I_{n}-LOCAL JOHNSON-WILSON SPECTRA AND THEIR HOPF ALGEBROIDS

ANDREW BAKER

Abstract

We consider a generalization $\mathcal{E}(n)$ of the Johnson-Wilson spectrum $E(n)$ for which $\mathcal{E}(n)_{*}$ is a local ring with maximal ideal I_{n}. We prove that the spectra $E(n), \mathcal{E}(n)$ and $\widehat{E(n)}$ are Bousfield equivalent. We also show that the Hopf algebroid $\mathcal{E}(n)_{*} \mathcal{E}(n)$ is a free $\mathcal{E}(n)_{*}$-module, generalizing a result of Adams and Clarke for $K U_{*} K U$.

Introduction

For each prime p and $n>0$, the Johnson-Wilson ring spectrum $E(n)$ provides an important example of a p-local periodic ring spectrum. The associated Hopf algebroid $E(n)_{*} E(n)$ is well known to be flat over $E(n)_{*}$, but as far as we are aware there is no proof in the literature that it is a free module for every n. Of course, after passage to the I_{n}-adic completion $\widehat{E(n)}$, and more drastically the I_{n}-adic completion of $E(n)_{*} E(n)$ (see [4, 8]), such problems disappear. On the other hand, for the ring spectrum $K U$, the associated Hopf algebroid $K U_{*} K U$ was shown to be free over $K U_{*}$ by Frank Adams and Francis Clarke [3, 2, 6]. Actually their approach has two parallel interpretations: one purely algebraic involving stably numerical polynomials [5]; the other topological in that it makes use of the cofibre sequence

$$
\Sigma^{2} k U \xrightarrow{t} k U \longrightarrow H \mathbb{Z}
$$

induced by the Bott map $t: S^{2} \longrightarrow k U$ in connective K-theory.
In this paper we demonstrate an analogous result by constructing an $\mathcal{E}(n)_{*}$-basis for $\mathcal{E}(n)_{*} \mathcal{E}(n)$ for a generalized Johnson-Wilson spectrum $\mathcal{E}(n)$ whose homotopy ring is the (graded) local ring

$$
\mathcal{E}(n)_{*}=\left(E(n)_{*}\right)_{I_{n}} .
$$

For completeness, in Section 1 we discuss even more general generalized Johnson-Wilson spectra to which appropriate analogues of our results apply, however we only describe the $\mathcal{E}(n)$ case explicitly.

Our main result is the following which has some immediate consequences stated in the Corollary.

Theorem. $\mathcal{E}(n)_{*} \mathcal{E}(n)$ is a free $\mathcal{E}(n)_{*}$-module on a countably infinite basis.

Corollary.

A) For every $\mathcal{E}(n)_{*}$-module M_{*} and $s>0$,

$$
\operatorname{Ext}_{\mathcal{E}(n)_{*}}^{s, *}\left(\mathcal{E}(n)_{*} \mathcal{E}(n), M_{*}\right)=0 .
$$

Date: 08/08/2004: Version 8.
2000 Mathematics Subject Classification. Primary 55N20 55N22.
Key words and phrases. Johnson-Wilson spectrum, periodic ring spectrum, Hopf algebroid, localization.
Glasgow University Mathematics Department preprint no. 00/5.
Published in Documenta Mathematica 5 (2000), 351-364.

In particular,

$$
\mathcal{E}(n)^{*} \mathcal{E}(n)=\operatorname{Hom}_{\mathcal{E}(n)_{*}}^{*}\left(\mathcal{E}(n)_{*} \mathcal{E}(n), \mathcal{E}(n)_{*}\right),
$$

and this is a free $\mathcal{E}(n)_{*}$-module on an uncountably infinite basis.
B) The $\mathcal{E}(n)$-module spectrum $\mathcal{E}(n) \wedge \mathcal{E}(n)$ is a countable wedge

$$
\mathcal{E}(n) \wedge \mathcal{E}(n) \simeq \bigvee_{\alpha} \Sigma^{2 \ell(\alpha)} \mathcal{E}(n),
$$

where ℓ is some integer valued function of the index α.
Actually, when $s \geqslant 2, \operatorname{Exx}_{\mathcal{E}(n)_{*}}^{s, *}\left(\mathcal{E}(n)_{*} \mathcal{E}(n), M_{*}\right)=0$ for formal reasons. The statement about $\mathcal{E}(n)^{*} \mathcal{E}(n)$ follows from a version of the Universal Coefficient Spectral Sequence of Adams [1].

Our approach to constructing a basis follows a line of argument suggested by that of Adams [2] which also has a purely algebraic interpretation in Adams and Clarke [3, 6].

Although the technology of brave new ring spectra applies to generalized Johnson-Wilson spectra [7, 15], we have no need of such structure, except perhaps to ensure the existence of the relevant Universal Coefficient Spectral Sequence mentioned above; alternatively, M. Hopkins has shown that such spectral sequences exist for all multiplicative cohomology theories constructed using the Landweber Exact Functor Theorem.

I would like to thank Francis Clarke, Neil Strickland and the referee for their helpful comments.

1. Generalized Johnson-Wilson spectra

Given a prime p and $n \geqslant 1$ we define generalized Johnson-Wilson spectra as follows. Begin with a regular sequence $\mathbf{u}: u_{0}=p, u_{1}, \ldots, u_{k}, \ldots$ in $B P_{*}$ satisfying

$$
u_{k} \in B P_{2\left(p^{k}-1\right)}, \quad\left(p, u_{1}, \ldots, u_{k-1}\right)=I_{k} \triangleleft B P_{*},
$$

where I_{k} is actually independent of the choice of generators for $B P_{*}$. Of course we have

$$
I_{k}=\left(p, v_{1}, \ldots, v_{k-1}\right)=\left(p, w_{1}, \ldots, w_{k-1}\right),
$$

where v_{j} and w_{j} are the Hazewinkel and Araki generators respectively.
There is a commutative ring spectrum $B P\langle n ; \mathbf{u}\rangle$ for which

$$
B P\langle n ; \mathbf{u}\rangle_{*}=\pi_{*} B P\langle n ; \mathbf{u}\rangle=B P_{*} /\left(u_{j}: j \geqslant n+1\right) .
$$

We will denote by $I_{n} \triangleleft B P\langle n ; \mathbf{u}\rangle_{*}$ the image of the ideal $I_{n} \triangleleft B P_{*}$ under the natural ring homomorphism $B P_{*} \longrightarrow B P\langle n ; \mathbf{u}\rangle_{*}$.

For any multiplicative set $S \subseteq B P\langle n ; \mathbf{u}\rangle_{*}$ containing u_{n} and having $I_{n} \cap S=\emptyset$, we can form the localization

$$
E(n ; \mathbf{u} ; S)_{*}=B P\langle n ; \mathbf{u}\rangle_{*}\left[S^{-1}\right] .
$$

There is a commutative ring spectrum $E(n ; \mathbf{u} ; S)$ with

$$
E(n ; \mathbf{u} ; S)_{*}=\pi_{*} E(n ; \mathbf{u} ; S)=B P_{*} /\left(u_{j}: j \geqslant n+1\right)\left[S^{-1}\right] .
$$

Example 1.1. a) When $S=\left\{u_{n}^{r}: r \geqslant 1\right\}$,

$$
E\left(n ; \mathbf{u} ;\left\{u_{n}^{r}: r \geqslant 1\right\}\right)_{*}=B P\langle n ; \mathbf{u}\rangle_{*}\left[u_{n}^{-1}\right] .
$$

This ring contains a maximal ideal I_{n} generated by the image of $I_{n} \triangleleft B P\langle n ; \mathbf{u}\rangle_{*}$, whose quotient ring is

$$
E\left(n ; \mathbf{u} ;\left\{u_{n}^{r}: r \geqslant 1\right\}\right)_{*} / I_{n}=K(n)_{*} .
$$

This is a mild generalization of the original notion of a Johnson-Wilson spectrum. There is also an I_{n}-adic completion $E\left(n ; \mathbf{u} ;\left\{u_{n}^{r}: r \geqslant 1\right\}\right)_{\widehat{I}_{n}}$ with homotopy $\operatorname{ring}\left(E\left(n ; \mathbf{u} ;\left\{u_{n}^{r}: r \geqslant 1\right\}\right)_{*} \widehat{I}_{n}\right.$.
b) When $S=B P\langle n ; \mathbf{u}\rangle_{*}-I_{n}$,

$$
E\left(n ; \mathbf{u} ; B P\langle n ; \mathbf{u}\rangle_{*}-I_{n}\right)_{*}=\left(B P\langle n ; \mathbf{u}\rangle_{*}\right)_{I_{n}} .
$$

This is a (graded) local ring with residue (graded) field

$$
E\left(n ; \mathbf{u} ; B P\langle n ; \mathbf{u}\rangle_{*}-I_{n}\right)_{*} / I_{n}=K(n)_{*} .
$$

In all cases we have the following which is a consequence of modified versions of standard arguments based on the Landweber Exact Functor Theorem.

Theorem 1.2. For each spectrum $E(n ; \mathbf{u} ; S)$ the following hold.
a) On the category of $B P_{*} B P$-comodules, tensoring with the $B P_{*}$-module $E(n ; \mathbf{u} ; S)_{*}$ preserves exactness.
b) $E(n ; \mathbf{u} ; S)_{*} E(n ; \mathbf{u} ; S)$ is a flat $E(n ; \mathbf{u} ; S)_{*}$-module.
c) $\left(E(n ; \mathbf{u} ; S)_{*}, E(n ; \mathbf{u} ; S)_{*} E(n ; \mathbf{u} ; S)\right)$ is a Hopf algebroid over $\mathbb{Z}_{(p)}$.

Setting $u_{k}=v_{k}$, the Hazewinkel generator, for all k, we obtain the standard connective spectrum $B P\langle n\rangle$ and the Johnson-Wilson spectra $E(n), \mathcal{E}(n)$ for which

$$
\begin{aligned}
\pi_{*} E(n)=E(n)_{*} & =B P\langle n\rangle_{*}\left[v_{n}^{-1}\right], \\
\pi_{*} \mathcal{E}(n)=\mathcal{E}(n)_{*} & =\left(B P\langle n\rangle_{*}\right)_{I_{n}} .
\end{aligned}
$$

Notice that every unit $u \in \mathcal{E}(n)_{*}$ has the form

$$
\begin{equation*}
u=a v_{n}^{r}+w, \tag{1.1}
\end{equation*}
$$

where $a \in \mathbb{Z}_{(p)}^{\times}$and $w \in I_{n}$; in particular, $u \in \mathcal{E}(n)_{2\left(p^{n}-1\right) r}$. Of course, unlike the case of $E(n)$, the multiplicative set inverted to form $\mathcal{E}(n)_{*}$ from $B P\langle n\rangle_{*}$ is infinitely generated. However, for every such unit u arising in $B P\langle n\rangle_{*}$, multiplication by $U=\eta_{\mathrm{R}}(u) \in \mathcal{E}(n)_{*} B P\langle n\rangle$ preserves $\mathcal{E}(n)_{*}$-linearly independent sets by courtesy of the following algebraic result (see for example theorem 7.10 of [12]) and Corollary 2.3 which shows that $\mathcal{E}(n)_{*} B P\langle n\rangle$ is a free $\mathcal{E}(n)_{*}$-module.
Proposition 1.3. Let A be a commutative unital local ring with maximal ideal \mathfrak{m}. Let M be a flat A-module and $\left(m_{i}: i \geqslant 1\right)$ be a collection of elements in M. Suppose that under the reduction map

$$
q: M \longrightarrow \bar{M}=A / \mathfrak{m}{\underset{A}{\otimes} M,} \text {, }
$$

the resulting collection $\left(q\left(m_{i}\right): i \geqslant 1\right)$ of elements in \bar{M} is A / \mathfrak{m}-linearly independent. Then $\left(m_{i}: i \geqslant 1\right)$ is A-linearly independent in M.

We end this section with some remarks intended to justify working with $\mathcal{E}(n)$ rather than $E(n)$. For algebraic reasons, our proof of E_{*}-freeness for $E_{*} E$ only appears to work for $E=$ $\mathcal{E}(n)$ although we conjecture that the result is true for $E=E(n)$. However, there are sound topological reasons for viewing $\mathcal{E}(n)$ as a substitute for $E(n)$. Notice that

$$
E(n)_{*} / I_{n}=\mathcal{E}(n)_{*} / I_{n}=\widehat{E(n)_{*}} / I_{n}=K(n)_{*} .
$$

Theorem 1.4. The spectra

$$
E(n), \mathcal{E}(n), \widehat{E(n)}
$$

are Bousfield equivalent. More generally, the spectra

$$
E\left(n ; \mathbf{u} ;\left\{u_{n}^{r}: r \geqslant 1\right\}\right), E\left(n ; \mathbf{u} ; B P\langle n ; \mathbf{u}\rangle_{*}-I_{n}\right), E\left(n ; \mathbf{u} ;\left\{u_{n}^{r}: r \geqslant 1\right\}\right) \widehat{I_{n}}
$$

are Bousfield equivalent.

Remark 1.5. It is claimed in proposition 5.3 of [10] that $E(n)$ and $\widehat{E(n)}$ are Bousfield equivalent. The proof given there is not correct since the extension $E(n)_{*} \longrightarrow \widehat{E(n)}$ is not faithfully flat because I_{n} is not contained in the radical of $E(n)_{*}$. We refer the reader to Matsumura [12], especially theorem $8.14(3)$, for standard algebraic facts concerning faithful flatness. In the following proof, we provide an alternative argument based on the Landweber Filtration Theorem [11].

Proof. For simplicity we only give the proof for the classical case. Since

$$
\widehat{E(n)}_{*}(X)=\widehat{E(n)}_{*} \underset{E(n)_{*}}{\otimes} E(n)_{*}(X)
$$

we need only show that $\widehat{E(n)_{*}}(X)=0$ implies $E(n)_{*}(X)=0$.
Let M_{*} a $B P_{*} B P$-comodule which is finitely generated as a $B P_{*}$-module. Then M_{*} admits a Landweber filtration by subcomodules

$$
0=M_{*}^{[0]} \subseteq M_{*}^{[1]} \subseteq \cdots \subseteq M_{*}^{[k]}=M_{*}
$$

such that for each $j=0, \ldots, k$,

$$
M_{*}^{[j]} / M_{*}^{[j-1]} \cong B P_{*} / I_{d_{j}}
$$

for some $d_{j} \geqslant 0$. The $E(n)_{*} E(n)$-comodule

$$
\bar{M}_{*}=E(n)_{*} \underset{B P_{*}}{\otimes} M_{*}
$$

inherits a filtration by subcomodules

$$
0=\bar{M}_{*}^{[0]} \subseteq \bar{M}_{*}^{[1]} \subseteq \cdots \subseteq \bar{M}_{*}^{[k]}=\bar{M}_{*}
$$

satisfying

$$
\bar{M}_{*}^{[j]} / \bar{M}_{*}^{[j-1]} \cong E(n)_{*} / I_{d_{j}},
$$

where $E(n)_{*} / I_{d_{j}}=0$ if $d_{j}>n$. For a $B P_{*}$-module N_{*},

$$
\widehat{E(n)}_{*} \underset{E(n)_{*}}{\otimes} E(n)_{*} \underset{B P_{*}}{\otimes} N_{*} \cong \widehat{E(n)}_{*} \underset{B P_{*}}{\otimes} N_{*} .
$$

Then writing $\widehat{N}_{*}=\widehat{E(n)_{*}} \otimes_{B P_{*}} N_{*}$ we have

$$
\widehat{M}_{*}^{[j]} / \widehat{M}_{*}^{[j-1]} \cong \widehat{E(n)}_{*} / I_{d_{j}}
$$

From this it follows that $\bar{M}_{*}=0$ if and only if \widehat{M}_{*}. So $\widehat{E(n)}$ is faithfully flat in this sense on $E(n)_{*}$-comodules of the form \bar{M}_{*} for some finitely generated $B P_{*} B P$-comodule.

We can extend this to faithful flatness on all $B P_{*} B P$-comodules. Such a comodule N_{*} is the union of its finitely generated subcomodules, by corollary 2.13 of [13]. For each finitely generated subcomodule $M_{*} \subseteq N_{*}$, the short exact sequence

$$
0 \rightarrow M_{*} \longrightarrow N_{*} \longrightarrow N_{*} / M_{*} \rightarrow 0
$$

gives rise to the sequences

$$
\begin{aligned}
& 0 \rightarrow \bar{M}_{*} \longrightarrow \bar{N}_{*} \longrightarrow \overline{N_{*} / M_{*}} \rightarrow 0, \\
& 0 \rightarrow \widehat{M}_{*} \longrightarrow \widehat{N}_{*} \longrightarrow \widehat{N_{*} / M_{*}} \rightarrow 0 .
\end{aligned}
$$

Each of these is short exact since by the Landweber Exact Functor Theorem, tensor product over $B P_{*}$ with either of $E(n)_{*}$ or $\left.\widehat{E(n)}\right)_{*}$ is an exact functor on $B P_{*}$-comodules. Suppose that $\widehat{N}_{*}=0$; then $\widehat{M}_{*}=0$, which implies $\bar{M}_{*}=0$. Since

$$
\bar{N}_{*}=\lim _{M_{*} \subseteq N_{*}} \bar{M}_{*},
$$

this gives $\bar{N}_{*}=0$. Applying this to the case of $N_{*}=B P_{*}(X)$ we obtain the Bousfield equivalence of $E(n)$ with $\widehat{E(n)}$.

In the chain of rings $E(n)_{*} \subseteq \mathcal{E}(n)_{*} \subseteq \widehat{E(n)_{*}}$, the extension $\mathcal{E}(n)_{*} \longrightarrow \widehat{E(n)_{*}}$ is faithfully flat, hence $\mathcal{E}(n)$ and $\widehat{E(n)}$ are also Bousfield equivalent. Alternatively, by the Landweber Exact Functor Theorem, tensoring with $\mathcal{E}(n)_{*}$ is exact on $B P_{*} B P$-comodules, so the above proof works as well with $\mathcal{E}(n)$ in place of $E(n)$.

This result implies that the stable world as seen through the eyes of each of the homology theories $E(n)_{*}(), \mathcal{E}(n)_{*}()$ and $\widehat{E(n)_{*}}()$ looks the same; indeed this is true for any generalized Johnson-Wilson spectrum between $B P\langle n\rangle$ and $\mathcal{E}(n)$. The proof of the p-local part of the result of Adams and Clarke [3, 2, 6] also involves working over a (graded) local ring $\left(K U_{*}\right)_{(p)}=$ $\mathbb{Z}_{(p)}\left[t, t^{-1}\right]$; of course their result holds over the arithmetically global ring $K U_{*}=\mathbb{Z}\left[t, t^{-1}\right]$.
2. Some bases for $\mathcal{E}(n)_{*} B P$ and $\mathcal{E}(n)_{*} B P\langle n\rangle$

We first define a useful basis for $\mathcal{E}(n)_{*} B P$ which projects to a basis for $\mathcal{E}(n)_{*} B P\langle n\rangle$ under the natural surjective homomorphism of $\mathcal{E}(n)_{*}$-algebras

$$
q_{n}: \mathcal{E}(n)_{*} B P \longrightarrow \mathcal{E}(n)_{*} B P\langle n\rangle .
$$

$\mathcal{E}(n)_{*} B P$ is the polynomial $\mathcal{E}(n)_{*}$-algebra with the standard generators

$$
t_{k} \in \mathcal{E}(n)_{2\left(p^{k}-1\right)} B P
$$

induced from those for $B P_{*} B P$ described by Adams [1], where

$$
\mathcal{E}(n)_{*} B P=\mathcal{E}(n)_{*}\left[t_{k}: k \geqslant 1\right] .
$$

Hence the latter has an $\mathcal{E}(n)_{*}$-basis consisting of the monomials

$$
t_{1}^{r_{1}} \cdots t_{\ell}^{r_{\ell}} \quad\left(0 \leqslant r_{k}\right) .
$$

The kernel of q_{n} is the ideal generated by the elements $V_{n+k}=\eta_{\mathrm{R}}\left(v_{n+k}\right)(k \geqslant 1)$, where η_{R} is the right unit obtained from the right unit in $B P_{*} B P$ as the composite

$$
B P_{*} \xrightarrow{\eta_{\mathrm{R}}} B P_{*} B P \longrightarrow \mathcal{E}(n)_{*} B P .
$$

By well known formulæ for the right unit of $B P_{*} B P$, in the ring $\mathcal{E}(n)_{*} B P$ we have

$$
\begin{align*}
\eta_{\mathrm{R}}\left(v_{n+k}\right) & =v_{n} t_{k}^{p^{n}}-v_{n}^{p^{k}} t_{k}+\cdots+p t_{n+k} \tag{2.1a}\\
& \equiv v_{n} t_{k}^{p^{n}}-v_{n}^{p^{k}} t_{k} \bmod I_{n} . \tag{2.1b}
\end{align*}
$$

Here the undisplayed terms are polynomials over $B P_{*}$ in t_{1}, \ldots, t_{n+k-1}.
Remark 2.1. The main source of difficulty in working with $E(n)$ itself in place of $\mathcal{E}(n)$ seems to arise from the fact that the coefficient of $t_{j}^{p^{n}}$ in Equation (2.1) is then only a unit modulo I_{n}, so we can only use monomials involving the $\eta_{\mathrm{R}}\left(v_{n+k}\right)$ as part of a basis when working over $\mathcal{E}(n)_{*}$ rather than just $E(n)_{*}$. This is used crucially in the proof of Proposition 2.2. Perhaps a careful choice of generators in place of the Hazewinkel or Araki generators would overcome this problem.

We will also require an expression for the right unit on v_{n} :

$$
\begin{equation*}
\eta_{\mathrm{R}}\left(v_{n}\right)=v_{n}+\sum_{1 \leqslant j \leqslant n} v_{j} \theta_{j} \in \mathcal{E}(n)_{*} B P, \tag{2.2}
\end{equation*}
$$

where $\theta_{j} \in \mathcal{E}(n)_{2\left(p^{n}-p^{j}\right)} B P$ has the form

$$
\theta_{j}=t_{n-j}^{p^{j}} \bmod I_{n} .
$$

In particular $\theta_{0}=t_{n} \bmod I_{n}$. Although the θ_{j} are not unique, the terms $v_{j} \theta_{j} \bmod I_{n}^{2}$ are well defined. Notice that if $u \in \mathcal{E}(n)_{*}$ has the form of Equation (1.1), then for the right unit $\eta_{\mathrm{R}}(u)$ on u,

$$
\eta_{\mathrm{R}}(u) \equiv a v_{n}^{r} \bmod I_{n} .
$$

Now we will define some elements that will eventually be seen to form a basis for $\mathcal{E}(n)_{*} B P$. First we introduce the following elements of $\operatorname{ker} q_{n}$:

$$
\begin{equation*}
\kappa_{r_{1}, \ldots, r_{k} ; s_{1}, \ldots, s_{\ell}}=v_{n}^{-\left(s_{1}+\cdots+s_{\ell}\right)} t_{1}^{r_{1}} \cdots t_{k}^{r_{k}} V_{n+1}^{s_{1}} \cdots V_{n+\ell}^{s_{\ell}}, \tag{2.3a}
\end{equation*}
$$

where $0 \leqslant r_{j} \leqslant p^{n}-1$ with $r_{k} \neq 0$ and $\ell>0, s_{j} \geqslant 0$ and $s_{\ell} \neq 0$. We also have the elements

$$
\begin{equation*}
\kappa_{r_{1}, \ldots, r_{k}}=t_{1}^{r_{1}} \cdots t_{k}^{r_{k}}, \tag{2.3b}
\end{equation*}
$$

where $0 \leqslant r_{j} \leqslant p^{n}-1$ with $r_{k} \neq 0$. The empty sequence corresponds to the element $\kappa_{\emptyset}=1$. There are also elements

$$
\begin{equation*}
\bar{\kappa}_{r_{1}, \ldots, r_{k}}=q_{n}\left(\kappa_{r_{1}, \ldots, r_{k}}\right) \in \mathcal{E}(n)_{*} B P\langle n\rangle . \tag{2.4}
\end{equation*}
$$

Next we introduce an increasing multiplicative filtration on $\mathcal{E}(n)_{*} B P$ (apart from a factor of 2 in the indexing, this is the filtration associated with the Atiyah-Hirzebruch spectral sequence for $\left.\mathcal{E}(n)_{*} B P\right)$,

$$
\mathcal{E}(n)_{*}=\mathcal{E}(n)_{*} B P^{[0]} \subseteq \cdots \subseteq \mathcal{E}(n)_{*} B P^{[k]} \subseteq \cdots \subseteq \bigcup_{0 \leqslant j} \mathcal{E}(n)_{*} B P^{[j]}=\mathcal{E}(n)_{*} B P
$$

Here the monomial $t_{1}^{r_{1}} \cdots t_{\ell}^{r_{\ell}}$ has exact filtration $\sum_{j} r_{j}\left(p^{j}-1\right)$. Of course each $\mathcal{E}(n)_{*} B P^{[k]}$ is a finite rank free $\mathcal{E}(n)_{*}$-module with the basis consisting of all the elements $\kappa_{r_{1}, \ldots, r_{k}}$ it contains. There are also compatible filtrations $\operatorname{ker} q_{n}^{[k]}, \mathcal{E}(n)_{*} B P\langle n\rangle^{[k]}$ and $K(n)_{*} B P^{[k]}$ on $\operatorname{ker} q_{n}$, $\mathcal{E}(n)_{*} B P\langle n\rangle$ and $K(n)_{*} B P$. Notice that for $j \geqslant 0, V_{n+j}$ has exact filtration $\left(p^{n+j}-1\right)$; more generally, the elements defined in Equations (2.3) satisfy

$$
\begin{equation*}
\kappa_{r_{1}, \ldots, r_{k} ; s_{1}, \ldots, s_{\ell}} \in \mathcal{E}(n)_{*} B P^{[d]} \tag{2.5}
\end{equation*}
$$

whenever

$$
d \geqslant \sum_{i} r_{i}\left(p^{i}-1\right)+\sum_{j} s_{j}\left(p^{n+j}-1\right) .
$$

Proposition 2.2. The elements

$$
\begin{cases}\kappa_{r_{1}, \ldots, r_{k}} & \text { for } 0 \leqslant r_{j} \leqslant p^{n}-1, r_{k} \neq 0 \tag{2.6}\\ \kappa_{r_{1}, \ldots, r_{k} ; s_{1}, \ldots, s_{\ell}} & \text { for } 0 \leqslant r_{j} \leqslant p^{n}-1, r_{k} \neq 0,0 \leqslant s_{j}, s_{\ell} \neq 0, \ell>0\end{cases}
$$

form an $\mathcal{E}(n)_{*}$-basis for $\mathcal{E}(n)_{*} B P$.

Proof. Since

$$
\mathcal{E}(n)_{*} B P=\bigcup_{j \geqslant 0} \mathcal{E}(n)_{*} B P^{[m]}
$$

it suffices to show that for each $m \geqslant 0$, the κ elements specified in Equation (2.6) and also contained in $\mathcal{E}(n)_{*} B P^{[m]}$ actually form a basis for $\mathcal{E}(n)_{*} B P^{[m]}$.
$\mathcal{E}(n)_{*} B P^{[m]}$ has a natural basis consisting of all the t monomials $t_{1}^{r_{1}} \cdots t_{k}^{r_{k}}\left(r_{j} \geqslant 0\right)$ it contains. Notice that the number of κ elements in $\mathcal{E}(n)_{*} B P^{[m]}$ is the same as the number of such monomials, hence is equal to the rank of $\mathcal{E}(n)_{*} B P^{[m]}$. Let $M(m)$ be the Gram matrix over $\mathcal{E}(n)_{*}$ expressing the κ elements in terms of the t monomial basis, with suitable orderings on these elements. It suffices to show that $M(m)$ is invertible, and for this we need to show that $\operatorname{det} M(m)$ is a unit in $\mathcal{E}(n)_{*}$. As $\mathcal{E}(n)_{*}$ is local, this is true if $\operatorname{det} M(m) \bmod I_{n}$ is a unit.

We have

$$
\begin{align*}
\kappa_{r_{1}, \ldots, r_{k} ; s_{1}, \ldots, s_{\ell}} & \equiv t_{1}^{r_{1}} \cdots t_{k}^{r_{k}}\left(t_{1}^{p^{n}}-v_{n}^{p-1} t_{1}\right)^{s_{1}} \cdots\left(t_{\ell}^{p^{n}}-v_{n}^{p^{\ell}-1} t_{\ell}\right)^{s_{\ell}} \bmod I_{n} \\
& \equiv t_{1}^{r_{1}+p^{n} s_{1}} \cdots t_{\ell}^{r_{\ell}+p^{n_{s}} s_{\ell}}+(\text { terms of lower filtration }) \bmod I_{n} . \tag{2.7}
\end{align*}
$$

Working modulo I_{n} in terms of the basis of t monomials, the Gram matrix for the κ elements is lower triangular with all diagonal terms being 1 , therefore $\operatorname{det} M(m) \equiv 1 \bmod I_{n}$. So $\operatorname{det} M(m)$ is a unit and $M(m)$ is invertible. Thus the κ elements of $\mathcal{E}(n)_{*} B P^{[m]}$ form a basis.

Corollary 2.3. The short exact sequence of $\mathcal{E}(n)_{*}$-modules

$$
0 \rightarrow \operatorname{ker} q_{n} \longrightarrow \mathcal{E}(n)_{*} B P \xrightarrow{q_{n}} \mathcal{E}(n)_{*} B P\langle n\rangle \rightarrow 0
$$

splits so there is an isomorphism of $\mathcal{E}(n)_{*}$-modules

$$
\mathcal{E}(n)_{*} B P \cong \operatorname{ker} q_{n} \oplus \mathcal{E}(n)_{*} B P\langle n\rangle .
$$

Also, $\mathcal{E}(n)_{*} B P\langle n\rangle$ and $\operatorname{ker} q_{n}$ are free $\mathcal{E}(n)_{*}$-modules.

$$
\text { 3. } \mathcal{E}(n)_{*} \mathcal{E}(n) \text { AS A LIMIT }
$$

In this section we will give a description of $\mathcal{E}(n)_{*} \mathcal{E}(n)$ as a colimit. Although we proceed algebraically, we note that this limit has topological origins since for each $u \in B P\langle n\rangle_{2\left(p^{n}-1\right) r}$ with $r>0$ and which is a unit in $\mathcal{E}(n)_{*}$, there is a cofibre sequence

$$
\Sigma^{2\left(p^{n}-1\right) r} B P\langle n\rangle \xrightarrow{u} B P\langle n\rangle \longrightarrow B P\langle n-1 ; u\rangle
$$

and $\mathcal{E}(n)$ is the telescope

$$
\mathcal{E}(n)=\operatorname{Tel}_{u} B P\langle n\rangle .
$$

On applying the functor $\mathcal{E}(n)_{*}()$, there is a short exact sequence

$$
0 \rightarrow \mathcal{E}(n)_{*} B P\langle n\rangle \xrightarrow{U} \mathcal{E}(n)_{*} B P\langle n\rangle \longrightarrow \mathcal{E}(n)_{*} B P\langle n-1 ; u\rangle \rightarrow 0,
$$

and limit

$$
\mathcal{E}(n)_{*} \mathcal{E}(n) \cong \underset{U}{\lim } \mathcal{E}(n)_{*} B P\langle n\rangle,
$$

in which U denotes multiplication by the right unit on u. Since $u \equiv a v_{n}^{r} \bmod I_{n}$ in the notation of Equation (1.1), application of the functor $K(n)_{*}()$ induces another exact sequence and limit

$$
\begin{aligned}
0 \rightarrow K(n)_{*} B P\langle n\rangle & \xrightarrow{U} K(n)_{*} B P\langle n\rangle \longrightarrow K(n)_{*} B P\langle n-1 ; u\rangle=0, \\
K(n)_{*} \mathcal{E}(n) & \cong \underset{U}{\lim } K(n)_{*} B P\langle n\rangle .
\end{aligned}
$$

There are also algebraic identities

$$
\begin{aligned}
\mathcal{E}(n)_{*} \mathcal{E}(n) & \cong \mathcal{E}(n)_{*}{\underset{B P}{*}}_{\otimes} B P_{*} B P \underset{B P_{*}}{\otimes} \mathcal{E}(n)_{*}, \\
\mathcal{E}(n)_{*} B P\langle n\rangle & \cong \mathcal{E}(n)_{*} B P / \operatorname{ker} q_{n}, \\
K(n)_{*} B P\langle n\rangle & \cong K(n)_{*} \underset{\mathcal{E}(n)_{*}}{\otimes} \mathcal{E}(n)_{*} B P\langle n\rangle \cong K(n)_{*}{ }_{B P_{*}}^{\otimes} B P_{*} B P\langle n\rangle,
\end{aligned}
$$

which allow us to work without direct reference to the underlying topology.
First we describe a directed system (Λ, \preccurlyeq). Recall that $B P\langle n\rangle_{*}$ is a graded unique factorization domain, with group of units $B P\langle n\rangle_{*}^{\times}=\mathbb{Z}_{(p)}^{\times}$. Define the sets

$$
\Lambda_{r}=\left\{(u) \triangleleft B P\langle n\rangle_{*}: u \in B P\langle n\rangle_{2\left(p^{n}-1\right) r}, u \in \mathcal{E}(n)_{*} \text { is a unit }\right\} \quad(r \geqslant 0), \quad \Lambda=\bigcup_{r \geqslant 0} \Lambda_{r} .
$$

We will often abuse notation and identify (u) with a generator u; this can be made precise by specifying a choice function to select a generator of each such principal ideal. Of course, $(u)=(v)$ if and only if there is a unit $a \in \mathbb{Z}_{(p)}^{\times}$for which $u=a v$, i.e., if $u \mid v$ and $v \mid u$ in $B P\langle n\rangle_{*}$. We will write $u \preccurlyeq v$ if $(v) \subseteq(u)$, i.e., if $u \mid v$. We will also write $u \prec v$ if $u \preccurlyeq v$ and $(u) \neq(v)$. The directed system (Λ, \preccurlyeq) is filtered since for $u, v \in \Lambda, u \preccurlyeq u v$ and $v \preccurlyeq u v$.

Remark 3.1. For later use we will need a cofinal subset of Λ and we now describe some obvious examples. Since $B P\langle n\rangle_{*}$ is a countable unique factorization domain, we may list the distinct prime ideals lying in Λ as $\left(w_{1}\right),\left(w_{2}\right),\left(w_{3}\right), \ldots$ say. Now inductively define

$$
u_{0}=1, \quad u_{k}=u_{k-1}^{k} w_{k} .
$$

Then $u_{k-1} \mid u_{k}$ and indeed $u_{k-1} \prec u_{k}$. Also, for every element $(u) \in \Lambda$ there is a k such that $u \mid u_{k}$, hence $u \preccurlyeq u_{k}$. So the u_{k} form a cofinal sequence in Λ.

Now form the directed system consisting of pairs of the form $\left(B P\langle n\rangle_{*}, u\right)$ with $u \in \Lambda$. If $u, v \in \Lambda$, the morphism $\left(B P\langle n\rangle_{*}, u\right) \longrightarrow\left(B P\langle n\rangle_{*}, u v\right)$ is multiplication by v,

$$
B P\langle n\rangle_{*} \xrightarrow{v} B P\langle n\rangle_{*} .
$$

On setting $V=\eta_{\mathrm{R}}(v)$, there is also an homomorphism

$$
\mathcal{E}(n)_{*} B P\langle n\rangle \xrightarrow{V} \mathcal{E}(n)_{*} B P\langle n\rangle .
$$

These give rise to limits

$$
\begin{align*}
\mathcal{E}(n)_{*} & ={\underset{u m \Lambda}{\lim } B P\langle n\rangle_{*}=\left(B P\langle n\rangle_{*}\right)_{I_{n}},}^{\mathcal{E}(n)_{*} \mathcal{E}(n)}=\underset{u \in \Lambda}{\lim _{u \in \Lambda} \mathcal{E}(n)_{*} B P\langle n\rangle=\left(\mathcal{E}(n)_{*} B P\langle n\rangle\right)_{\eta_{\mathrm{R}} I_{n}} .} \tag{3.1}
\end{align*}
$$

Remark 3.2. In describing $\mathcal{E}(n)_{*} \mathcal{E}(n)$ as a limit, it suffices to replace each map V by

$$
\mathcal{E}(n)_{*} B P\langle n\rangle \xrightarrow{v^{-1} V} \mathcal{E}(n)_{*} B P\langle n\rangle,
$$

which is of degree 0 and satisfies

$$
\begin{equation*}
v^{-1} V \equiv 1 \bmod I_{n} \tag{3.3}
\end{equation*}
$$

This will simplify the description of our basis. Notice that if $(v)=(w) \triangleleft B P\langle n\rangle_{*}$, then

$$
v^{-1} V=w^{-1} W
$$

providing another reason for using $v^{-1} V$ in place of V. From now on we will consider $\mathcal{E}(n)_{*} \mathcal{E}(n)$ as the limit over such maps $v^{-1} V$ rather than the limit of Equation (3.2).
4. Some bases for $\mathcal{E}(n)_{*} B P\langle n\rangle$ and $\mathcal{E}(n)_{*} \mathcal{E}(n)$

For each pair (u, s) with $u \in \Lambda_{r}$ and s a non-negative integer, set

$$
M(u ; s)_{*}=\mathcal{E}(n)_{*} B P\langle n\rangle^{\left[s+r\left(p^{n}-1\right)\right]}
$$

By Corollary 2.3, $M(u ; s)_{*}$ is free on the images under q_{n} of the $\kappa_{r_{1}, \ldots, r_{k}}$ defined in Proposition 2.2 and we refer to this as the $q_{n} \kappa$-basis. There are inclusion maps

$$
\operatorname{inc}: M(u ; s)_{*} \longrightarrow M(u ; s+1)_{*} .
$$

For $v \in \Lambda_{t}$ and $V=\eta_{\mathrm{R}}(v)$, there is a multiplication by $v^{-1} V$ map

$$
v^{-1} V: M(u ; s)_{*} \longrightarrow M(u v ; s)_{*} .
$$

By Equation (2.2), $v^{-1} V$ raises filtration by $t\left(p^{n}-1\right)$. Equation (3.3) and Proposition 1.3 imply that $v^{-1} V$ is also injective; indeed we have the following result.

Proposition 4.1. Let $s \geqslant 0$ and $u, v \in \Lambda$. The $\mathcal{E}(n)_{*}$-submodule

$$
v^{-1} V M(u ; s)_{*} \subseteq M(u v ; s)_{*}
$$

is a summand. Furthermore, if \mathcal{B} is a basis for $M(u ; s)_{*}$ then $M(u v ; s)_{*}$ has a basis consisting of the elements

$$
v^{-1} V b \quad(b \in \mathcal{B}), \quad \bar{\kappa}_{r_{1}, \ldots, r_{k}} \in M(u v ; s)_{*}-v^{-1} V M(u ; s)_{*} .
$$

Proof. $M(u ; s)_{*}$ and $M(u v ; s)_{*}$ each have the $q_{n} \kappa$-bases. After reduction modulo I_{n}, the stated elements in $K(n)_{*} B P\langle n\rangle$ satisfy

$$
v^{-1} V b=b \in K(n)_{*} B P\langle n\rangle^{[d+s]}, \quad \bar{\kappa}_{r_{1}, \ldots, r_{k}} \in K(n)_{*} B P\langle n\rangle^{[d+h+s]}-K(n)_{*} B P\langle n\rangle^{[d+s]},
$$

where u and v have exact filtrations d and h. These elements are clearly $K(n)_{*}$-linearly independent, so by Equation (3.3) and Proposition 1.3 they are $\mathcal{E}(n)_{*}$-linearly independent. Thus they form a basis, so the exact sequence

$$
0 \rightarrow M(u ; s)_{*} \xrightarrow{v^{-1} V} M(u v ; s)_{*} \longrightarrow M(u v ; s)_{*} / v^{-1} V M(u ; s)_{*} \rightarrow 0
$$

splits and there is a direct sum decomposition

$$
M(u v ; s)_{*}=v^{-1} V M(u ; s)_{*} \oplus M(u v ; s)_{*} / v^{-1} V M(u ; s)_{*}
$$

The $\mathcal{E}(n)_{*}$-linear maps $v^{-1} V$ and inc commute and together form a doubly directed system. Then we have

$$
\begin{aligned}
\mathcal{E}(n)_{*} \mathcal{E}(n) & =\underset{(u, s)}{\lim } M(u ; s)_{*} \\
& =\underset{u}{\lim _{\longrightarrow}} \lim _{s} M(u ; s)_{*} \\
& =\underset{\vec{\longrightarrow}}{\lim } \underset{u}{\lim } M(u ; s)_{*} .
\end{aligned}
$$

Each $M(u ; s)_{*}$ is a finitely generated free $\mathcal{E}(n)_{*}$-module, with a basis consisting of the $\bar{\kappa}$ elements it contains; we will refer to this as its $\bar{\kappa}$-basis. $M(u ; s)_{*}$ also has another useful basis which we will now define.

Choose a cofinal sequence u_{k} in Λ, for example by the process described in Remark 3.1. For convenience we will assume that $u_{0}=1$. Of course

$$
\begin{aligned}
\mathcal{E}(n)_{*} \mathcal{E}(n) & =\underset{(r, s)}{\lim } M\left(u_{r} ; s\right)_{*} \\
& =\underset{r}{\lim } \underset{s}{\lim } M\left(u_{r} ; s\right)_{*} \\
& =\underset{s}{\lim } \underset{r}{\lim } M\left(u_{r} ; s\right)_{*} .
\end{aligned}
$$

When $r=0$, we take the $\bar{\kappa}$-basis for $M(1 ; s)_{*}$, denoting its elements by $\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{1 ; s}$. Now for $r \geqslant 1$, suppose that we have defined a basis $\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r-1} ; s}$ for $M\left(u_{r-1} ; s\right)_{*}$. For $M\left(u_{r} ; s\right)_{*}$, replace each $\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{r-1, s}$ of this basis by

$$
\begin{align*}
\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r} ; s} & =w_{r}^{-1} W_{r} \bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r-1} ; s} \tag{4.1}\\
& \equiv \bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r}, r_{k}} \bmod I_{n}
\end{align*}
$$

whenever this element is also in $M\left(u_{r} ; s\right)_{*}$. For $w_{r}^{-1} W_{r} \bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r-1} ; s} \notin M\left(u_{r} ; s\right)_{*}$, set

$$
\begin{equation*}
\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r} ; s}=\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r-1} ;} . \tag{4.2}
\end{equation*}
$$

Notice that by repeated applications of Equation (3.3), we have for all basis elements,

$$
\begin{equation*}
\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r} ; s} \equiv \bar{\kappa}_{r_{1}, \ldots, r_{k}} \bmod I_{n} . \tag{4.3}
\end{equation*}
$$

Next we consider the effect of raising s by considering the extension

$$
M\left(u_{r} ; s\right)_{*} \subseteq M\left(u_{r} ; s+1\right)_{*}
$$

Clearly $M\left(u_{r} ; s+1\right)_{*}$ contains all the elements $\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r} ; s}$ together with its $\bar{\kappa}$-basis elements of exact filtration $d_{r}+s+1$, where d_{r} is the exact filtration of u_{r}. Reducing modulo I_{n} these elements are $K(n)_{*}$-linearly independent, so by Equation (4.3) and Proposition 1.3 these are $\mathcal{E}(n)_{*}$-linearly independent and hence form a basis, showing that this extension splits. We have demonstrated the following.

Proposition 4.2. For $r, s \geqslant 0$, the $\mathcal{E}(n)_{*-}$-module $M\left(u_{r} ; s\right)_{*}$ is free with the following two bases:

- $\mathcal{B}_{1}^{u_{r} ; s}$ consisting of the elements $\bar{\kappa}_{r_{1}, \ldots, r_{k}}$ contained in $M\left(u_{r} ; s\right)_{*}$;
- $\mathcal{B}_{2}^{u_{r} ; s}$ consisting of the elements $\bar{\kappa}_{r_{r}, \ldots, r_{k}}^{u_{r} \cdots,}$.

Now we can state our main result.
Theorem 4.3. $\mathcal{E}(n)_{*} \mathcal{E}(n)$ is $\mathcal{E}(n)_{*}$-free with a basis consisting of the images of the non-zero elements of the form

$$
\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r} ; s} M\left(u_{r} ; s\right)_{*}-w_{r}^{-1} W_{r} M\left(u_{r-1} ; s\right)_{*} \quad(r, s \geqslant 0)
$$

under the natural map $M\left(u_{r} ; s\right)_{*} \longrightarrow \mathcal{E}(n)_{*} \mathcal{E}(n)$.
Proof. We begin by showing that these elements span $\mathcal{E}(n)_{*} \mathcal{E}(n)$. Let $z \in \mathcal{E}(n)_{*} \mathcal{E}(n)$ and suppose that t is the image of $z_{r} \in M\left(u_{r} ; s\right)_{*}$ under the natural map

$$
M\left(u_{r} ; s\right)_{*} \longrightarrow \mathcal{E}(n)_{*} \mathcal{E}(n) .
$$

Then z_{r} can be uniquely expressed as an $\mathcal{E}(n)_{*}$-linear combination

$$
z_{r}=\sum_{r_{1}, \ldots, r_{k}} \lambda_{r_{1}, \ldots, r_{k}} \bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r} ; s} .
$$

We can split up this sum as

$$
z_{r}=\left(\sum_{r_{1}, \ldots, r_{\ell}} \lambda_{r_{1}, \ldots, r_{\ell}} \bar{\kappa}_{r_{1}, \ldots, r_{\ell}}^{u_{r}, 1 ; s}\right)+w_{r}^{-1} W_{r}\left(\sum_{s_{1}, \ldots, s_{k}} \lambda_{s_{1}, \ldots, s_{k}} \bar{\kappa}_{s_{1}, \ldots, s_{k}}^{u_{r}, 1 ; s}\right)
$$

Since

$$
\sum_{r_{1}, \ldots, r_{\ell}} \lambda_{r_{1}, \ldots, r_{\ell}} \bar{\kappa}_{r_{1}, \ldots, r_{\ell}}^{u_{r-1} ; s} \in M\left(u_{r-1} ; s\right)_{*}, \quad \sum_{s_{1}, \ldots, s_{k}} \lambda_{s_{1}, \ldots, s_{k}} \bar{\kappa}_{s_{1}, \ldots, s_{k}}^{u_{r-1} ; s} \in M\left(u_{r} ; s\right)_{*}
$$

map to linear combinations of the asserted basis elements in the images of $M\left(u_{r-1} ; s\right)_{*}$ and $M\left(u_{r-1} ; s\right)_{*}$ in $\mathcal{E}(n)_{*} \mathcal{E}(n), z$ is also a linear combination of those basis elements.

Now we show that these elements are linearly independent over $\mathcal{E}(n)_{*} \mathcal{E}(n)$. We know that $\mathcal{E}(n)_{*} \mathcal{E}(n)$ is $\mathcal{E}(n)_{*}$-flat, and also that

$$
\begin{aligned}
K(n)_{*} \underset{\mathcal{E}(n)_{*}}{\otimes} \mathcal{E}(n)_{*} \mathcal{E}(n) & =K(n)_{*} \mathcal{E}(n) \\
(& \left.=K(n)_{*} K(n) \text { in the standard but misleading notation }\right)
\end{aligned}
$$

which has a $K(n)_{*}$-basis consisting of the reductions of the elements

$$
t_{1}^{r_{1}} \cdots t_{k}^{r_{k}} \quad\left(0 \leqslant r_{j} \leqslant p^{n}-1\right)
$$

Now $t_{1}^{r_{1}} \cdots t_{k}^{r_{k}}$ is the image of $\bar{\kappa}_{r_{1}, \ldots, r_{k}}^{u_{r} ; s} \in M\left(u_{r} ; s\right)$ under the natural map. Careful book keeping shows that the asserted basis elements do indeed account for all the t_{j}-monomials in this basis of $K(n)_{*} \mathcal{E}(n)$. These are linearly independent in $\mathcal{E}(n)_{*} \mathcal{E}(n)$ by Proposition 1.3.

The following useful consequence of our construction is immediate on taking

$$
\mathcal{E}(n)_{*} B P\langle n\rangle=\underset{s}{\lim } M(1 ; s)_{*} .
$$

Corollary 4.4. The natural map

$$
\mathcal{E}(n)_{*} B P\langle n\rangle \longrightarrow \mathcal{E}(n)_{*} \mathcal{E}(n)
$$

is a split monomorphism of $\mathcal{E}(n)_{*}$-modules.

References

[1] J. F. Adams, Stable Homotopy and Generalised Homology, University of Chicago Press (1974).
[2] J. F. Adams, Infinite Loop Spaces, Princeton University Press (1978).
[3] J. F. Adams \& F. W. Clarke, Stable operations on complex K-theory, Ill. J. Math. 21 (1977), 826-829.
[4] A. Baker, A version of the Landweber filtration theorem for v_{n}-periodic Hopf algebroids, Osaka J. Math. 32 (1995), 689-99.
[5] A. Baker, F. Clarke, N. Ray \& L. Schwartz, On the Kummer congruences and the stable homotopy of $B U$, Trans. Amer. Math. Soc. 316 (1989), 385-432.
[6] F. W. Clarke, Operations in K-theory and p-adic analysis, in the proceedings of the Groupe d'étude d'Analyse Ultramétrique, 14'me année: 1986/87, Paris; corrected version available at http://www-maths.swan.ac.uk/staff/fwc/research.html.
[7] A. Elmendorf, I. Kriz, M. Mandell \& J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, 47 (1996).
[8] M. J. Hopkins \& D. C. Ravenel, The Hopf algebroid $E(n)_{*} E(n)$, preprint (1989).
[9] M. Hovey \& H. Sadofsky, Invertible spectra in the $E(n)$-local stable homotopy category, J. Lond. Math. Soc. 60 (1999), 284-302.
[10] M. Hovey \& N. P. Strickland, Morava K-theory and localisation, Mem. Amer. Math Soc. 139 (1999), no. 666.
[11] P. S. Landweber, Homological properties of comodules over $M U_{*} M U$ and $B P_{*} B P$, Amer. J. Math., 98 (1976), 591-610.
[12] H. Matsumura, Commutative Ring Theory, Cambridge University Press (1986).
[13] H. R. Miller \& D. C. Ravenel, Morava stabilizer algebras and localization of Novikov's E 2_{2}-term, Duke Math. J., 44 (1977), 433-47.
[14] D. C. Ravenel, Complex Cobordism and the Stable Homotopy Groups of Spheres, Academic Press (1986).
[15] N. P. Strickland, Products on MU-modules, Trans. Amer. Math. Soc. 351 (1999), 2569-2606.

Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland.
E-mail address: a.baker@maths.gla.ac.uk
URL: http://www.maths.gla.ac.uk/~ajb

