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BRENDAN OWENS AND SAŠO STRLE

Abstract. Using the Heegaard Floer homology of Ozsváth and Szabó we
investigate obstructions to a rational homology sphere bounding a four-
manifold with a definite intersection pairing. As an application we obtain
new lower bounds for the four-ball genus of Montesinos links.

1. Introduction

Let Y be a rational homology three-sphere and X a smooth negative-definite
four-manifold bounded by Y . For any spinc structure t on Y let d(Y, t) denote
the correction term invariant of Ozsváth and Szabó (see [16] for the defini-
tion; this invariant is the Heegaard Floer homology analogue of the Frøyshov
invariant in Seiberg-Witten theory). It is shown in [16] that for each spinc

structure s ∈ Spinc(X),

(1) c1(s)2 + rk(H2(X; Z)) ≤ 4d(Y, s|Y );

moreover, both sides of (1) are congruent modulo 8. In order to use these con-
ditions one must study the restriction map s 7→ s|Y from Spinc(X) to Spinc(Y );
this map commutes with the conjugation of spinc structures. Moreover, since
Spinc( · ) is an affine H2( · ; Z) space, the restriction map is equivariant with
respect to the action of H2(X; Z), where this group acts on Spinc(Y ) through
the natural group homomorphism H2(X; Z) → H2(Y ; Z). In this paper we
describe an algorithm that for a given second Betti number tests each possible
four-manifold X (i.e., each possible negative-definite intersection form) to see
if it can give rise to an equivariant map for which (1) and the congruence hold
for each s ∈ Spinc(X).

The algorithm in principle applies to any rational homology sphere for which
the invariants d(Y, t) are known; this is the case for all Seifert fibered ones
([17]; see also [16] for lens spaces). We describe the situation in detail for
four-manifolds X with b2(X) ≤ 2. Note that computations are the simplest
for homology lens spaces, since in this case the number of possible equivariant
maps as above is greatly reduced.
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We use this algorithm to find obstructions to the four-ball genus of a link
being as small as the signature allows it to be. To this end we encode the
information about the link and its slice surface in a manifold pair (X, Y ) as
above. Specifically, for a link L in the three-sphere and its slice surface F in
the four-ball, we let Y be the two-fold cover of S3 branched along L, and X
be the two-fold cover of B4 branched along F ; this is analogous to the slice
obstruction of Casson-Gordon [4] and Fintushel-Stern [5]. Applying this to
Montesinos links, we get some new bounds on the four-ball genus.

Alternatively, one could try to obtain a lower bound on the four-ball genus of
a knot K by attaching a two-handle to B4 along K. If K is alternating, this
approach reproduces the classical bound given by the signature of K; this is
reminiscent of the behaviour of the invariant τ(K) of Ozsváth and Szabó [18].
This is a purely 3-dimensional invariant defined using knot Floer homology;
it gives the optimal lower bound for torus knots but agrees with the signature
bound for alternating knots. By contrast our method yields new bounds for
some alternating knots.

2. Four-manifolds bounded by rational homology spheres

In this section we study the relationship between a smooth four-manifold X
and its boundary Y . The following is an extension of [3, Lemma 3].

Lemma 2.1. Let Y be a rational homology sphere; denote by h the order of
H1(Y ; Z). Suppose that Y bounds X and denote by s the absolute value of
the determinant of the intersection pairing on H2(X,Z)/Tors. Then h = st2,
where st is the order of the image of H2(X; Z) in H2(Y ; Z), and t is the order
of the image of the torsion subgroup of H2(X; Z).

Proof. Note that for b2(X) > 0, X has a non-degenerate integral intersection
form

QX : H2(X; Z)/Tors⊗H2(X; Z)/Tors −→ Z;

we denote the absolute value of the determinant of this pairing by s. If b2(X) =
0, then set s = 1. The long exact sequence of the pair (X, Y ) yields the
following (with integer coefficients):

0 −→ H2(X, Y )
j∗−→ H2(X) −→ H2(Y ) −→ H3(X, Y ) −→ H3(X) −→ 0,

‖ ‖ ‖ ‖
Zb ⊕ T2 Zb ⊕ T1 T1 T2

where T1, T2 are torsion groups, and b = b2(X) (we may assume that b1(X) =
0; if not one may surger out b1 without changing the conclusion of the lemma).
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With respect to appropriate bases for (a compatible choice of) free parts of
H2(X, Y ) and H2(X), we have

j∗ =

(
Q 0
∗ τ

)
,

where Q is the matrix representation of the intersection pairing on
H2(X; Z)/Tors. Note that τ : T2 → T1 is a monomorphism; let t = |T1|/|T2|.
It follows that h = st2, as Q can be thought of as a presentation matrix for a
group of order s.

To state the basic relation between X and Y more explicitly, we need to
understand the restriction map from spinc structures on X to those on Y .
Let T be the image of the torsion subgroup of H2(X; Z) in H := H2(Y ; Z),
and let S be the quotient of H2(X; Z) by the sum of its torsion subgroup and
the image of H2(X, Y ; Z). After fixing affine identifications of Spinc( · ) with
H2( · ; Z), the restriction map from Spinc(X) to Spinc(Y ) induces an affine
monomorphism

ρ : S → H/T .
For appropriate choices of origins in the spaces of spinc structures, ρ becomes
a group homomorphism and the conjugation of spinc structures, denoted by j,
corresponds to multiplication by −1. Choose an identification Spinc(Y ) ∼= H
so that a spin structure corresponds to 0 ∈ H, and let 0 ∈ S correspond to
the class of a spinc structure on X whose Chern class belongs to the sum of
the torsion subgroup of H2(X; Z) and the image of H2(X, Y ; Z). If the order
of H is odd then there is a unique j-fixed element in each of S and H/T and
ρ is a group homomorphism. In general, any j-fixed element (i.e., any element
of order 2) can be used as origin in S; to make ρ a group homomorphism one
needs to choose the right j-fixed element in H/T .

We assume from now on that X is negative definite. We define two (rational-
valued) functions on S; one induced by the intersection pairing on X and
the other coming from the correction terms on Y . For each α ∈ S let sq(α)
be the largest square of the Chern class of any spinc structure on X in the
equivalence class α, and let dρ(α) be the minimal value of the correction term
for Y on the coset ρ(α).

Theorem 2.2. Suppose that a rational homology sphere Y bounds a negative
definite manifold X. Then, with the above notation,

sq(α) + b2(X) ≤ 4dρ(α)

for all α ∈ S.

Remark 2.3. Since both sides in the above inequality are j-invariant, one
may work over S/j.
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Proof. This follows from [16, Theorem 9.6] and the fact that changing a spinc

structure on X by a torsion line bundle does not change the square of its
Chern class.

We note that if Y is a homology lens space, we can choose a labelling {tj :
j = 0, . . . , h − 1} of spinc structures on Y corresponding to an isomorphism
H ∼= Z/h. Similarly, we label a set of spinc structures {si : i = 0, . . . , s − 1}
on X, where si has maximal square in its equivalence class i ∈ Z/s ∼= S; here
s denotes the absolute value of the determinant of the intersection pairing on
H2(X; Z). We call such a collection of spinc structures on X an optimal set
of spinc structures. The condition of Theorem 2.2 can then be expressed as
follows: for any i = 0, . . . , s− 1

c1(si)
2 + b2(X) ≤ 4d(Y, tρ(i)+kst) for all k = 0, . . . , t− 1.

The following lemma is useful in identifying j-fixed cosets in H/T .

Lemma 2.4. Let H be a finite abelian group and T a subgroup with |T |2
dividing |H|. If H has no element of order 4 or if |T | is odd, then any element
of order 2 in H/T is the image of an element of order 2 in H. Conversely,
if H has an element of order 4 then there exists a subgroup T with order as
above so that H/T contains an element of order 2 that is not the image of an
element of order 2 in H.

Proof. Suppose H has no element of order 4 or |T | is odd. Let [s] be an
element of order 2 in H/T . Then 2s = t ∈ T . By hypothesis t has odd order,
say 2k + 1. Then s+ kt has order 2.

Suppose now that s ∈ H has order 4. Let T be the subgroup generated by 2s.
Then [s] is an element of order 2 in H/T ; its preimage in H consists of s and
3s, each of which has order 4.

Linking pairing. A rational homology sphere Y has a non-degenerate bi-
linear pairing λ on H1(Y ; Z) with values in Q/Z, called the linking pairing.
Suppose Y is the boundary of a four-manifold X with no torsion in H1(X; Z)
and that Q is the intersection form on H2(X; Z). Then

(2) λ ≡ −Q−1 (mod 1)

(see [8, Exercise 5.3.13(g)]). If there is torsion in H1(X; Z) the same formula
holds on the image of H2(X, Y ; Z) in H1(Y ; Z). In particular, λ is constant on
the cosets of the image in H1(Y ; Z) of the torsion subgroup of H2(X, Y ; Z).
This gives another restriction on the intersection pairings that a given rational
homology sphere may bound.
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Congruence condition on d(Y, t) [16, Theorem 1.2]. Let Y be a rational
homology sphere and t ∈ Spinc(Y ). Suppose there exists a negative definite
four-manifold X and a spinc structure s on X such that ∂(X, s) = (Y, t). We
may suppose that b1(X) = 0. Then

(3) d(Y, t) = d(Y, s|Y ) ≡ c1(s)2 − σ(X)

4
(mod 2);

this follows from the dimension shift formula for the absolute grading [16,
Equation (4)] and the fact that the spinc cobordism X − B4 induces an iso-
morphism HF∞(S3)→ HF∞(Y, t) [16, Proof of Theorem 9.6]. It is then clear
that (3) holds for any (X, s) with ∂(X, s) = (Y, t) since the right hand side
(mod 2) of (3) is an invariant of (Y, t), called the rho invariant.

Suppose now Y is the boundary of a simply connected definite four-manifold.
This is the case for all Seifert fibred rational homology spheres as described in
the next section. Then (3) holds for any spinc structure on Y . Moreover, the
linking pairing on Y is determined by the correction terms; it can be recovered
from the differences d(Y, t) − d(Y, t0), where t0 is a spin structure and t runs
over all spinc structures on Y .

3. Application to links

Let L be an oriented link with µ components in the three-sphere; denote its
signature by σ(L). The unlinking number (or unknotting number) u(L) is
the minimal number of crossing changes in any diagram of L which yield the
trivial µ-component link.

The four-ball genus g∗(L) of L is defined to be the minimal genus of a (con-
nected) oriented surface F admitting a smooth embedding into B4 which maps
∂F to L. An easy argument shows that g∗(L) ≤ u(L). A classical result due
to Murasugi [12] states that

(4) g∗(L) ≥ |σ(L)| − µ+ 1

2
.

Suppose that this bound is attained and fix such a connected minimal surface
F . Let X be the branched double cover of B4 along F . Then b1(X) =
0, b2(X) = 2g∗(L)+µ−1, and the signature of X is given by σ(L) ([11]). After
possibly changing its orientation, we may assume that X is negative-definite.
Moreover, X is a spin manifold. The complement in X of the branch locus
F is spin since it is the double cover of a spin manifold. The neighbourhood
of F in X is also spin and the spin structures can be chosen to agree on the
common boundary. This follows since the class of the branch surface [F,K] is
trivial in H2(B

4, S3; Z), which implies that the class of the linking circle of F
is of infinite order in H1(B

4 − F ; Z), so also in H1(X − F ; Z).
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Note that Y = ∂X is the double cover of S3 branched along L. If Y is a
rational homology sphere (which is the case if the determinant h = |∆L(−1)|
of L is non-zero; in this case h is the order ofH1(Y ; Z)), we may apply Theorem
2.2. We will spell this out in more detail in Section 4.

In Section 5 we list some resulting bounds on the four-ball genus of Montesinos
links. In the rest of this section we discuss other classical bounds on the four-
ball genus; we describe Montesinos links, their double branched covers, and a
spanning surface; and we recall the formulas from [16, 17] for the correction
terms of Seifert fibered rational homology spheres.

3.1. Bounds on four-ball genus from Seifert matrices. Potentially stron-
ger bounds on g∗(L) may be obtained by replacing |σ(L)| in (4) by |σω(L)|+
nω(L); here ω ∈ S1 − 1, σω(L) is the Tristram-Levine signature and nω(L) is
the nullity (see e. g. [6]). These invariants may be computed from any Seifert
matrix associated to L. In the case of a knot K, a still stronger bound is given
by Taylor [21], which we now describe.

Let M ∈ Za×a be any Seifert matrix for K. Then M defines a pairing λ on Za

by λ(x, y) = xTMy. Denote by z(M) the maximal rank of a self-annihilating
subgroup of λ, that is a sublattice N such that λ(x, y) = 0 for all x, y ∈ N .
Taylor defines an invariant m(K) = a/2− z(M), and he proves the following
inequalities for any ω:

(5) g∗(K) ≥ m(K) ≥ |σω(K)|
2

.

In Section 5 we will provide examples of knots K for which it follows from
Theorem 2.2 that g∗(K) > m(K).

3.2. Montesinos links and Seifert fibered spaces. For more details on
Montesinos links and their classification see [2]. In Definitions 3.1 and 3.2, e
is any integer and (α1, β1), (α2, β2), . . . , (αr, βr) are pairs of coprime integers,
with αi > 1.

Definition 3.1. A Montesinos link M(e; (α1, β1), (α2, β2), . . . , (αr, βr)) is a
link which has a projection as shown in Figure 1(a). There are e half-twists

on the left side. A box α, β represents a rational tangle of slope α/β: given

a continued fraction expansion

α

β
= [a1, a2, . . . , am] := a1 −

1

a2 − . . . − 1
am

,

the rational tangle of slope α/β consists of the four string braid σa1
2 σ

a2
1 σ

a3
2 σ

a4
1

. . . σam
i , which is then closed on the right as in Figure 1(b) if m is odd or (c)

if m is even.
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(a)

α1, β1

α2, β2

...

αr, βr

(b)

a1

a2

a3

(c)

a1

a2

Figure 1. Montesinos links and rational tangles. Note
that e = 3 in (a). Also (b) and (c) are both representations of
the rational tangle of slope 10/3:

10/3 = [3,−2, 1] = [3,−3]

(and one can switch between (b) and (c) by simply moving the
last crossing).

A two-bridge link S(p, q) (or rational link, or 4-plat) is the reflection of the
link formed by closing the rational tangle p, q with two trivial bridges. This

is equal to the Montesinos link M(e; (q, eq + p)) for any e.

Definition 3.2. The Seifert fibered space Y (e; (α1, β1), (α2, β2), . . . , (αr, βr))
is the oriented boundary of the four-manifold obtained by plumbing disk bun-
dles over the two-sphere according to the weighted graph shown in Figure 2.
To each vertex v with multiplicity m(v), associate a disk bundle over S2 with
Euler number m(v). The bundles associated to two vertices are plumbed pre-
cisely when the vertices are connected by an edge. (See [9, 14] for details
on plumbing.) The multiplicities on the graph are obtained from continued
fraction expansions

αi
αi − βi

= [ηi1, η
i
2, . . . , η

i
si

].

A lens space L(p, q) is a special case of the above; it is the boundary of the
plumbed four-manifold associated to a linear graph with weights−a1,−a2, . . . ,

−am, where
p

q
= [a1, a2, . . . , am]. This is equal to the Seifert fibered space

Y (−e; (q, eq + p)) for any e.
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•
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Figure 2. Plumbing description of Seifert fibered space.

A Seifert fibered space Y (e; (α1, β1), . . . , (αr, βr)) is a rational homology sphere

if and only if its degree e+
r∑
i=1

βi
αi

is nonzero.

Proposition 3.3. The branched double cover of S3 along the Montesinos
link M(e; (α1, β1), . . . , (αr, βr)) is the Seifert fibered space Y (−e; (α1, β1), . . . ,
(αr, βr)).

Note it follows from Proposition 3.3 that the branched double cover of S(p, q)
is L(p, q).

Proof. The original proof is in [13]. The result is also proved in [2] but
note that on p. 197 an e-twist should correspond to α0 = 1, β0 = −e (rather
than β0 = e). Since it is particularly important that we correctly identify the
branched cover as an oriented manifold we will sketch a proof here.

We start with an alternative description of the Montesinos link
M(e; (α1, β1), . . . , (αr, βr)). For each i, let

αi
βi

= [ai1, a
i
2, . . . , a

i
mi

].
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Figure 3. Plumbing description of Montesinos link.
Note that changing the order of the branches may change the
link.

Then M(e; (α1, β1), . . . , (αr, βr)) is obtained by plumbing twisted bands ac-
cording to the graph in Figure 3, and then taking the boundary. Here each
vertex represents a twisted band, that is a D1-bundle over S1, embedded in
S3, with the number of half-twists given by the multiplicity of the vertex.
For example, Figure 1(a) is (the boundary of) a band with 3 half-twists, if
r = 0. Bands are plumbed together precisely when the corresponding vertices
are adjacent.

We now want to describe the double branched cover of such a plumbed link.
Start with the case of a single vertex, with weight a. This gives the two-bridge
link L = S(a,−1) formed by closing the four-string braid σa2 . Split S3 along
a 2-sphere which separates the link into 4 arcs, so that the braid is contained
in one component of S3−S2. (If L is pictured as in Figure 1(b), the 2-sphere
may be drawn as a vertical line through L on one side of the twists.) This
gives (S3, L) as a union of two balls, each containing two arcs. The branched
double covers of these are solid tori, which inherit an orientation from S3.

The braid operation σ2 lifts to a right-handed Dehn twist about a longitude of
either torus. Use the meridian and this longitude as an ordered basis, oriented
to have intersection number +1. With respect to this basis, the map induced



RATIONAL HOMOLOGY SPHERES AND FOUR-BALL GENUS 10

on homology by the lift of σ2 has matrix

(
1 0
−1 1

)
. Composing the Dehn

twists and changing basis to that of the other torus yields the matrix product(
−1 0
0 1

)(
1 0
−a 1

)
=

(
−1 0
−a 1

)
.

This is precisely the gluing map for the circle bundle over S2 with Euler
number a.

Now consider a graph with two vertices labeled a1, a2 which are joined by
an edge. The resulting plumbed link is equivalent to the two-bridge link L
formed by closing the four string braid σa1

2 σ1σ2σ1σ
a2
2 . As above split S3 along

a 2-sphere to one side of the braid. The braid σ1 lifts to a right-handed Dehn

twist about the meridian, with matrix

(
1 1
0 1

)
. Thus the double branched

cover of L is the union of two solid tori with the gluing map given by the
product (

−1 0
0 1

)(
1 0
−a1 1

)(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)(
1 0
−a2 1

)
=

(
−1 0
−a1 1

)(
0 1
1 0

)(
−1 0
−a2 1

)
,

which is the gluing map for the boundary of the manifold formed by plumbing
together disk bundles over S2 with Euler numbers a1, a2.

It is now not hard to see that in general if L is the plumbed link asso-
ciated to a weighted tree T then the double branched cover of L is the
Seifert fibered space associated to T . According to Definition 3.2, the Seifert
fibered space obtained from the graph in Figure 3 is Y (−e − r; (α1, α1 +
β1), . . . , (αr, αr + βr)). Note that this is orientation-preserving diffeomorphic
to Y (−e; (α1, β1), . . . , (αr, βr)) as claimed.

Remark 3.4. We have used the same orientation convention as Orlik [14] and
Hirzebruch-Neumann-Koh [9] for lens spaces and Seifert fibered spaces. How-
ever the opposite convention for lens spaces is used in [16].

Remark 3.5. Montesinos links are not in general classified by their double
branched cover alone (see [2, Theorem 12.28]). However the following equiva-
lence holds:

(6) M(e; . . . , (αi, βi), . . .) = M(e+ 1; . . . , (αi, αi + βi), . . .).

3.3. A spanning surface for Montesinos links. We describe an orientable
spanning surface Σ in S3 for the Montesinos link L = M(e; (α1, β1), . . . , (αr, βr))
which is a generalisation of that shown in [2, 12.26] for 2-bridge links (see also
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[1]). For knots this will enable us to compute the signature, and also in some
cases the Taylor invariant m(K). For links with more than one component
both the signature and the four-ball genus depend on a choice of orientation;
we will choose the orientation given by L = ∂Σ (for either orientation of Σ).

Fixing the surface Σ will require fixing a choice of invariants (e; (α1, β1), . . . ,
(αr, βr)), and a continued fraction expansion for each pair (αi, βi). If α, β are
coprime with β odd, the algorithm from [2, 12.16] yields a continued fraction
expansion

α

β
= [a1, a2, . . . , am]

with m odd and a2, a4, . . . even. If α is odd the same algorithm may be
adjusted to produce an expansion with m, a1, a3, . . . even.

Colour black or white, in chessboard fashion, the regions of S2 that form the
complement of the projection in Figure 1(a). Start by colouring black the
twisted band on the left. There are then two cases to consider.

Case 1: αi is odd for i = 1, . . . , r. Assume, using (6) if necessary, that

1 ≤ βi < αi for all i = 1, . . . , r.

Then for each i, choose the continued fraction expansion

αi
βi

= [ai1, a
i
2, . . . , a

i
mi

]

with mi, a
i
1, a

i
3, . . . , a

i
mi−1 even, as above. The white surface is orientable in

the resulting diagram.

Case 2: {αi} are not all odd. Using (6) we may assume each βi is the smallest
positive odd integer in its congruence class mod αi. We also require that e ≡ r
(mod 2). If this does not hold, choose the smallest j such that αj is even and
βj
αj

= min

{
βi
αi

: αi is even

}
. Then replace e with e+ 1 and βj with αj + βj.

Choose continued fraction expansions as above with odd length mi and with
ai2, a

i
4, . . . , a

i
mi−1 even. The black surface is orientable in the resulting diagram.

3.4. The correction term for Seifert fibered spaces. When Y is the lens
space L(p, q) a labelling of Spinc(Y ) by Z/p = {0, 1, . . . , p − 1} is chosen in
[16, §4], and the following recursive formula is given:

d(L(p, q), i) =
pq − (2i+ 1− p− q)2

4pq
− d(L(q, r), j),
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where i ∈ Z/p and r and j are the reductions modulo q of p and i respectively.
(Note Remark 3.4 above concerning orientation conventions.)

The conjugation action on spinc structures is given by

j(i) = q − i− 1 (mod p),

so that the j-fixed-point-set is Z ∩
{
q − 1

2
,
p+ q − 1

2

}
.

Remark 3.6. It is shown in [19] that the Frøyshov invariant defined using
Seiberg-Witten theory satisfies the same recursive formula. Therefore a gauge
theoretic version of Theorem 2.2 based on [7] gives the same results for lens
spaces.

More generally, if Y is a Seifert fibered rational homology sphere Y (e; (α1, β1),
. . . , (αr, βr)), the following formula is given in [17, Corollary 1.5]:

d(Y, t) = max

{
c1(s)2 + |G|

4
: s ∈ Spinc(XG), s|Y = t

}
.

Here G is a graph as in Definition 3.2 for which the plumbed manifold XG is
negative definite with ∂XG = Y , and |G| is the number of vertices of G. This
formula may be interpreted as saying that equality is obtained in (1) for some
s ∈ Spinc(XG). Thus computing the correction terms for Y is equivalent to
computing the sq function on S(XG); in Section 4 we indicate how to do this
for any negative definite four-manifold.

4. Obstruction algorithm

Given a rational homology sphere Y with the order of H := H2(Y ; Z) equal to
h, and an integer b ≥ 0, we want to know if Y can bound a negative definite
four-manifold X with b2(X) = b. In view of the results in Section 2 this can
be checked in the following sequence of steps:

(1) consider all factorizations h = st2 with s, t ≥ 1;
(2) for a fixed factorization, consider all order t subgroups T of H, and for

a fixed T consider all order s subgroups S of H/T ;
(3) for a fixed S, consider all negative definite symmetric forms of rank b

that present S;
(4) for a fixed form, represented by a matrix Q, determine the function

sq : S → Q (see discussion preceding Theorem 2.2);
(5) for all choices of j-fixed origin in H/T consider all group monomor-

phisms ρ : S → H/T , and for a fixed ρ determine the function
dρ : S → Q;
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(6) if for a particular set of choices above the conclusion of Theorem 2.2
and the congruence condition (3) holds, then there is no obstruction
to Y bounding a negative definite four-manifold X with b2(X) = b.

Note that when b = 0 the above procedure simplifies significantly (see below
for details). For b > 0 there is only a finite number of possible choices in
steps (3) and (5); in particular, a complete (but not minimal) set of forms
of given rank and determinant, due to Hermite, is described in [10, Theorem
23]. When determining the function sq in step (4) one can restrict to spinc

structures whose Chern classes c (modulo torsion) are characteristic vectors
in the hypercube

x2
i ≤ c(xi) < |x2

i |, i = 1, . . . , b ,

where {xi, i = 1, . . . , b} is a basis for H2(X,Z)/Tors. To see this note that if
the inequality is violated for some i, changing c by an even multiple of the
Poincaré dual of xi to make this particular inequality hold, will result in a
vector with no smaller square; moreover, the square only stays the same if
c(xi) = |x2

i | (see [17] for details). A characteristic vector is the Chern class of
a j-fixed element if and only if it is in the image of Q : Zb → Zb.

In the rest of this section we describe in detail the cases b = 0, 1 and 2 with
emphasis on the application to four-ball genus of knots and links. For this
application it suffices to show Y cannot bound a spin manifold X; therefore
in step (3) above we need only consider even forms.

4.1. Case b = 0.
A necessary condition for a rational homology sphere Y to bound a rational
homology ball X is that the order of the first homology of Y is a square
(Lemma 2.1). The algorithm described above yields the following.

Proposition 4.1. Let X be a smooth four-manifold with boundary Y , and
suppose that H∗(X; Q) ∼= H∗(B

4; Q) and the order of H = H2(Y ; Z) is h = t2.
Then there is a spinc structure t0 on Y so that

d(Y, t0 + β) = 0 for all β ∈ T ,

where T denotes the image of H2(X; Z) in H. The image of t0 in H/T is
j-invariant. If H contains no element of order 4 or if |T | is odd or if X is
spin, then t0 may be chosen to be a spin structure.

In particular, if Y is a homology lens space, then given a labelling {t0, . . . , th−1}
of spinc structures on Y , there is a j0 so that

d(Y, tj0+kt) = 0 for all k = 0, . . . , t− 1.
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Proof. Denote by t0 a spinc structure on Y that extends to X. Then the
set of spinc structures on Y that extend to X is t0 + T . Given that all spinc

structures on the rational homology ball X are torsion, Theorem 2.2 implies
that d(Y, t0 + β) ≥ 0 for all β. Finally, changing the orientation of X and
using the fact that the correction term changes its sign under this operation,
gives the other inequality.

IfH contains no element of order 4 or if |T | is odd, then it follows from Lemma
2.4 that there is a spin structure on Y which maps to the same element of
H/T as t0.

Corollary 4.2. Let K be a knot in S3 with branched double cover Y . If K is
slice, then Y satisfies the conclusion of Proposition 4.1 with t0 a spin structure.

Proof. From the discussion in Section 3 we see that if K is slice then Y
bounds a spin rational homology ball.

4.2. Case b = 1.
When b2(X) = 1, the intersection form QX of a negative definite manifold X
is represented by [−s], where h = st2 is the order of the second cohomology
of Y = ∂X. Note that in this case S ∼= Z/s is cyclic, and so Y can only
bound such an X if H/T contains a cyclic subgroup of order s (see discussion
preceding Theorem 2.2 for notation).

Characteristic vectors in H2(X; Z)/Tors are given by numbers x ∈ Z with the
same parity as s. A set of spinc structures on X with maximal square in their
equivalence class in S is given by si, i = 0, . . . , s−1, where the image of c1(si)
modulo torsion is xi = 2i− s, and its square is

sq(i) = c1(si)
2 = −(2i− s)2

s
.

Note that x0 = −s corresponds to a j-fixed element in S; in case s is even,
xs/2 = 0 also gives a j-fixed element.

Let L be a two component link in S3 with branched double cover Y . If the
signature σ(L) = −1, then according to Murasugi’s result L may bound a
cylinder in the four-ball. If this is the case, then Y bounds a negative definite
spin four-manifold X with b2(X) = 1 (see Section 3). We may use the above
algorithm to check if this is possible.
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4.3. Case b = 2.
We now suppose a rational homology sphere Y bounds a negative definite four-
manifold X with b2(X) = 2. We denote the order of the second cohomology
of Y by h, and fix a factorization h = st2, where s is the determinant of the
intersection pairing QX of X. Note that in this case S ∼= Z2/QZ2 has at most
two exponents, which puts a homological restriction on Y bounding such a
manifold.

The following classification theorem for rank two quadratic forms is a modified
version of [10, Theorem 76].

Theorem 4.3. Any negative definite form with integer coefficients of rank
two and determinant s > 0 is equivalent to a reduced form(

a b
b c

)
,

with 0 ≥ 2b ≥ a ≥ c. (It follows that |a| ≤ 2
√
s/3.)

Let Q be a reduced form as above with coefficients a, b, c. Note that this form
presents Z/e1⊕Z/e2, where e2|e1 and e1e2 = r, if and only if gcd(a, b, c) = e2.
Denote by ΩQ the set of points (x, y) in the plane satisfying the following
conditions:

a ≤ x < |a| ,
c ≤ y < |c| ,

a− 2b+ c ≤ x− y < |a− 2b+ c| .

Call a lattice point (x, y) ∈ Z2 characteristic if x ≡ a, y ≡ c (mod 2).

Proposition 4.4. Fix a basis for H2(X; Z)/Tors so that the matrix represen-
tative Q of the intersection pairing QX is reduced. Then the characteristic
lattice points in ΩQ are the (images of the) first Chern classes of a set of spinc

structures on X that have maximal square in their class in S. Moreover, any
characteristic vector among

(0, 0), (a, b), (b, c), (a− b, b− c)
gives rise to a j-fixed element of S.

Proof. Note that two characteristic points correspond to spinc structures with
isomorphic restrictions to Y if and only if they differ by 2m(a, b) + 2n(b, c),
for some integers m,n. A complete set of characteristic representatives is
given by the parallelogram with vertices ±(a+ b, b+ c),±(a− b, b− c) (taking
all characteristic points in the interior and those in one component of the
boundary minus ±(a−b, b−c)). Observe that each of these points is equivalent
to exactly one characteristic point in ΩQ. It therefore remains to show that
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the corresponding spinc structures have maximal square in their equivalence
class. Recall that the cup product pairing on H2(X; Z)/Tors is well defined
over Q, and its matrix with respect to the Hom-dual basis is Q−1.

As observed after the description of the algorithm, we need only consider
points in the rectangle {(x, y)|a ≤ x < |a|, c ≤ y < |c|}. Thus it only re-
mains to choose the point with larger square from any equivalence class having
more than one characteristic point in the rectangle. This is done by eliminat-
ing points inside the triangles cut out of the rectangle by the lines x − y =
±|a− 2b+ c|.

It follows from Proposition 4.4 that the numbers sq(α) (for α ∈ S) from
Theorem 2.2 are given, as an unordered set, by the squares with respect to
Q−1 of characteristic points (x, y) ∈ ΩQ. It remains to order these points
with respect to the group structure on S ∼= Z2/QZ2 ∼= Z/e1 ⊕ Z/e2. The
point (x0,0, y0,0) may be chosen arbitrarily; for convenience we choose it to be
j-fixed. Then choose (x1,0, y1,0) so that δ1 = 1

2
(x1,0− x0,0, y1,0− y0,0) has order

e1. Finally choose (x0,1, y0,1) so that δ2 = 1
2
(x0,1 − x0,0, y0,1 − y0,0) has order

e2 and the subgroups of S generated by δ1 and δ2 have trivial intersection.
These choices determine the ordering of the remaining points: (xi,j, yi,j) is the
unique characteristic point in ΩQ with

1

2
(xi,j − x0,0, yi,j − y0,0) = iδ1 + jδ2 +m(a, b) + n(b, c), m, n ∈ Z ,

and

sq(i, j) = (xi,j yi,j)Q
−1(xi,j yi,j)

T ,

for i = 0, . . . , e1 − 1 and j = 0, . . . , e2 − 1.

Suppose that K is a knot in S3 with signature −2 and branched double cover
Y . From Section 3 we know that if g∗(K) = 1, then Y bounds a negative-
definite spin four-manifold with b2 = 2, and we may use the algorithm de-
scribed at the beginning of this section to seek a contradiction. We may
similarly get an obstruction to a three component link with signature −2
bounding a genus zero slice surface.

5. Examples

In this section we list examples of knots and links for which our obstruction
shows that inequality (4) is strict. We begin with a proof that the unknot-
ting number of the knot 10145 is 2. We list two-bridge examples in 5.3 and
Montesinos examples in 5.4.
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5.1. Unknotting number of 10145. The knot 10145 in the Rolfsen table
is the Montesinos knot M(1; (3, 1), (3, 1), (5, 2)). This knot has signature 2
and determinant 3. Its branched double cover is the Seifert fibered space
Y (−1; (3, 1), (3, 1), (5, 2)). We will show that −Y cannot bound a negative
definite 4-manifold with b2 = 2. (In [15] we show that −Y cannot bound a
negative-definite form of any rank.) The correction terms are

d(−Y ) =

{
−3

2
,−1

6
,−1

6

}
.

There are two reduced negative definite forms of rank 2 and determinant

3, namely the diagonal form

(
−1 0
0 −3

)
, and

(
−2 −1
−1 −2

)
. For the first the

region ΩQ of Proposition 4.4 yields optimal spinc structures with squares{
−4,−4

3
,−4

3

}
, and for the second,

{
0,−8

3
,−8

3

}
. In either case there is

clearly no map

ρ : Z/3→ Z/3

which satisfies

c1(si)
2 + 2 ≤ 4d(−Y, tρ(i)).

It follows that g∗(10145) > 1. From the knot diagram as in Figure 1 it is
easy to see that the unknotting number u is at most 2. Since the unknotting
number is bounded below by the four-ball genus, we conclude that g∗ = u = 2.
(This was first shown by Tanaka [20].)

Finally we note that the spanning surface described in 3.3 yields the Seifert
matrix

M =


1 −1 −1 0
0 1 −1 0
0 0 1 −1
0 0 0 1

 .

The vector x = (1, 1, 1, 0)T satisfies xTMx = 0. It follows that the Taylor
invariant m(10145) (which is the optimal lower bound for g∗ from a Seifert
matrix) is 1.

5.2. A non-cyclic example. The Montesinos knot M(1; (5, 2), (5, 2), (5, 2))
has signature 4 and determinant 25. Its branched double cover Y =
Y (−1; (5, 2), (5, 2), (5, 2)) has H2(Y ) ∼= Z/5⊕ Z/5. The correction terms are
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Figure 4. The Montesinos knot M(1;(5,2),(5,2),(5,2)).
Note that changing the circled crossings will give the unknot.

d(−Y ) =
1

5


−5 1 −1 −1 1
−7 −3 −7 1 1
−3 −1 −7 −1 −3
−3 −3 −1 −7 −1
−7 1 1 −7 −3

 ,

where the array structure indicates the Z/5⊕ Z/5 action on Spinc(−Y ).

Suppose that −Y bounds a negative definite manifold X with b2(X) = 4.
Then by Lemma 2.1 the intersection pairing of X is either unimodular or has
determinant 25. If unimodular then it is equivalent to −I (see for example
[10, Corollary 23]); in this case S contains just 1 element with maximal square
−4. The inequality in Theorem 2.2 now simply becomes 0 ≤ dρ(α); however,
the correction term of the j-fixed element is −1.

Now suppose that QX has determinant 25. Note that there are 6 nonnegative
correction terms in the above array. There are 3 Hermite-reduced negative
definite rank 4 forms with determinant 25 which present Z/5⊕ Z/5. Each of
these gives at least 10 elements α ∈ S with sq(α) + 4 ≥ 0. It follows from
Theorem 2.2 that −Y cannot bound these forms.

This implies g∗(M(1; (5, 2), (5, 2), (5, 2))) > 2. From the knot diagram in
Figure 4 we see that the unknotting number is at most 3; thus g∗ = u = 3.
As with the previous example the Taylor invariant of this knot equals |σ|/2.

5.3. Two-bridge examples. We start with the question of slice two-bridge
knots. Recall a knot K is slice if g∗(K)=0. It is called ribbon if it bounds
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a smoothly immersed disk in S3 whose singularities come from identifying
spanning arcs in D2 with interior arcs in D2. Ribbon implies slice, however,
it is unknown whether every slice knot is ribbon.

Table 1 lists two-bridge knots and links S(p, q) with 1 ≤ |σ| ≤ 4 for which the
obstruction algorithm shows that inequality (4) is strict. The table includes
all knots with p < 120 and all links with p < 60.

Table 1. Genus bounds for two-bridge links. Here σ is
the signature, and m is Taylor’s lower bound for the 4-ball genus
(knots only).

Link σ g∗ ≥ m
S(12, 7) 1 1
S(28, 15) 1 1
S(32, 19) 1 1
S(42, 25) 1 1
S(44, 23) 1 1
S(52, 31) 1 1
S(52, 33) −1 1
S(67, 39) 2 2 1
S(91, 22) 2 2 1
S(91, 53) 2 2 1
S(107, 28) −2 2 1
S(115, 28) 2 2 1
S(115, 67) 2 2 1

Any slice 2-bridge knot S(p, q) must have p = t2 from Lemma 2.1. A set of
values of t and q for which S(t2, q) is ribbon is given in [3]. Using the Atiyah-
Singer G-signature theorem, Casson and Gordon [3] defined an invariant which
detects when a two-bridge knot is not ribbon and showed that the known
ribbon two-bridge knots provide the only ribbon examples S(t2, q) with t ≤
105. Fintushel and Stern showed in [5] that the Casson-Gordon invariant is
equal to an invariant they defined using Yang-Mills theory, and also showed
the invariant detects when a knot is not slice. The obstruction algorithm
described in Subsection 4.1 seems to give the same results as Casson-Gordon
and Fintushel-Stern; we have verified this for t ≤ 105.

Finally we note that the knots S(187, 101) and S(187, 117) have the same
Alexander polynomials and Taylor invariants. The latter has g∗ = 1, but our
algorithm can be used to show that the former has g∗ = 2.
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5.4. More Montesinos examples. Table 2 contains obstructed Montesinos
links M(e; (α1, β1), (α2, β2), (α3, β3) with −2 ≤ e ≤ 1, αi ≤ 5, and |σ| ≤ 4.
We have also restricted to links with determinant less than 150.

Table 2. Genus bounds for Montesinos links. Here µ is
the number of components and Y is the branched double cover.

Link µ σ H1(Y ) g∗ ≥ m
M(−2; (2, 1), (2, 1), (5, 4)) 2 1 Z/76 1
M(−2; (3, 1), (3, 1), (5, 3)) 1 2 Z/147 2 1
M(−1; (2, 1), (2, 1), (5, 2)) 2 −1 Z/48 1
M(−1; (3, 1), (3, 1), (5, 3)) 2 1 Z/102 1
M(−1; (3, 2), (3, 2), (5, 1)) 2 1 Z/114 1
M(0; (2, 1), (2, 1), (3, 2)) 2 −1 Z/20 1
M(0; (3, 1), (3, 1), (5, 4)) 2 1 Z/66 1
M(0; (3, 2), (3, 2), (5, 2)) 2 1 Z/78 1
M(0; (3, 2), (3, 2), (5, 4)) 2 −1 Z/96 1
M(0; (3, 2), (4, 3), (4, 3)) 2 −1 Z/104 1
M(0; (3, 2), (5, 1), (5, 1)) 2 1 Z/80 1
M(1; (2, 1), (2, 1), (2, 1)) 3 −4 Z/2⊕ Z/2 2
M(1; (3, 1), (3, 1), (5, 2)) 1 2 Z/3 2 1
M(1; (3, 1), (5, 2), (5, 2)) 2 3 Z/10 2
M(1; (3, 1), (5, 4), (5, 4)) 2 −1 Z/70 1
M(1; (5, 1), (5, 1), (5, 2)) 1 4 Z/5⊕ Z/5 3 2
M(1; (5, 2), (5, 2), (5, 2)) 1 4 Z/5⊕ Z/5 3 2

Remark 5.1. The reflection of M(e; (α1, β1), . . . , (αr, βr)) is M(r−e; (α1, α1−
β1), . . . , (αr, αr − βr)). The four-ball genus of a knot is equal to that of its re-
flection. However, the signature and four-ball genus of links depend on a choice
of orientation, and the orientation convention from Subsection 3.3 is not pre-
served under reflection. For example the 3-component link M(5; (2, 1), (2, 1),
(2, 1)), oriented as in Subsection 3.3, has signature −2 and is shown by our
algorithm to have nonzero four-ball genus. Its reflection M(−2; (2, 1), (2, 1),
(2, 1)) also has signature −2, but the algorithm yields no information.

Remark 5.2. The obstruction algorithm uses the inequality (1) and the con-
gruence (3). It is interesting to note that either testing only the inequal-
ity or only the congruences yields most of the results. In Table 1, the link
S(52, 33) is obstructed by the congruence test but not by the inequality, while
S(32, 19) is obstructed by the inequality but not by the congruence. All other
entries in the table are obstructed using either test. Similarly in Table 2,
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M(−2; (2, 1), (2, 1), (5, 4)) is obstructed by the congruence but not by the in-
equality; there are four knots and links which are obstructed by the inequal-
ity but not by the congruence, namely M(−2; (3, 1), (3, 1), (5, 3)), M(0; (3, 2),
(3, 2), (5, 4)), M(0; (3, 2), (4, 3), (4, 3)) and M(1; (3, 1), (3, 1), (5, 2)). All other
links in the table are obstructed by either condition.
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