−→ MU(p)
βi−→ · · ·

induces for any i

(5.2) H∗(BP/ti) ∼= H∗(BP )⊗ ΛFp(εi)
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with (βi)∗(εi) = 1 and

(5.3) H
MU(p)
∗ (BP/ti) ∼= H

MU(p)
∗ (BP )⊗ ΛFp(εi).

A similar calculation to that in the previous sections shows that

(5.4) H
MU(p)
∗ (BP ) ∼= ΛFp(κi : xi ∈ S).

Here the κi of (5.1) and (5.4) correspond under the natural map

BP
MU(p)
∗ (BP ) −→ H

MU(p)
∗ (BP ).

The products ϕi and ϕop
i on BP/ti induce the same algebra structure on either H∗(BP/ti) or

HBP∗ (BP/ti), therefore the isomorphisms of (5.2) and (5.3) are isomorphisms of Fp-algebras.
By induction we obtain the isomorphisms of Fp-algebras

H∗(A) ∼= H∗(BP )⊗ ΛFp(αi : ti ∈ S̃),

H
MU(p)
∗ (A) ∼= ΛFp(κi : xi ∈ S)⊗ ΛFp(αi : ti ∈ S̃),

where αi is the image of εi and the map

F∗ : H∗(A) −→ H
MU(p)
∗ (A)

is the natural projection onto ΛFp(αi : ti ∈ S̃).
By definition of the Bockstein qi : BP/ti −→ BP/ti, we have (qi)∗(ε1) = 1. Therefore

Qi : A −→ A satisfies Qi(αi) = 1 and Qi is non-trivial in DS . Thus we have proved that the
Bocksteins Qi are not in the kernel of the forgetful map F ∗ : A∗MU(p)

(A) −→ A∗(A). ¤

When A = H we have the following identification. The forgetful map

F ∗ : H∗
MU(p)

(H) −→ H∗(H)

is a morphism of Hopf algebras and the element Qi ∈ H2pi−1
MU(p)

(H) is mapped to a non-trivial

primitive element in degree 2pi − 1 in the Steenrod algebra H∗(H), so it is the Milnor’s basis
element written Qi and the image of F ∗ is the exterior algebra on such elements.

In homology we have

H∗(H) ∼= Fp[ξ1, ξ2, . . .]⊗ ΛFp(τ0, τ1, . . .)

and τi is dual to Milnor basis Qi. Therefore the map

F∗ : H∗(H) −→ H
MU(p)
∗ (H) ∼= ΛFp(α0, α1, . . .)⊗ ΛFp(κi : xi ∈ S)

sends ξi to 0 and τi to αi.
So far we have that the Bockstein operations Qi are not in the kernel of the forgetful map

F ∗ : A∗MU(p)
(A) −→ A∗(A),

but we are not claiming that the latter is injective (this is false in general). For instance, consider
the p-local Eilenberg-Mac Lane spectrum

H(p) = K(Z(p); 0) = MU(p)/(x1, x2, . . .) = BP
∧

MU(p)

MU(p)/(v1, v2, . . .).

The map H(p) −→ H induces the commutative diagram

ΛZ(p)
(Ki : xi ∈ S)⊗ ΛZ(p)

(Qi : i > 0)
∼=−−−−→ (H(p))∗MU(p)

(H(p))
F ∗−−−−→ (H(p))∗(H(p))y

y
ΛFp(Ki : xi ∈ S)⊗ ΛFp(Qi : i > 0)

∼=−−−−→ H∗
MU(p)

(H) F ∗−−−−→ H∗(H)

and by construction the left vertical map identifies the corresponding Ki and Qi for i > 0.
The bottom horizontal map is the injection into the exterior algebra generated by Milnor’s
elements. In degree 0 the diagram is just the mod p reduction. In positive degrees the image of
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Qi ∈ (H(p))∗MU(p)
(H(p)) in (H(p))∗(H(p)) is not trivial. By [4], in positive degrees (H(p))∗(H(p))

is torsion of order exactly p, so the image of pQi is trivial and the map

F ∗ : (H(p))
∗
MU(p)

(H(p)) −→ (H(p))
∗(H(p))

is not injective.
The dual situation in homology is quite interesting. In this case the map H(p) −→ H induces

the following commutative diagram.

(H(p))∗(H(p))
F∗−−−−→ (H(p))

MU(p)
∗ (H(p))

∼=−−−−→ ΛZ(p)
(αi : i > 0)⊗ ΛZ(p)

(κi : xi ∈ S)

π∗
y

y
H∗(H) F∗−−−−→ H

MU(p)
∗ (H)

∼=−−−−→ ΛFp(αi : i > 0)⊗ ΛFp(κi : xi ∈ S)

In degree 0 the diagram is just the mod p reduction. In positive degrees the top horizontal map
is zero since by [4], (H(p))∗(H(p)) is torsion of order p and (H(p))

MU(p)
∗ (H(p)) is Z(p) free. The

right vertical map identifies the κi and αi. The map F∗ is the canonical surjection described
above. Since the composite π∗ ◦ F∗ is trivial, the image of π∗ has trivial intersection with the
exterior algebra generated by the αi. This is consistent with the calculations of [4].

Now we consider the case of P (n) = BP
∧

MU(p)
MU(p)/In with In = (p, v1, . . . , vn−1) and

let p = 2 (when p is odd P (n), is homotopy commutative and the situation is much simpler to
understand). Let ϕn be a product on P (n) compatible with the MU(p) structure. Then from [3],
the opposite product ϕop

n satisfies

ϕop
n = ϕn + vnϕn ◦ (Qn−1 ∧Qn−1).

Also recall from [3] that P (n)∗(P (n)) is the quotient algebra

P (n)∗(P (n)) = P (n)∗[α0, . . . , αn−1, ti : i > n]/(α2
i + ti+1 + vi+1 : i = 0, . . . , n− 1),

where ti+1 and vi are to be interpreted as 0 for i < n. Similarly,

P (n)∗(P (n)op) = P (n)∗[α0, . . . , αn−1, ti : i > n]/(α2
i + ti+1 : i = 0, . . . , n− 1).

We have determined that

P (n)
MU(p)
∗ (P (n)) ∼= P (n)∗[α0, . . . , αn−1]/((α2

i + vi+1)⊗ ΛP (n)∗(κi : xi ∈ S)

and
P (n)

MU(p)
∗ (P (n)op) ∼= ΛP (n)∗(α0, . . . , αn−1)⊗ ΛP (n)∗(κi : xi ∈ S),

where the maps

F∗ : P (n)∗(P (n)) −→ P (n)
MU(p)
∗ (P (n)), F∗ : P (n)∗(P (n)op) −→ P (n)

MU(p)
∗ (P (n)op)

are the natural projections.
Observe that since P (n)

MU(p)
∗ (P (n)) and P (n)

MU(p)
∗ (P (n)op) are not isomorphic as P (n)∗

algebras, P (n) and P (n)op cannot be isomorphic as MU(p) ring spectra. However, from [3] they
are isomorphic as ring spectrum.

In cohomology, the map

F ∗ : P (n)∗MU(p)
(P (n)) ∼= ΛP (n)∗(Q0, . . . , Qn−1)⊗ Λ̂P (n)∗(Ki : xi ∈ S) −→ P (n)∗(P (n))

is trivial on the second factor and is the inclusion on the subalgebra generated by the Bockstein
on the first one.

As further example we consider the case where R = X−1MU(p) with X 6= ∅. It may very
well happen that the R-maps Qi become trivial when regarded as maps in the stable category
DS (we have already proven that the Qi are non-trivial in the category DR). For instance, let
R = v−1

n MU(p) and S̃ = {v0 = p, v1, . . . , v̂n, . . .}. Then A = K(n) is the n-th Morava K-theory
for which

K(n)∗ ∼= Fp[vn, v−1
n ].
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According to Wolbert [6],

K(n)∗
v−1

n MU(p)
(K(n)) ∼= K(n)∗MU(p)

(K(n))

where the latter is
Λ̂K(n)∗(Qi : i 6= n)⊗̂Λ̂K(n)∗(Ki : xi ∈ S).

We already know that the Bockstein Qi for i < n are non-trivial in K(n)∗(K(n)), in which
they generate an exterior algebra). We now prove that the map F ∗ : K(n)∗MU(p)

(K(n)) −→
K(n)∗(K(n)) sends Qi to 0 when i > n.

For any spectrum X there is a natural isomorphism of K(n)∗-modules

(5.5) K(n)∗(X) ∼= lim←−
α

K(n)∗(Xα),

where the limit is taken over finite subcomplexes Xα ⊂ X. Let i > n. From the natural
isomorphism of (5.5), it suffices to show that Qi(x) = 0 for any x ∈ K(n)∗(X) with X finite.

Consider the spectrum

Cn,i = v−1
n BP

j 6=n,i∧

v−1
n MU(p)

v−1
n MU(p)/vj

which satisfies
π∗(Cn,i) ∼= Fp[vn, v−1

n , vi].
The spectrum Cn,i is equipped with a natural morphism of ring spectra α : P (n) −→ Cn,i. If X
is a finite spectrum, then by Landweber exactness, the map α induces an isomorphism

C∗
n,i(X) ∼= P (n)∗(X)

⊗

P (n)∗
C∗

n,i.

It is well known that an element of vi torsion in P (n)∗(X) is also of vn torsion. Therefore if
y ∈ C∗

n,i(X) with viy = 0, then y = 0.
Let x ∈ K(n)∗(X) with X finite, we will show that Qi(x) = 0. By construction, Qi = ρi ◦ βi,

where
Σ2(pi−1)Cn,i

vi−→ Cn,i
ρi−→ K(n)

βi−→ Cn,i.

The class Qi(x) is the composite

X
x−→ K(n)

βi−→ Cn,i
ρi−→ Cn,i,

but by definition
X

x−→ K(n)
βi−→ Cn,i

vi−→ Cn,i

is trivial, that is βi(x) ∈ C∗
n,i(X) is a vi-torsion element. By the remark above βi(x) = 0 and so

Qi(x) = 0.
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