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Introduction.
In this paper, we derive formulæ in Brown-Peterson homology at the prime 2 related to the

family of elements ϕn ∈ MSp8n−3 of N. Ray, whose central rôle in the structure of MSp has
been highlighted by recent work of V. Vershinin and other Russian topologists. In effect, we give
explicit “chromatic” representatives for these elements, which were known to be detected in KO
and mod 2 KU-homology, and are thus “v1-periodic” in the parlance of [4] and [5]. In future
work we will investigate further the v1 periodic part of MSp and discuss the relationship of our
work with that of B. Botvinnik.

I would like to thank Nigel Ray for many helpful discussions and large amounts of advice on
MSp (including severe warnings!) over many years; in particular, §5 in this paper was prompted
by his suggestions about the detection of ϕn in the classical Adams spectral sequence. I would
also like to thank Boris Botvinnik, Vassily Gorbunov and Vladimir Vershinin for discussions on
the material of earlier versions of this paper both during and after the J. F. Adams Memorial
Symposium and in particular for bringing to my attention Bŭhstaber’s article [2] which contains
related results.

§1 Some algebraic results on E∗(MSp).
Let E be a commutative ring spectrum, and let xE ∈ E2(CP∞) be a complex orientation in

the sense of [1]. Then the results of the following Theorem are well known.

Theorem (1.1).

a) The natural map j1 : CP∞ −→ HP∞ induces a split monomorphism

E∗(HP∞)
j1

∗

−−→ E∗(CP∞),

and a split epimorphism

E∗(CP∞)
j1∗−−→ E∗(HP∞),

of modules over E∗.
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b) As an E∗ algebra,
E∗(MSp) = E∗[Q

E
k : k > 1],

and moreover the natural morphism of ring spectra j : MSp −→ MU induces an embedding
of E∗ algebras

j∗ : E∗(MSp)
j∗−→ E∗(MU).

We will need explicit sets of generators for the E homology and cohomology of HP∞ and
MSp. Recall the canonical complex line bundle η −→ CP∞ and its E-theory 1st Chern class
cE1 (η) = xE ; we have E∗(CP∞) = E∗[[x

E ]]. Then the map j1 : CP∞ −→ HP∞ classifies the
quaternionic line bundle η ⊗C H −→ CP∞, which has as its underlying complex bundle η + η ,
where ( ) denotes complex conjugation. We define the E-theory 1st symplectic Pontrjagin class
of a symplectic bundle ζ −→ X to be the negative of the E-theory 2nd Chern class of the complex
bundle ζ ′ underlying ζ,

℘E(ζ) = −c2(ζ ′) ∈ E4(X).

In particular we set ℘E = ℘E(ξ) ∈ E4(HP∞), where ξ −→ HP∞ is the canonical symplectic line
bundle; this gives

j∗i ℘
E = ℘E(η + η ) = −cE1 (η)cE1 (η ) ∈ E4(CP∞).

We also have (as graded algebras over E∗)

(1.2) E∗(HP∞) = E∗[[℘
E ]].

Now let the elements βEn ∈ E2n(CP∞), n > 0, form the standard E∗ basis for E∗(CP∞) as detailed
in [1]; this basis is dual to that of the monomials (xE)n in E∗(CP∞) under the Kronecker pairing
〈 , 〉: 〈

(xE)r, βEs
〉
= δr,s,

where δ is the Kronecker delta function. Also for any T , let T = [−1]E(T ) be the −1 series for
the formal group law FE(X,Y ) ∈ E∗[[X,Y ]] associated to the orientation xE as described in [1];

notice that xE = cE1 (η ).
Now in E∗(HP∞) we can define a sequence of elements γn ∈ E4n(HP∞), n > 0, by requiring

that these are dual to the (℘E)n:

(1.3)
〈
(℘E)r, γs

〉
= δr,s.

It is easily verified that a generating function for these elements is the series

(1.4)
∑
n>0

γn(−T T )n =
∑
n>0

j1∗β
E
n T

n.

Let i1 : HP∞ ' MSp(1) −→ Σ4MSp be the standard map, then we have

Theorem (1.5).

a) The elements γn for n > 0 form an E∗ basis for E∗(HP∞).
b) The elements i1∗γn+1 for n > 1 form a set of polynomial generators for the E∗ algebra

E∗(MSp).
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From now on we set QEn = i1∗γn+1 ∈ E4n(MSp).
We also need some information on the image of the ring homomorphism

j∗ : E∗(MSp) −→ E∗(MU). We have the two generating functions

QE(T ) =
∑
n>0

QEn T
n+1 ∈ E∗(MSp)[[T ]],

j∗Q
E(T ) =

∑
n>0

j∗Q
E
n T

n+1 ∈ E∗(MU)[[T ]].

Recall from [1] the standard generators BEn ∈ E2n(MU), (for n > 0 and B0 = 1) for which

E∗(MU) = E∗[B
E
n : n > 1],

and let BE(T ) =
∑
n>0B

E
n T

n+1. The proof of the next result is left to the reader.

Proposition (1.6). The series j∗Q
E(−T T ) ∈ E∗(MU) satisfies the equation

QE(−T T ) = −BE(T )BE(T ).

§2 Symplectic Pontrjagin classes in E ∧MSp theory.
Recall that the ring spectrum MSp is universal for orientations for quaternionic bundles. The

universal orientation is induced from the class

℘MSp : HP∞ ' MSp(1) −→ Σ4MSp ∈ MSp4(HP∞).

We also have

(2.1) MSp∗(HP∞) = MSp∗[[℘
MSp]].

Now let E be a complex oriented ring spectrum as in §1. Then the class ℘E will serve as a
universal orientation for quaternionic line bundles in E theory. We can consider the representable
cohomology theory (E∧MSp)∗( ) on either of the categories of CW spectra or spaces. As E∗(MSp)
is free over E∗, we have a Boardman isomorphism

(2.2) (E ∧MSp)∗( ) ∼= E∗(MSp)⊗̂E∗E∗( )

where ⊗̂ denotes the completed tensor product with respect to the skeletal topology for infinite
complexes. From §1 and standard arguments about the map i1 : HP∞ −→ Σ4MSp, we have

Proposition (2.3). In (E ∧MSp)∗(HP∞) ∼= E∗(MSp)⊗̂E∗E
∗(HP∞) we have the identity

℘MSp = QE(℘E).

For later convenience we also introduce the series

NE(T ) =
∑
n>0

NE
n T

n+1 ∈ E∗(MSp)[[T ]]

determined by the equation

(2.4) NE(QE(T )) = T.

Notice that NE
n ≡ −QEn modulo decomposables, and hence we can take the NE

n to be polynomial
generators for E∗(MSp).
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§3 Detecting Ray’s element ϕn with a complex oriented cohomology theory.
In this section we again let E be a complex oriented commutative ring spectrum. We will also

require the following assumption to hold:

TF: E∗ is torsion free.

This condition is satisfied for the following spectra: E = MU, BP, KU, HZ, which include all
those which we will be explicitly considering in this paper.

Now consider the space RP∞. Let ρ −→ RP∞ be the canonical real line bundle and λ =
ρ⊗R C −→ RP∞ be its complexification. Let wE = cE1 (λ) ∈ E2(RP∞). Then we have

(3.1) E∗(RP∞) = E∗[[w
E ]]/([2]E(w

E)),

where [2]ET denotes the 2 series of the formal group law associated to xE .
Now we will consider the space RP∞×HP∞ and apply the cohomology theory (E ∧MSp)∗( )

to it. Since both E∗(MSp) and E∗(HP∞) are free modules over E∗, we have the following
isomorphisms

(E ∧MSp)∗(RP∞ ×HP∞) ∼=E∗(MSp)⊗̂E∗E
∗(RP∞)⊗̂E∗E

∗(HP∞),

(E ∧MSp)∗(RP∞ × CP∞) ∼=E∗(MSp)⊗̂E∗E
∗(RP∞)⊗̂E∗E

∗(CP∞).

Let ξ −→ HP∞ be the canonical quaternionic line bundle. Then the quaternionic bundle

ρ⊗R ξ = λ⊗C ξ −→ RP∞ ×HP∞

is defined and so has a 1st symplectic Pontrjagin class in each of the theories represented by the
spectra MSp, E and E ∧MSp.

In the ring (E ∧MSp)∗(RP∞ ×HP∞), we have expressions of the form

℘E(ρ⊗R ξ) = ℘E + w2 +
∑
n>1

θ̂En (℘
E)n+1,(3.2)

and

℘MSp(ρ⊗R ξ) = ℘MSp + w2 +
∑
n>1

θ̂MSp
n (℘MSp)n+1,(3.3)

where θ̂En ∈ E4n(RP∞) and θ̂MSp
n ∈ MSp4n(RP∞). Upon applying the split monomorphism j∗1

these yield the following equations in (E ∧MSp)∗(RP∞ × CP∞):

℘E((λ⊗C η)⊗C H) = j∗1

℘E + w2 +
∑
n>1

θ̂En (℘
E)n+1

 ,(3.2′)

℘MSp((λ⊗C η)⊗C H) = j∗1

℘MSp + w2 +
∑
n>1

θ̂MSp
n (℘MSp)n+1

 ,(3.3′)
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Now recall from (2.3) that ℘MSp = QE(℘E). Thus we obtain

℘MSp((λ⊗C η)⊗C H) = QE(j∗1℘
E + w2 +

∑
n>1

θ̂En (j
∗
1℘

E)n+1).

Recall from [6] the following construction. Consider the inclusion of the bottom cell
S1 ∼= RP1 ↪−→ RP∞. Then we can restrict ρ, λ −→ RP∞ to ρ1, λ1 −→ RP1 and obtain the
classes

℘MSp(ρ1 ⊗R ξ) ∈ MSp4(RP1 ×HP∞),

and its image under j∗1 ,

℘MSp(λ1 ⊗C (η + η )) ∈ MSp4(RP1 × CP∞).

By definition, Ray’s elements θn ∈ MSp4n−3 are given by

℘MSp(ρ1 ⊗R ξ)− ℘MSp =
∑
n>1

θn(℘
MSp)n

in MSp∗(RP1 ×HP∞), and we also have

℘MSp((λ1 ⊗C η)⊗C H)− ℘MSp =
∑
n>1

θn(℘
MSp)n

in (E ∧MSp)∗(RP1 ×CP∞). Stably, the smash product RP1 ∧HP∞ is a retract of RP1 ×HP∞,
and this allows us to identify the above expressions with elements of MSp∗(RP1 ∧ HP∞) and
(E ∧MSp)∗(RP1 ∧ CP∞). We will also use the notation ϕn = θ2n of [6].

We can factor the inclusion RP1 ↪−→ RP∞ as RP1 ↪−→ RP2 ↪−→ RP∞, and since RP2 is
a Z/2 Moore space, we see that 2θn = 0. Under our assumption TF together with (3.1), we
thus have that θn 7−→ 0 under the E theory Hurewicz homomorphism MSp∗ −→ E∗(MSp).
Equivalently, the class ℘MSp((λ1⊗C η)⊗CH)−℘MSp maps to 0 under the natural homomorphism
MSp∗(RP1 ∧HP∞) −→ (E ∧MSp)∗(RP1 ∧HP∞). Let

℘MSp(λ2 ⊗C ξ) = ℘MSp +
∑
n>1

θ̃n(℘
MSp)n

∈ (E ∧MSp)∗(RP2 ×HP∞)

where
θ̃n ∈ MSp∗(RP2 ∧HP∞) ⊂ (E ∧MSp)∗(RP2 ∧HP∞)

is the image of θ̂MSp under the map induced by the inclusion RP2 ↪−→ RP∞. Now for any
spectrum F with F∗ torsion free there is an isomorphism F k(RP2) ∼= F2−k/2F2−k induced from
Spanier-Whitehead duality. In particular, this applies to the cases F = E ∧MSp,MSp that we

are dealing with, and thus we can interpret θ̃n as an element of MSp4n−2/(2) ⊂ E4n−2(MSp)/(2).

Let w2 ∈ E2(RP2) be the restriction of the generator wE ∈ E2(RP∞); note that w2 = cE1 (λ2).
We can now give our main calculational result.
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Theorem (3.4). Let u = xE and u = xE , satisfying

−uu = NE(j∗1℘
MSp)

and

−uu , u+ u ∈ im [E∗(HP∞) −→ (E ∧MSp)∗(HP∞)] .

Then under assumption TF together with (3.1), we have the following identity in
(E ∧MSp)∗(RP2 ∧ CP∞):

℘MSp(((λ2 ⊗C η)⊗C H)) + uu =
w2

NE ′(j∗1℘
MSp)

[
u

logE ′(u )
+

u

logE ′(u)

]
,

and moreover this element is equal to j∗1℘
MSp(ρ2 ⊗R ξ) − j∗1℘

MSp and lies in the image of the
natural map MSp∗(RP2 ∧HP∞) −→ (E ∧MSp)∗(RP2 ∧HP∞).

Proof. We need to recall some relevant facts. Firstly, we have

w2
2 = 0 = 2w2.

Hence only the first order terms in w2 are required. Secondly, we have the following formula for
formal derivatives:

QE ′(NE(T )) =
1

NE ′(T )
.

Finally, by definition,

℘E((λ2 ⊗C η)⊗C H) = −cE(λ2 ⊗C η + λ2 ⊗C η ).

But expanding this using the Cartan formula, we obtain

℘E((λ2 ⊗C η)⊗C H) = −cE1 (λ2 ⊗C η)c
E
1 (λ2 ⊗C η )

= −FE(w2, u)F
E(w 2, u )

= −FE(w2, u)F
E(w2, u ),

using the fact that λ22 is a trivial line bundle. In this, we are setting u = cE1 (η) and u = cE1 (η ).
We also require the following well known Lemma.
Let logE(X) ∈ E ⊗Q[[X]] denote the logarithm series of the formal group law FE .

Lemma (3.5). The formula

logE ′(X) =
1

FE2 (X, 0)

holds in E∗[[X]], where FE2 (X,Y ) = ∂
∂Y F

E(X,Y ). Hence the logarithm of FE, logE(X), has
coefficients in E∗.

Proposition (3.4) now follows from these observations. �
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As a sample application of this, we consider the case of E = KU, i.e., complex KU-theory.
This allows us to determine the KO-theory Hurewicz images of Ray’s elements θn ∈ MSp8n−3.
Recall that we have KU∗ = Z[t, t−1], where t ∈ KU2 is the Bott generator; this theory clearly
satisfies the condition TF. Corresponding to the standard complex orientation in KU∗( ), the
formal group law FKU(X,Y ) = X + Y + tXY ; this has as its logarithm the series.

logKU(X) = t−1 ln(1 + tX) =
∑
k>1

(−t)k−1Xk

k
.

Thus we have

logKU ′(X) =
1

(1 + tX)
.

Now the formula of (3.4) becomes

℘MSp(((λ2 ⊗C η)⊗C H)) = ℘MSp +
w2

NKU ′(℘MSp)

[
u

logKU ′(u )
+

u

logKU ′(X)

]
.

We also have

[−1]KU(X) =
−X

(1 + tX)
.

Thus we obtain

℘MSp(((λ2 ⊗C η)⊗C H)) =

℘MSp +
w2

NKU(℘MSp)
[u(1 + tu ) + u (1 + tu)]

= ℘MSp +
w2

NKU ′(℘MSp)
· −tu2

(1 + tu)

= ℘MSp +
tw2℘

KU

NKU ′(℘MSp)

= ℘MSp +
tw2N

KU(℘MSp)

NKU ′(℘MSp)
.

The coefficient of w2(℘
MSp)n in this series is θ̃n. Notice that we can write

(3.6)
N(℘MSp)

NKU ′(℘MSp)
≡ ℘MSp +

∑
r>1N2r−1(℘

MSp)2r∑
s>0N2s(℘MSp)2s

(mod 2).

From this result, we can immediately deduce that θ̃2r−1 = 0 if r > 1. This suffices to prove
the following result which was conjectured in [6] and also follows from an unpublished result of
F. Roush which actually shows that θ2r−1 = 0 when r > 1. Let ko: MSp −→ KO∗(MSp) be the
KO-theory Hurewicz homomorphism.
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Proposition (3.7). For r > 1, we have in KO8r−7(MSp),

ko(θ2r−1) = 0.

Proof. Let M(2) = S0 ∪2 e
1 denote the mod 2 Moore spectrum and let η : S1 −→ S0 denote the

non-trivial element of πS1 together with the map S1 ∧KO −→ KO it induces; let M(η) = S0 ∪η e2
be the mapping cone. Recall from [1] “the Theorem of Reg Wood”: there is a cofibre sequence

S1 ∧KO
η−→ KO −→ KO ∧M(η) ' KU.

Now consider the exact diagram of abelian groups in which the rows are induced from the cofibre
sequence for η and the columns from the cofibre sequence for multiplication by 2:

KO8r−7(MSp) −−−−→ KO8r−7(MSp ∧M(2)) −−−−→ KO8r−8(MSp)

η

yepi η

y η

yepi

KO8r−6(MSp) −−−−→ KO8r−6(MSp ∧M(2)) −−−−→ KO8r−7(MSp)y
KU8r−6(MSp ∧M(2))

Now θ̃2r−1 = 0 in the group KU8r−6(MSp∧M(2)) appearing in this diagram, and therefore we can
lift ko(θ2r−1) in the group KO8r−7(MSp) to an element of the torsion group KO8r−7(MSp∧M(2)).
But this means that ko(θ2r−1) is the image of an element of KO8r−8(MSp), a torsion free group.
The only way that both of these can be true is if ko(θ2r−1) = 0. �

We can also see that for each n > 1,

ϕ̃n = θ̃2n ≡ tN2n−1 (mod decomposables).

This of course shows that in the ring KU∗(MSp)/(2), the elements ϕ̃n are algebraically indepen-
dent over KU∗/(2).

§4 Some calculations in BP∗(MSp).
We now consider the case of E = BP, the Brown-Peterson spectrum at the prime 2; we will

assume the reader to be familiar with [1] and [5] which contains detailed information on BP.
We begin with some algebraic Lemmas on the formal group law for BP. Recall that the

logarithm of FBP is the series

(4.1) logBP(X) =
∑
n>0

`nX
2n ∈ (BP∗ ⊗Q)[[X]],

where `n ∈ BP2(2n−1)⊗Q. The Hazewinkel generators are then defined recursively by the formula

(4.2) vn = 2`n −
∑

16k6n−1

`kv
2k

n−k for n > 1.

We also have the following relation for the 2-series [2]BP(X):

(4.3) [2]BP(X) ≡
BP∑
n>1

vnX
2n (mod 2),

where as usual the symbol
∑BP

indicates formal group summation. We will need the following
well known facts about the formal derivative of the logarithm. The next result may be known to
others but we know of no reference.
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Lemma (4.4). We have the following congruence in BP∗[[X]]:

logBP ′(X) ≡
∑
n>0

v2
n−1

1 X2n−1 (mod 2).

Proof. Let

logBP ′(X) =
∑
n>0

LnX
2n−1

where Ln = 2n`n is an element of BP2n+1−2. We will show by induction upon n that

Ln ≡ v2
n−1

1 (mod 2).

For n = 0 and 1, the result is clear. Suppose that it holds for some n. Then we have

2nvn+1 = Ln+1 −
∑

16k6n
2n−kLkv

2k

n+1−k

≡ v2
n+1−1

1 (mod 2) by the inductive hypothesis.

Hence, the desired result holds for n+ 1 and the Lemma follows. �
Our next result allows us to estimate the series [−1]BP(X) modulo 2. Again it is quite possibly

known to others.

Lemma (4.5). The following congruences hold in BP∗[[X]]:

[−1]BP(X) ≡
BP∑
n>0

[2n]BP(X) (mod 2)

≡ X +BP

BP∑
n>1

r1,... ,rn>1

vr1v
2r1
r2 · · · v2

r1+···+rn−1

r2 X2r1+···+rn
(mod 2),

where in each case the right hand side is an X-adically convergent series.

Proof. The sequence [2n−1]BP(X) is Cauchy with respect to theX-adic topology on BP∗/(2)[[X]]
since the formal group differences of successive terms have the form [2n]BP(X) and by (4.3) the
leading term of this is that in X2n . Hence, we see that the limit of this sequence is

BP∑
n>0

[2n]BP(X),

giving the desired result. �
We are now in a position to calculate ℘MSp(((λ2 ⊗C η) ⊗C H)) as an element of (BP ∧

MSp)∗(RP2 ×HP∞). Recall that we have from §3,

℘MSp(((λ2 ⊗C η)⊗C H)) = ℘MSp +
w2

NBP ′(℘MSp)

[
u

logBP ′(u )
+

u

logBP ′(X)

]
.

The ring of power series in u and u which is symmetric with respect to the automorphism
interchanging these two elements is easily seen to be the power series ring on −uu , hence we
can express this last quantity as an element of (BP ∧ MSp)∗(RP2)[[℘BP]] by making use of
the fact that ℘BP = −uu . Of course, this will be hard to do explicitly in general, but we can
extract sufficient information from our formula to enable us to make some interesting deductions.
Amongst these we have the following, which we leave the reader to verify. Recall that in BP∗,
the ideal Ir = (v0, v1, . . . , vr) is invariant and prime (here as usual we set v0 = 2).
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Theorem (4.6). For r > 1 we have in (BP ∧MSp)∗(RP2 ×HP∞) the congruence:

℘MSp(((λ2 ⊗C η)⊗C H)) ≡ ℘MSp +
w2

NBP ′(℘MSp)

[
vr(℘

MSp)2
r−1

+ vr+1(℘
MSp)2

r
]

(mod Ir + (℘MSp)2
r+1).

This allows us to deduce that

ϕ̃1 = v2 + v1N1,

ϕ̃2 = v3 + v2N2 mod I2 + decomposables,

and in general

ϕ̃2r−1 = vr+1 + vrN2r−1 mod Ir−1 + decomposables,

where the term “decomposables” refers to decomposables in the BP∗ algebra
BP∗[Nk : k > 1].

§5 Detecting Ray’s elements ϕn in mod 2 homology.
In this section we will give a formula for the element in the group

Ext1 4m−2
A∗

(F2,HF2∗(MSp))

(a part of the E2 term of the classical Adams Spectral Sequence for π∗(MSp)) which detects
N. Ray’s element θm ∈ MSp4m−3; here, A∗ denotes the dual Steenrod algebra at the prime 2,
and HF2 is mod 2 ordinary homology. For the case of m = 2n, we have ϕn = θ2n. Our approach

is to use the formulæ we obtained in §4 to determine the image of θ̃m under the composition

Ext0 ∗
BP∗(BP) (BP∗,BP∗(MSp)/(2))

δ−→

Ext1 ∗
BP∗(BP) (BP∗,BP∗(MSp))

ρ−→ Ext1 ∗
A∗

(F2,HF2∗(MSp)) ,

in which δ denotes the coboundary (of bidegree (1, 0)) induced from the exact sequence of co-
modules

0 −→ BP∗(MSp)
×2−−→ BP∗(MSp) −→ BP∗(MSp)/(2) −→ 0,

and ρ denotes the reduction map which has bidgree (0, 0) and is induced by the morphism of
comodules

(BP∗(BP),BP∗(MSp)) −→ (HF2∗(HF2) = A∗,HF2∗(MSp)).

From §4, we have as the generating function of the θ̃m the series

θ̃(℘MSp) =
∑
m>1

θ̃m(℘MSp)m

=
1

NBP ′(℘MSp)

[
u

logBP ′(u )
+

u

logBP ′(u)

]
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with the notational conventions of our earlier sections. The coefficients of this series in ℘MSp lie
in Ext0 ∗

BP∗(BP) (BP∗,BP∗(MSp)/(2)), and our first task is to calculate the series whose coefficients
are the elements

ψ(θ̃m) ∈ BP∗(BP)⊗BP∗ BP∗(MSp)/(2) (mod I2),

where ψ : BP∗(MSp) −→ BP∗(BP) ⊗BP∗ BP∗(MSp) is the (left) coaction. To do this, we view
the above series as lying in the ring (BP ∧ MSp)∗(HP∞)/(2) and the coaction as being a ring
homomorphism

(BP ∧MSp)∗(HP∞)
ψ−→ (BP ∧ BP ∧MSp)∗(HP∞)

∼= BP∗(BP)⊗BP∗ (BP ∧MSp)∗(HP∞).

We view the two factors of BP in the latter object as left (L) and right (R) indexed by these
letters. Then we obtain

ψθ̃(℘MSp) =
∑
m>1

θ̃m(℘MSp)m

=
1

NBPL ′(℘MSp)

[
uL

logBPL ′(u L)
+

uL

logBPL ′(uL)

]
.

But now in (BP ∧ BP)∗(CP∞), the left xBPL and right orientations xBPR are related by the
following formula to be found in [5]:

xBPL =

BPL∑
k>0

tk(x
BPR)2

k

≡
∑
k>0

tk(x
BPR)2

k

(mod I).(5.1)

Hence we have

uL =

BPL∑
k>0

tk(u
R)2

k

.

Now we also need to estimate logBP ′(X) modulo I2, where

I = (vk : k > 0) / BP∗

is the ideal generated by all the vk .

Proposition (5.2). In the ring BP∗[[X]] we have the congruence

logBP ′(X) ≡ 1 + v1X (mod I2).

Proof. We proceed as in the proof of Lemma (4.4) and use the same notation. We must show
that for n > 2, we have

Ln ≡ 0 (mod I2).
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For n = 2, this is an easy consequence of the formula

2v2 = L2 − v31

defining the Hazewinkel generator v2. An induction on n now gives general result. �
At this stage we have established that

(5.3) ψθ̃(℘MSp) ≡ 1

NBPL ′(℘MSp)

[
uL

(1 + v1uL )
+

uL

(1 + v1uL)

]
≡

1

NBPL ′(℘MSp)

[
uL

(1 + v1
∑
k>0 tk(u

R )2k)
+

uL

(1 + v1
∑
k>0 tk(u

R)2k)

]
(mod I2),

where the second congruence is a consequence of (5.1). Notice that we have

(5.4) ψθ̃(℘MSp) ≡

1

NBPL ′(℘MSp)

[ ∑
k>0 tk(u

R)2
k

(1 + v1
∑
k>0 tk(u

R)2k)
+

∑
k>0 tk(u

R )2
k

(1 + v1
∑
k>0 tk(u

R)2k)

]
(mod I),

since
X ≡ X +

∑
k>0

vkX
2k(mod I2)

by (4.5).
We still need to deal with the term NBPL ′(℘MSp), which has to be expressed in terms of

NBPR ′(℘MSp). By the formula of (1.6), we have

QBP(T 2) ≡ QBP(−TT )

≡ BBP(T )2 (mod I)

≡
∑
k>0

BBP
k

2
T 2k+2 (mod I)

in the ring BP∗(MU)[[T ]]. The coaction on this series is given by

ψ(QBP(T 2)) =
∑
k>0

BBP,BP(T )2k+2 ⊗BP∗ B
BP
k

2

where the series BBP,BP(T ) ∈ BP∗(BP)[[T ]] is composition inverse of

BP∑
k>0

tkT
2k ≡

∑
k>0

tkT
2k (mod I).
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As NBP(Z) is the composition inverse of QBP(Z), we have

ψ(NBP(Z)) =
∑
k>0

t2k ⊗ (NBP(Z))2
k

(mod I),

and hence
ψ(NBP ′(Z)) = NBP ′(Z) (mod I).

Using this result together with (5.4), we have

ψθ̃(℘MSp) ≡

1

NBPR ′(℘MSp)

[
uL

(1 + v1
∑
k>0 tk(u

R)2k)
+

uL

(1 + v1
∑
k>0 tk(u

R)2k)

]
(mod I2).

Expanding carefully the term inside the square brackets yields

uL + uL ≡
∑
k>0

vk(u
R)2

k

(mod I2)

and therefore

ψθ̃(℘MSp) ≡
∑
k>0 vk(N

BP(uR))2
k

NBPR ′(℘MSp)
(mod I2)

since NBPR(℘MSp) = ℘BPR ≡ (uR)2 mod I2.
Having calculated this, we are at last in a position to determine

δ(θ̃m) =

[
1

2
(ψ − 1⊗ Id)(θ̃m)

]
(mod I).

We need one further fact, namely that the right unit on the vn has the form

ηR(vn) ≡
∑

06k6n
vkt

pk

n−k (mod I2).

We therefore obtain the following generating function:

∑
m>1

δ(θ̃m)(℘MSp)m =

∑
k>0 tk(u

R)2
k

1⊗NBP ′(℘MSp)
(mod I)

which when pushed into A∗ ⊗HF2∗(MSp) yields

∑
k>0 ζ

2
k ⊗NH F2(℘MSp)

2k

1⊗NH F2 ′(℘MSp)
,

where A∗ = F2[ζk : k > 1] with ζk being the conjugate of Milnor’s generator ξk ∈ A2k−1.
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The element θm is detected in the classical mod 2 Adams spectral sequence for π∗(MSp) by
an element which originates in the E2 term in the group

Ext1 4m−2
A∗

(F2,HF2∗(MSp)) .

For low even values of m, these detecting elements are given in the following Table, obtained
using the symbolic algebra package MAPLE. Note that θ1 = [ζ21 ⊗ 1] and θ2n = ϕn. Of course,
for n > 1, θ2n+1 is zero and hence detected by 0! The notation is that implied by the cobar
construction.

TABLE

ϕ1 : [ζ21 ⊗N1 + ζ22 ⊗ 1]

ϕ2 : [ζ21 ⊗N1N2 + ζ21 ⊗N3 + ζ22 ⊗N2 + ζ22 ⊗N2
1 + ζ23 ⊗ 1]

ϕ3 : [ζ21 ⊗N1N4 + ζ21 ⊗N1N
2
2 + ζ21 ⊗N5 + ζ21 ⊗N3N2

+ ζ22 ⊗N2
1N2 + ζ22 ⊗N4 + ζ23 ⊗N2]

ϕ4 : [ζ21 ⊗N1N6 + ζ21 ⊗N1N
3
2 + ζ21 ⊗N5N2 + ζ21 ⊗N3N4 + ζ21 ⊗N3N

2
2

+ ζ21 ⊗N7

+ ζ22 ⊗N6 + ζ22 ⊗N2
1N4 + ζ22 ⊗N2

1N
2
2 + ζ22 ⊗N2

3

+ ζ23 ⊗N4 + ζ23 ⊗N2
2 + ζ23 ⊗N4

1 + ζ24 ⊗ 1]
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TABLE (continued)

ϕ5 : [ζ21 ⊗N5N4 + ζ21 ⊗N5N
2
2 + ζ21 ⊗N9 + ζ21 ⊗N1N8 + ζ21 ⊗N1N

2
4

+ ζ21 ⊗N1N
2
2N4 + ζ21 ⊗N1N

4
2 + ζ21 ⊗N3N6 + ζ21 ⊗N3N

3
2

+ ζ21 ⊗N7N2

+ ζ22 ⊗N8 + ζ22 ⊗N2
1N6 + ζ22 ⊗N2

1N
3
2 + ζ22 ⊗N2

3N2

+ ζ23 ⊗N6 + ζ23 ⊗N3
2 + ζ23 ⊗N4

1N2 + ζ24 ⊗N2]

ϕ6 : [ζ21 ⊗N7N
2
2 + ζ21 ⊗N1N

2
2N6 + ζ21 ⊗N1N2N

2
4 + ζ21 ⊗N3N

2
2N4

+ ζ21 ⊗N1N10 + ζ21 ⊗N3N8 + ζ21 ⊗N11 + ζ21 ⊗N7N4 + ζ21 ⊗N9N2

+ ζ21 ⊗N5N6 + ζ21 ⊗N3N
4
2 + ζ21 ⊗N3N

2
4 + ζ21 ⊗N5N

3
2 + ζ21 ⊗N1N

5
2

+ ζ22 ⊗N10 + ζ22 ⊗N2
1N

2
2N4 + ζ22 ⊗N2

5 + ζ22 ⊗N2
1N

4
2

+ ζ22 ⊗N2
3N4 + ζ22 ⊗N2

3N
2
2 + ζ22 ⊗N2

1N
2
4 + ζ22 ⊗N2

1N8

+ ζ23 ⊗N2
2N4 + ζ23 ⊗N2

4 + ζ23 ⊗N4
1N4 + ζ23 ⊗N4

1N
2
2 + ζ23 ⊗N8

+ ζ24 ⊗N2
2 + ζ24 ⊗N4]

ϕ7 : [ζ21 ⊗N11N2 + ζ21 ⊗N9N4 + ζ21 ⊗N9N
2
2 + ζ21 ⊗N1N

6
2

+ ζ21 ⊗N1N
4
2N4 + ζ21 ⊗N1N

2
6 + ζ21 ⊗N3N

5
2 + ζ21 ⊗N3N10

+ ζ21 ⊗N7N6 + ζ21 ⊗N5N8 + ζ21 ⊗N1N12 + ζ21 ⊗N1N
2
2N8

+ ζ21 ⊗N3N
2
2N6 + ζ21 ⊗N3N2N

2
4 + ζ21 ⊗N5N

2
2N4 + ζ21 ⊗N5N

4
2

+ ζ21 ⊗N5N
2
4 + ζ21 ⊗N13 + ζ21 ⊗N1N

3
4 + ζ21 ⊗N7N

3
2

+ ζ22 ⊗N2
5N2 + ζ22 ⊗N2

1N2N
2
4 + ζ22 ⊗N2

1N
5
2 + ζ22 ⊗N2

1N10

+ ζ22 ⊗N2
3N6 + ζ22 ⊗N12 + ζ22 ⊗N2

3N
3
2 + ζ22 ⊗N2

1N
2
2N6

+ ζ23 ⊗N2N
2
4 + ζ23 ⊗N10 + ζ23 ⊗N2

2N6 + ζ23 ⊗N4
1N6

+ ζ23 ⊗N4
1N

3
2 + ζ24 ⊗N3

2 + ζ24 ⊗N6]
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TABLE (continued)

ϕ8 : [ζ21 ⊗N3N
6
2 + ζ21 ⊗N13N2 + ζ21 ⊗N9N

3
2 + ζ21 ⊗N9N6

+ ζ21 ⊗N7N
2
2N4 + ζ21 ⊗N7N8 + ζ21 ⊗N5N10 + ζ21 ⊗N15

+ ζ21 ⊗N7N
2
4 + ζ21 ⊗N7N

4
2 + ζ21 ⊗N5N2N

2
4 + ζ21 ⊗N5N

5
2

+ ζ21 ⊗N11N
2
2 + ζ21 ⊗N11N4 + ζ21 ⊗N3N

2
2N8 + ζ21 ⊗N5N

2
2N6

+ ζ21 ⊗N3N12 + ζ21 ⊗N1N
4
2N6 + ζ21 ⊗N1N

2
4N6 + ζ21 ⊗N1N

2
2N10

+ ζ21 ⊗N1N2N
2
6 + ζ21 ⊗N3N

3
4 + ζ21 ⊗N3N

2
6 + ζ21 ⊗N1N

7
2

+ ζ21 ⊗N1N14 + ζ21 ⊗N3N
4
2N4

+ ζ22 ⊗N2
1N12 + ζ22 ⊗N2

3N
2
4 + ζ22 ⊗N2

3N
2
2N4 + ζ22 ⊗N2

3N8

+ ζ22 ⊗N2
5N4 + ζ22 ⊗N2

3N
4
2 + ζ22 ⊗N2

5N
2
2 + ζ22 ⊗N2

1N
4
2N4

+ ζ22 ⊗N2
1N

2
2N8 + ζ22 ⊗N2

1N
3
4 + ζ22 ⊗N2

1N
2
6 + ζ22 ⊗N2

1N
6
2

+ ζ22 ⊗N14 + ζ22 ⊗N2
7

+ ζ23 ⊗N4
3 + ζ23 ⊗N4

1N
2
4 + ζ23 ⊗N4

1N8 + ζ23 ⊗N4
1N

2
2N4

+ ζ23 ⊗N4
1N

4
2 + ζ23 ⊗N3

4 + ζ23 ⊗N2
2N8 + ζ23 ⊗N2

6 + ζ23 ⊗N12

+ ζ24 ⊗N8
1 + ζ24 ⊗N2

4 + ζ24 ⊗N4
2 + ζ24 ⊗N2

2N4 + ζ24 ⊗N8

+ ζ25 ⊗ 1]
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