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Abstract. We generalise theorems of Cochran-Lickorish and Owens-Strle to

the case of links with more than one component. This enables the use of

linking forms on double branched covers, Heegaard Floer correction terms,
and Donaldson’s diagonalisation theorem to complete the table of unlinking

numbers for nonsplit prime links with crossing number nine or less.

1. Introduction

Let L be a link in S3. The unlinking number of L is the minimum number of
crossing changes to convert a diagram of L to a diagram of the unlink, where the
minimum is taken over all diagrams. This is the obvious generalisation to links
of the unknotting number, and one should expect that many of the same meth-
ods should apply to compute it for examples. There have been several successful
applications of Donaldson’s diagonalisation theorem and Heegaard Floer homology
to the calculation of unknotting numbers, for example [6, 26, 24, 11, 19]. It is
an interesting problem, which we begin to address here, to generalise these tech-
niques to the case of links. The systematic study of unlinking number for links
with more than one component seems to have been initiated by Kohn in [16], in
which he computed unlinking numbers for all but 5 prime, nonsplit, 2-component
links which admit diagrams with 9 crossings or less. In this paper we determine
the unlinking number for these remaining examples and provide a complete table
of unlinking numbers for prime nonsplit links with crossing number at most 9.

The main result of this paper is a generalisation of a theorem of Cochran and
Lickorish [6], and of a refinement due to the second author and Strle [23], to the
case of links with more than one component. We choose an orientation on a given
link and consider the sum σ+η of the classical link signature and nullity. This sum
is equal to k − 1 for the k-component unlink; it increases by 2 or stays constant
when a positive crossing is changed, and decreases by 0 or 2 when a negative
crossing is changed. Thus if σ + η is less than k − 1 for a given orientation on a
k-component link L, then any set of crossing changes converting L to the unlink
must include changing at least (−σ − η + k − 1)/2 positive crossings. We show
that if the number of positive crossings changed does not exceed this minimum
then the double branched cover Y of L bounds a smooth definite 4-manifold W
which constrains the linking form of Y , and which leads to obstructions coming
from Donaldson’s diagonalisation theorem and Heegaard Floer theory. Note that
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the trace of a homotopy associated to a sequence of crossing changes from L to the
the unlink gives rise to an immersion of k disks in the four-ball bounded by L, with
one double point for each crossing change.

Theorem 1. Let L be an oriented k-component link in S3 with signature σ and
nullity η, and suppose that L is the oriented boundary of a properly normally im-
mersed union of k disks in the four-ball with p positive double points and n negative
double points. Then

(1) p ≥ −σ − η + k − 1

2
.

If equality holds in (1) then the double cover Y of S3 branched along L bounds a
smooth negative-definite 4-manifold W with

b2(W ) = 2n− σ = 2(p+ n) + η − k + 1,

for which the restriction map

H1(W ;Q)→ H1(Y ;Q)

is an isomorphism. Moreover H2(W ;Z) contains p + n pairwise disjoint spherical
classes of self-intersection −2, whose images in H2(W ;Z)/Tors span a primitive
sublattice.

We denote by c∗(L) the 4-ball crossing number of a link L in S3. This is the
minimal number of double points in a properly normally immersed union of disks in
D4 bounded by the link. The conditions imposed by Theorem 1 on the linking form
of Y are sufficient to determine the unlinking number and 4-ball crossing number of
four of Kohn’s remaining examples. Recall that a 2-component link in S3 has two
Murasugi signatures corresponding to two choices of quasi-orientation (orientation
up to overall reversal).

Example 2. Let L be a 2-component link in S3 with c∗(L) < 3. Suppose that
the double branched cover Y has finite cyclic homology group. Then one of the
statements below hold:

(1) det(L) = 2t2 with t ∈ Z, or
(2) det(L) is divisible by 4 and at least one of the signatures of L is in {−1, 1},

or
(3) det(L) is divisible by 16.

In particular, the links

92
3 = L9a30, 92

15 = L9a15, 92
27 = L9a17, 92

31 = L9a2

have unlinking number and 4-ball crossing number 3.

We refer in Example 2 to links using both Rolfsen and Thistlethwaite names.
A proof that the unlinking number of L9a30 is 3 was given by Kanenobu and
Kanenobu in [13].

The following corollary is obtained by combining Theorem 1 with Donaldson’s
diagonalisation theorem [8] and a construction of Gordon and Litherland [10].

Corollary 3. Let L be an oriented nonsplit alternating link with k components and
signature σ, and suppose that L bounds a properly normally immersed union of k
disks in the four-ball with p = −σ+k−1

2 positive double points and n negative double
points. Let m be the rank of the positive-definite Goeritz lattice Λ associated to
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an alternating diagram of L. Then Λ admits an embedding in the standard integer
lattice Z = Zm+2n−σ = Zm+2(p+n)−k+1, with p + n pairwise orthogonal vectors of
square 2 which span a primitive sublattice in the orthogonal complement of Λ in Z.

The final unknown example from Kohn’s table, as well as the links in Example
2, may be settled using Corollary 3. An alternative method involves the use of
Heegaard Floer correction terms of the double branched cover. We illustrate the
use of both methods in Section 4.

Example 4. The link 92
36 = L9a10 has unlinking number and 4-ball crossing num-

ber 3.

Combining Examples 2 and 4 with previous results of Kauffman-Taylor [14],
Kohn [16], Kawauchi [15] and Borodzik-Friedl-Powell [3] leads to the complete
Table 1 of unlinking numbers of nonsplit prime links with crossing number at most
9. We also show that for all links in Table 1, the unlinking number is equal to the
4-ball crossing number.

Acknowledgements. We are grateful to Maciej Borodzik, Stefan Friedl and Mark
Powell for bringing the unknown values in Kohn’s table to our attention in their
paper [3]. The first author thanks the University of Glasgow for its hospitality. The
second author acknowledges the influence of his earlier joint work with Sašo Strle,
especially [23]. We thank Mark Powell for helpful comments on an earlier draft,
and the anonymous referee for helpful suggestions.

2. Proofs of Theorem 1 and Corollary 3

For L a link in S3 we denote the two-fold branched cover of L by Σ2(L). Let F
be a connected Seifert surface for L. Following Trotter and Murasugi [29, 20], the
signature σ(L) of the link L is the signature of the symmetrised Seifert pairing

H1(F )×H1(F )→ Z
a, b 7→ lk(a+, b) + lk(a, b+),

where lk(a, b) denotes the linking number of a and b in S3 and b+ denotes the cycle
obtained by pushing b in the positive normal direction. The nullity η(L) of the link
L is the dimension of the nullspace of the symmetric form above. This is also equal
to the first Betti number of Σ2(L) [14]. We note that if −L denotes the mirror of
L then σ(−L) = −σ(L) and η(−L) = η(L).

The following lemma is based on [6, Proposition 2.1] and [28, Theorem 5.1].

Lemma 2.1. Let L be a link in S3. Suppose that L and L′ are oriented links in
S3 such that L′ is obtained from L by changing a single negative crossing. Then

σ(L′)± η(L′) ∈ {σ(L)± η(L), σ(L)± η(L)− 2},

where the choice of ± is consistent in all three instances above. Similarly if L′ is
obtained from L by changing a single positive crossing, then

σ(L′)± η(L′) ∈ {σ(L)± η(L), σ(L)± η(L) + 2}.

In either case,

|η(L′)− η(L)| ≤ 1.
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Proof. We take a diagram for L containing a negative crossing, such that changing
this crossing yields L′. The Seifert algorithm, followed by tubing together compo-
nents if necessary, gives a connected surface F ; we may choose a basis for H1(F )
represented by loops, exactly one of which passes through the distinguished cross-
ing. We see that the matrix of the symmetrised Seifert pairing in this basis is the
same for L′ as for L save for one diagonal entry which is reduced by 2. This will
leave the signature and nullity of the pairing on a codimension one sublattice un-
changed. The last eigenvalue may also be unchanged in sign, or may change from
positive to negative or zero, or from zero to negative. The first assertion of the
lemma follows; the second follows on applying the first to −L and −L′, and the
third follows easily by restricting consideration to the nullity. �

A surface with boundary is normally properly immersed in D4 if its boundary
(respectively, interior) is contained in the boundary (resp., interior) of the four-
ball and its only singularities are normal double points, locally modelled on two
transversely intersecting planes in R4. Double points may be given a sign by taking
an arbitrary orientation on the surface and comparing an oriented basis for the
tangent plane to one sheet of the surface at the singularity followed by an oriented
basis on the other sheet, to the ambient orientation.

Lemma 2.2. Let L be an oriented k-component link in S3 with signature σ and
nullity η, and suppose that L bounds a properly normally immersed union of k disks
with p positive double points and n negative double points. Then

n ≥ σ − η + k − 1

2
and p ≥ −σ − η + k − 1

2
.

Proof. From [23, Proposition 2.1] the immersed disks bounded by L may be iso-
toped so they are given by a concordance, followed by the trace of a regular ho-
motopy corresponding to changing p positive and n negative crossings, followed by
a nullconcordance. Since signature and nullity are concordance invariants [14], the
inequalities now follow from the previous lemma and the fact that the k-component
unlink has signature zero and nullity k − 1. �

The following proposition will be used to prove Theorem 1, and may be used to
give another proof of Lemma 2.2.

Proposition 2.3. Let L be a k-component oriented link in S3 = ∂D4. Suppose
L bounds normally properly immersed disjoint oriented disks in D4 with p positive
and n negative self-intersections. Then there exists an oriented smooth 4-manifold
W with boundary ∂W = Σ2(L) such that

(1) the second Betti number of W satisfies b2(W ) ≤ 2(p+ n) + 1− k + η(L);
(2) the manifold W has signature σ(W ) = −2n+ σ(L);
(3) the inclusion ∂W ⊂W induces an injection H1(W ;Q) ↪→ H1(∂W ;Q), with

cokernel dimension equal to the nullity of the intersection form on H2(W );
(4) there exist p+n classes in H2(W ;Z) represented by pairwise disjoint spheres

of self-intersection −2. The images of these in H2(W ;Z)/Tors span a
primitive sublattice; in other words the quotient of H2(W ;Z)/Tors by this
sublattice is torsion-free.

The proof is an adaptation to the case of links of arguments given in [6, 23].
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Proof. By forming connected sums with CP2 and resolving the singularities as in
[6, Lemma 3.4], we obtain an embedded surface ∆ in

C := D4#

(
#
p+n

CP2

)
whose boundary is the link L in ∂C and each of whose components is a disk. The
Euler characteristic of C is χ(C) = 1+p+n. The first homology of the complement
of ∆ in C with Z/2Z coefficients has a basis consisting of the meridians of the
component disks of ∆. Thus we may take the double cover W = Σ2(C,∆) of C
branched along ∆. By definition we have ∂W = Σ2(L).

Claim. The Euler characteristic of W is χ(W ) = 2(p+ n)− k + 2.

This can be seen as follows: we have the equality

χ(C) = χ(C \∆) + χ(∆) = χ(C \∆) + k.

Therefore the double cover of C \ ∆ has Euler characteristic 2(χ(C) − k). The
manifold W is obtained by gluing ∆ back in again. We obtain

χ(W ) = 2(χ(C)− k) + k = 2(p+ n)− k + 2.

Claim. H1(W,∂W ;Q) = H3(W ;Q) = 0.

We show that H3(W ;Z/2Z) vanishes. By Poincaré duality, H1(C, ∂C;Z/2Z) =
0. Then note that for a set F ⊂ C such that ∂C ∪ F is connected, we get

H0(C;Z/2Z)
∼=→ H0(∂C ∪ F ;Z/2Z)→ H1(C, ∂C ∪ F ;Z/2Z)→ H1(C;Z/2Z) = 0.

This implies that H1(C, ∂C ∪∆;Z/2Z) = 0. From [17, Theorem 1] and dualising,
we obtain the following exact sequence:

0 = H1(C, ∂C;Z/2Z)→ H1(W,∂W ;Z/2Z)→ H1(C, ∂C ∪∆;Z/2Z) = 0.

Therefore H1(W,∂W ;Z/2Z) = 0 holds. By Poincaré duality we obtain directly
that H3(W ;Z/2Z) = 0.

Claim. The inclusion ∂W ⊂ W induces an injection H1(W ;Q) ↪→ H1(∂W ;Q),
whose cokernel is isomorphic to the nullspace of the intersection form on H2(W ;Q).
In particular, the inequality η(L) = b1(∂W ) ≥ b1(W ) holds.

The long exact sequence of the pair (W,∂W ) with Q coefficients gives

0→ H1(W )→ H1(∂W )→ H2(W,∂W )→ H2(W ),

with the last map given in appropriate bases by the matrix of the intersection
pairing. The claim follows immediately.

Combining these claims, we obtain an upper bound for the second Betti number
b2(W ). The Euler characteristic of W is χ(W ) = 1− b1(W ) + b2(W ). This gives

b2(W ) = b1(W )− 1 + 2(p+ n)− k + 2

= 2(p+ n) + 1− k + b1(W )

≤ 2(p+ n) + 1− k + η(L).

We proceed to calculate the signature σ(W ). This is done exactly as in [6]. For
the reader’s convenience we repeat the argument.

Claim. The signature of W is σ(W ) = −2n+ σ(L).
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We pick a connected Seifert surface F−L of the link −L with interior pushed into

−D4. Glue to obtain a closed 4-manifold (C̃, F ) := (C,∆)∪(S3,L) (−D4, F−L). We

consider the double cover W̃ = Σ2(C̃, F ) of C̃ branched along F . This manifold

has a decomposition W̃ = W ∪Σ2(L) XL, where XL is the double cover Σ2(F−L)

of −D4 branched along F−L. By [31, 14] the signature of XL is −σ(L), and by
Novikov additivity [1], we have

σ(W̃ ) = σ(W ) + σ(XL).

Furthermore the G-signature theorem [1, 9] allows us to express σ(Σ2(C̃, F )) as

σ(W̃ ) = 2σ(C̃)− 1

2
([F ] · [F ])

The self-intersection of F is [F ] · [F ] = −4p; this is because each intersection point
in the original immersed disks is replaced by two fibres of the disk bundle over S2

which is the punctured CP2 used to resolve the singularity, and these two disks
have the same orientation in the case of a positive double point and opposite in
the case of a negative double point. Thus [F ] has twice the generator of the second

homology of this punctured CP2 as a summand in the case of a positive double
point, and zero times this generator otherwise. We obtain the equations

σ(W )− σ(L) = 2(σ(C̃) + p) = 2(σ(C) + p) = −2n

⇒ σ(W ) = −2n+ σ(L).

The existence of p + n pairwise disjoint spherical classes x1, . . . , xp+n of square
−2 follows as in [23, Theorem 2.2] from the fact that the double cover of a disk
bundle with Euler number −1 branched along two fibres is a disk bundle of Euler
number −2. It remains to see that their images in H2(W ;Z)/Tors span a primitive
sublattice. Let α ∈ H2(W ;Z) and

mα =
∑

bixi + β,

where β is a torsion class and m a nonzero integer. Denote the induced map in
homology of the double branched cover by π : H2(W ;Z) → H2(C;Z). The classes
π(xi) are pairwise orthogonal of square −1. Thus we obtain

π(mα) · π(xi) = −bi
and therefore m divides each bi. �

Proof of Theorem 1. Suppose as in the theorem that L is an oriented k-component
link in S3 with signature σ and nullity η, and that L bounds a properly normally
immersed union of k oriented disks in the four-ball with p positive double points
and n negative double points.

By Proposition 2.3 there exists a smooth 4-manifold W bounded by Y = Σ2(L)
with

2(p+ n) + 1− k + η ≥ b2(W ) ≥ −σ(W ) = 2n− σ.
This inequality in fact recovers (1), and equality in (1) thus proves that W is
negative-definite. Proposition 2.3 also tells us that the inclusion of Y into W
induces an isomorphism H1(W ;Q) ∼= H1(Y ;Q), and of the existence of p + n
disjoint spheres of self-intersection −2 whose images in H2(W ;Z)/Tors span a
primitive sublattice. �
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Proof of Corollary 3. Recall that a link diagramD determines two Goeritz matrices
G and G′ (see [10] for details and Section 4 for an example). It is shown in [10]
that these are the intersection forms of the double covers of D4 branched along
the pushed-in black surface coming from either of the two chessboard colourings
of the regions of S2 \D; denote these simply-connected 4-manifolds by X and X ′.
The union X ∪ −X ′ = Σ2(S4, F ) of these Gordon-Litherland manifolds is equal
to the double cover of S4 = D4 ∪ −D4 branched along the surface F obtained
by pushing one of these surfaces into each hemisphere of the 4-sphere. A local
argument at the crossings shows that if D is alternating then ±Σ2(S4, F ) is a
connected sum of CP2’s, with one summand for each crossing (the union of black
and white subsurfaces in the neighbourhood of a crossing gives a punctured RP2,
whose double branched cover is a punctured ±CP2; all signs are the same if the
diagram is alternating).

Thus for an alternating diagram one of the Goeritz matrices is positive-definite
and the other is negative-definite. This recovers the well-known fact that the
nullity of a nonsplit alternating link is zero, since the Goeritz matrices present
H1(Σ2(L);Z).

Now suppose L satisfies the hypotheses of the Corollary and that X is the
positive-definite Gordon-Litherland manifold associated to an alternating diagram
of L, with intersection lattice Λ = (H2(X;Z), G) of rank m. By Theorem 1, Σ2(L)
bounds a negative-definite manifold W with b2(W ) = 2n − σ, and with a prim-
itive sublattice of H2(W ;Z)/Tors spanned by p + n pairwise orthogonal classes
of square −2. Gluing X to −W by a diffeomorphism of their boundaries gives a

smooth closed positive-definite manifold X̃.

By Donaldson’s diagonalisation theorem [8] we know that (H2(X̃;Z)/Tors, QX̃)

is isometric to the standard integer lattice Z = Zm+2n−σ. Now the Mayer-Vietoris
exact sequence shows that we have an inclusion

Λ⊕ (H2(−W ;Z)/Tors, Q−W ) ⊂ Z,

as required. �

We also note the following generalisation of [14, Corollary 3.21, second inequality]
and [16, Corollary 3]. The lower bound on the number of double points also follows
easily from Lemma 2.2. The case of links with nullity zero is given in [15, Corollary
4.3], and indeed the case of nonzero nullity may also be derived from results in [15].

Lemma 2.4. Let L be a k-component link L in S3 with nullity η. Then

c∗(L) ≥ k − 1− η.

If c∗(L) ≤ k − 1, then detL = 2k−1c2 for some c ∈ Z.

Proof. From Proposition 2.3 there exists a smooth 4-manifold W bounded by Y =
Σ2(L) with

2c∗(L)− (k − 1− η) ≥ b2(W ) ≥ c∗(L).

This yields the lower bound on c∗(L). If the nullity η is nonzero then the deter-
minant is zero. If c∗(L) = k − 1 and η = 0, we find b2(W ) = c∗(L) and, again
from Proposition 2.3, H2(W ;Z) has a basis of pairwise orthogonal classes with
self-intersection −2. It follows that the absolute value of the intersection form on
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H2(W ;Z) is 2k−1. From the long exact sequence in cohomology of the pair (W,Y )
we see that

detL = |H2(Y ;Z)| = 2k−1c2,

where c is the order of the image of the torsion subgroup of H2(W ;Z) in H2(Y ;Z).
�

It is also useful to generalise another basic observation of Kohn [16, inequality
(1)]. This may be used recursively.

Lemma 2.5. Let L = A∪B be an oriented link in S3 which is a union of sublinks
A and B. Then

u(L) ≥ u(A) + u(B) + |lk(A,B)| ,
where lk(A,B) denotes the linking number between A and B, and

c∗(L) ≥ c∗(A) + c∗(B) + |lk(A,B)| .

Proof. The first inequality follows since crossing changes involving only a sublink
A do not change the link type of B or the linking number between A and B,
and crossing changes involving both A and B change lk(A,B) by one and do not
change the link type of A or B. The second inequality also uses [23, Proposition
2.1] which tells us that immersed disks in D4 bounded by L are isotopic to a
concordance followed by crossing changes followed by a nullconcordance, and the
fact that linking number is a link concordance invariant. �

3. Linking forms and Heegaard Floer correction terms

In this section we recall some obstructions to a 3-manifold Y bounding a 4-
manifold with a given intersection form, with specific attention to the case that Y
is the double branched cover of a link in S3. For more details on this material see,
e.g., [21].

If M is an orientable manifold of dimension at most 4, then there is a free and
transitive action of H2(M ;Z) on the set Spinc(M) of spinc structures on M . For
the rest of this section we let Y be a rational homology 3-sphere, i.e., a closed
oriented 3-manifold with b1(Y ) = 0. There is then a natural inclusion of the set of
spin structures on Y into Spinc(Y ), and the spin structures are the fixed points of
the involution given by conjugation of spinc structures.

The ρ-invariant of Y (see for example [25]) is the function

ρ : Spinc(Y )→ Q/2Z

defined as follows. For each t ∈ Spinc(Y ) we choose a spinc 4-manifold (X, s) with
a fixed diffeomorphism ∂X ∼= Y taking s|∂X to t, and define

(2) ρ(Y, t) =
c1(s)2 − σ(X)

4
(mod 2).

This is well-defined due to Novikov additivity of the signature and the fact that for
any closed spinc 4-manifold (X, s) we have c1(s)2 ≡ σ(X) (mod 8). Also note that
this changes sign under orientation-reversal, i.e.,

ρ(−Y, t) = −ρ(Y, t).

Given an n× n matrix Q with integer entries, let

Char(Q) = {ξ ∈ Zn : ξi ≡ Qii (mod 2), i = 1, . . . n}.
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Then there is a free and transitive action of Zn on Char(Q) given by (x, ξ) 7→
ξ + 2x and correspondingly a free and transitive action of the group Zn/QZn on
Char(Q)/2QZn. The following proposition is proved in [21], and follows from the
fact that Chern classes of spinc structures on a 4-manifold X are characteristic
covectors for the intersection form of X, together with careful consideration of the
long exact sequence in cohomology of the pair (X, ∂X). It is also observed in [21]
that the ρ-invariant is a quadratic enhancement of the linking form, and that the
following obstruction to bounding Q is equivalent to that coming from the linking
form of Y .

Proposition 3.1. Suppose a rational homology 3-sphere Y is the boundary of a
smooth 4-manifold W with intersection form represented by an n × n matrix Q,
with |detQ| = δ.

Then the order of H = H2(Y ;Z) is δt2, and there exists a subgroup T < H of
order t and an affine monomorphism

φ : Char(Q)/2QZn → Spinc(Y )/T

which is equivariant with respect to the involutions coming from multiplication by
−1 on Char(Q) and conjugation of spinc structures, such that

ξTQ−1ξ − σ(Q)

4
≡ ρ(Y, t) (mod 2)(3)

for all ξ ∈ Char(Q) and t ∈ φ([ξ]).

In [25], Ozsváth and Szabó associate a rational number d(Y, t), called a correction
term, to each spinc structure t on Y . They showed that the reduction of d(Y, t)
modulo 2 is ρ(Y, t), and also that the correction terms give additional constraints
on negative-definite spinc manifolds bounded by (Y, t). These constraints give rise
to the following refinement of Proposition 3.1, which is proved in [22, Theorem 2.2].

Proposition 3.2. Suppose a rational homology 3-sphere Y is the boundary of a
smooth 4-manifold W with negative-definite intersection form represented by an
n× n matrix Q, with |detQ| = δ.

Then the order of H = H2(Y ;Z) is δt2, and there exists a subgroup T < H of
order t, and a Z/2Z-equivariant affine monomorphism

φ : Char(Q)/2QZn → Spinc(Y )/T

satisfying

ξTQ−1ξ + n

4
≤ d(Y, t)(4)

and
ξTQ−1ξ + n

4
≡ d(Y, t) (mod 2)(5)

for all ξ ∈ Char(Q) and t ∈ φ([ξ]).

We note that in Propositions 3.1 and 3.2, the subgroup T is the image in
H2(Y ;Z) of the torsion subgroup of H2(X;Z) under the map induced by restriction
to the boundary. It is often helpful to consider the fixed points of the involutions
on Char(Q)/2QZn and Spinc(Y )/T . In particular each coset of Spinc(Y )/T which
contains a spin structure is such a fixed point, and from [22, Lemma 2.4] these are
the only fixed cosets unless there exists an element α in H2(Y ;Z)\T of order 4 with
2α ∈ T . In particular if the order of T is odd then each fixed coset in Spinc(Y )/T
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contains a spin structure. If Y = Σ2(L) is the double cover of a link in S3 then
there is a bijection due to Turaev [30] between quasi-orientations on L (orientations
up to overall reversal) and spin structures on Y . The following lemma is taken from
[7] and [18].

Lemma 3.3. Let t be the spin structure on Y = Σ2(L) associated to an orientation
on a link L in S3, and let σ(L) be the signature of L with the same orientation.
Then

ρ(Y, t) ≡ −σ(L)/4 (mod 2).

If L is nonsplit and alternating, or indeed quasi-alternating, then

d(Y, t) = −σ(L)/4.

Proof. Let X be the double cover of D4 branched along a pushed-in Seifert surface
F for the oriented link L. By [7, Proposition 3.3] there is a unique spin structure
s on X, and the restriction of s to Y is t. By [14, Lemma 1.1] or [31] the signature
of X is equal to the signature of the oriented link. The formula for the ρ-invariant
then follows from (2) since the first Chern class of the spin structure s is zero.

The equality for quasi-alternating links is proved in [18]. �

4. Examples

In this section we will complete Kohn’s table of unlinking numbers for two-
component links with crossing number 9 or less by showing that each of

92
3 = L9a30, 92

15 = L9a15, 92
27 = L9a17, 92

31 = L9a2, 92
36 = L9a10

has unlinking number 3. In fact we will show that none of them bound a pair of
normally properly immersed disks in the 4-ball with two double points. Each of
these may be unlinked by changing 3 crossings in their minimal diagrams, as may
be readily seen from Figures 1 and 2.

4.1. The links L9a2, L9a15, L9a17, L9a30. The following lemma implies the
statement in Example 2.

Lemma 4.1. For any oriented link in S3, half the absolute value of the signature
is a lower bound for the 4-ball crossing number.

Let L be a 2-component link in S3. Suppose that H = H2(Σ2(L);Z) is finite
cyclic. If c∗(L) < 3, then at least one of the following hold:

(i) det(L) = 2t2, or
(ii) det(L) is divisible by 4, and at least one of the signatures of L has absolute

value 1, or
(iii) det(L) is divisible by 16.

Proof. The well-known fact that the 4-ball crossing number is bounded below by
half of the absolute value of the signature follows as in the proof of Lemma 2.2,
since signature is a concordance invariant and changes by at most 2 when a crossing
changes, and since the signature of the unlink is zero.

Now suppose L is a 2-component link and H = H2(Σ2(L);Z) is finite cyclic.
Since H is finite, the nullity of L is zero. It follows from Lemma 2.1 that for any
orientation of L, the signature σ is odd. Thus if c∗(L) < 3 then the signatures of
L, for either quasi-orientation, are elements of S = {−3,−1, 1, 3}.

By assumption, the link L bounds a normally immersed pair of disks in D4 with
p positive and n negative double points, with p+ n = 2 (if c∗(L) < 2 we introduce
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L9a2 L9a15

L9a17 L9a30

Figure 1. The links L9a2, L9a15, L9a17, and L9a30.

extra double points). We claim that after possibly reflecting and for some choice
of orientation, we have equality in (1). This is immediate if L has signature −3,
and if L has signature 3 then we can reflect. If L has signature 1, then n ≥ 1 by
Lemma 2.2. Thus either p = 0 and we have equality in (1) for L or p = 1 and we
have equality in (1) for −L.

Assume then that L is oriented with equality in (1). By Theorem 1, Y = Σ2(L)
bounds a 4-manifold W whose intersection form, in some basis, is given by

Q =

−a b c
b −2 0
c 0 −2

 .

Since this is negative-definite and presents a finite cyclic group, we may assume
after change of basis that either a = b = 1 and c = 0, or b = c = 1 and a > 1.
In the first case Q has determinant −2. From the long exact sequence of the pair
(W,Y ) we conclude that H has order 2t2 for some integer t (for more details see
for example [22, Lemma 2.1]).

Now suppose that the intersection matrix of W is represented by

Q = Qa =

−a 1 1
1 −2 0
1 0 −2

 ,
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for some a > 0. This presents Z/(4a− 4)Z. It follows that H has order (4a− 4)t2

for some integer t; in particular det(L) is divisible by 4. If t is even then det(L)
is divisible by 16. Suppose instead that t is odd. It follows from [22, Lemma 2.4]
that both cosets of Spinc(Y )/T which are fixed under the involution coming from
conjugation in fact contain a spin structure. Thus we can combine Proposition
3.1 and Lemma 3.3 to compute the signatures of L using Q. Fixed points of the
involution on Char(Q)/2Q(Zn) are given by characteristic covectors ξ with

ξ = −ξ + 2Qx,

or in other words ξ = Qx for some x ∈ Zn. There are two such cosets for Qa: if a is
odd they are represented by (1,−2, 0) and (1, 0,−2), both with square ξTQ−1

a ξ =
xTQax = −2, and if a is even they are represented by (0, 0, 0) with square 0 and
(2,−2,−2) with square −4. Thus by Proposition 3.1 if a is odd then the spin
structures on Y both have ρ-invariant (−2 + 3)/4 = 1/4 and if a is even their
ρ-invariants are 3/4 and −1/4. In either case we find that at least one of the
signatures of L has absolute value 1. �

The double branched cover of the link L9a30 has cyclic second cohomology group
of order 30. The links L9a2, L9a15, and L9a17 all have signature σ = −3 for
both choices of orientation, possibly after reflecting, and H2(Σ2(L);Z) ∼= Z/40Z.
Applying Lemma 4.1 we conclude that each has u(L) = c∗(L) = 3.

4.2. The link L9a10 using Donaldson’s diagonalisation theorem. We take
L to be the link L9a10, oriented and reflected so that the signature is 1.

Figure 2. The link L9a10, with orientation and chessboard
colouring. The link on the left has signature −1; its mirror on
the right has signature 1.

First consider the link −L as in the first diagram of Figure 2, which has signature
−1. Using the chessboard colouring shown in the figure and following [10], the
Goeritz matrix is  5 −1 −1

−1 4 −2
−1 −2 4

 .
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Applying (1) to −L leaves two possibilities: a normally immersed pair of disks in
D4 bounded by −L may have one double point of each sign, or two positive double
points. There are 4 embeddings of the Goeritz lattice Λ into the standard integer
lattice Z6, up to automorphisms of Λ and Z6. These can be found by hand; they
can also be found using the OrthogonalEmbedings command in GAP [12] which
implements an algorithm due to Plesken [27]. The complete list is as follows:

{2e1 + e2,−e2 + e3 + e4 + e5,−e2 − e3 − e4 − e5},
{2e1 + e2,−e1 + e2 + e3 + e4,−e2 − e3 + e5 + e6},
{e1 + e2 + e3 + e4 + e5, e1 − e2 − e3 + e6,−e1 + e2 − e3 − e6},
{e1 + e2 + e3 + e4 + e5, e1 − e2 − e3 + e6,−e1 + e4 − e5 − e6}.

None of these has a pair of orthogonal square two vectors in the orthogonal com-
plement. Corollary 3 then implies we do not have p = n = 1. Thus if −L bounds
a pair of immersed disks in the 4-ball with two double points then they must both
be positive.

We now consider L, as in the second diagram of Figure 2, with signature 1.
Reflecting, we see from the preceding paragraph that if L bounds a pair of immersed
disks in the 4-ball with two double points then both are negative, so that we again
have equality in (1). The Goeritz matrix is

2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 3 −1 0 0
0 0 −1 3 −1 −1
−1 0 0 −1 3 0
0 0 0 −1 0 2


and the complete list of embeddings in Z9 is

{e1 + e2,−e2 + e3,−e3 + e4 + e5,−e5 + e6 + e7,−e1 − e4 + e5,−e7 + e8},
{e1 + e2,−e2 + e3,−e3 + e4 + e5,−e5 + e6 + e7,−e1 − e7 + e8,−e4 + e5},
{e1 + e2,−e2 + e3,−e3 + e4 + e5,−e5 + e6 + e7,−e1 − e7 + e8,−e6 + e9},
{e1 + e2,−e2 + e3,−e3 + e4 + e5,−e5 + e6 + e7,−e1 − e7 + e8,−e7 − e8},
{e1 + e2,−e2 + e3,−e1 + e2 + e4,−e4 + e5 + e6,−e2 − e3 + e4,−e5 + e7}.

Each of the first four do not admit a pair of orthogonal square two vectors in the
orthogonal complement. The last embedding is immediately seen to have image in
Z7, with orthogonal complement in Z9 isomorphic to

〈3〉 ⊕ Z2,

which does contain a pair of orthogonal square two vectors. However these span a
finite-index sublattice of Z2 which is not primitive. We conclude from Corollary 3
that L does not bound a pair of immersed disks in D4 with two double points, and
that u(L) = 3.

4.3. The link L9a10 using Heegaard Floer correction terms. The determi-
nant of L = L9a10 is 48, and the double branched cover has cyclic homology group.
As in the argument above using Donaldson’s theorem, we apply Theorem 1 to both
−L, which has signature −1 for either quasi-orientation, and to L which has both
signatures equal to 1. We begin by arguing as in the proof of Lemma 4.1. We
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need to obstruct both Y = Σ(L) and −Y from bounding a 4-manifold W with
intersection form represented by the matrix

Qa =

−a 1 1
1 −2 0
1 0 −2

 .

This has determinant 4a − 4. If it is bounded by ±Y then 4a − 4 divides 48 with
quotient a square from which it follows that a is either 4 or 13. The ρ-invariants of
the spin structures of ±Y are both ∓1/4 by Lemma 3.3. This obstructs −Y from
bounding Q4 and it obstructs Y from bounding Q13, as in the proof of Lemma
4.1: if a rational homology sphere M with cyclic homology group bounds Q4 then
at least one of the spin structures of M has ρ-invariant in {−1/4, 3/4}, and if M
bounds Q13 then at least one of its spin structures has ρ-invariant 1/4.

We complete the proof by using ρ-invariants to show that −Y cannot bound Q13,
and by using d-invariants to show that Y cannot bound Q4. To do this we need to
compute the d-invariants of Y , which also give the ρ-invariants by reducing modulo
2. The entire set of correction terms of the double branched cover of a nonsplit
alternating link can be obtained, using a computer, from the Goeritz matrix of the
link as in [26]. We briefly recall how to do this.

Given a negative-definite symmetric integer matrix G = (gij), we partition the
set of characteristic covectors ξ = (ξ1, . . . , ξn) with gii ≤ ξi < −gii into cosets of
Char(G)/2GZn, and use the Smith normal form of G to record the affine group
structure of Char(G)/2GZn. We also maximise the quantity (ξTQ−1ξ + n)/4 on
each of these finite sets of coset representatives; this gives a function

mG : Char(G)/2GZn → Q.

Proposition 3.2 can then be restated with the left hand side of inequality (4) re-
placed by mG([ξ]). By [26, Proposition 3.2], if G is the negative-definite Goeritz
matrix of a nonsplit alternating diagram of L, then in fact mG computes the correc-
tion terms of Σ2(L), or in other words, there is an isomorphism φ as in Proposition
3.2 with equality in (4).

In our case we find the correction terms of Y are, in cyclic order starting at a
spin structure,

−1

4
,

17

48
,

1

6
, −13

16
, − 7

12
, −55

48
, −1

2
, −31

48
,

5

12
,

11

16
,

1

6
, −55

48
,

−5

4
, − 7

48
,

1

6
, − 5

16
,

5

12
,

17

48
, −1

2
, − 7

48
, − 7

12
,

3

16
,

1

6
, −31

48
,

−1

4
, −31

48
,

1

6
,

3

16
, − 7

12
, − 7

48
, −1

2
,

17

48
,

5

12
, − 5

16
,

1

6
, − 7

48
,

−5

4
, −55

48
,

1

6
,

11

16
,

5

12
, −31

48
, −1

2
, −55

48
, − 7

12
, −13

16
,

1

6
,

17

48


.

If we compute the full ρ-invariant of Q = Q13, for example by computing mQ

as above (though in fact to compute the ρ-invariant one just needs an arbitrary
representative from each coset of Char(Q)/2QZn), we find that for ξ = (3, 2, 0) we
have mQ([ξ]) = −1/12. Since the reduction modulo 2 of the d-invariants gives the
ρ-invariants of Y , we see that 1/12 is not the ρ-invariant of any spinc structure on
Y . By Proposition 3.1 we conclude that −Y does not bound Q13.
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Now consider the form Q = Q4. Computing as above we find the values of mQ

are, in cyclic order starting at a fixed point of the involution on Char(Q)/2QZ3,{
−1

4
,

1

6
, − 7

12
, −1

2
,

5

12
,

1

6
,

3

4
,

1

6
,

5

12
, −1

2
, − 7

12
,

1

6

}
.

There is a unique affine monomorphism φ from Char(Q)/2QZ3 to Spinc(Y )/(Z/2Z)
satisfying the conditions of Proposition 3.1. Labelling the second list above from 0
to 11 and the list of d-invariants from 0 to 47, the only possibility is

φ : i 7→ {2i, 2i+ 24 (mod 48)}.
This however (just!) fails to satisfy (4) since 3/4 > −5/4.

We conclude that in fact Y does not bound Q4, and that u(L) = c∗(L) = 3.

5. Unlinking numbers of prime links with 9 crossings or less

Table 1 contains the unlinking numbers and 4-ball crossing numbers of all prime
nonsplit links with crossing number 9 or less and with more than one component.
Unknotting numbers and 4-ball crossing numbers of prime knots with 9 or fewer
crossings are available from [4].

With the exception of the links in Examples 2 and 4, the unlinking numbers
were known previously due to work of Kauffman-Taylor, Kohn, Kawauchi, and
Borodzik-Friedl-Powell [14, 16, 15, 3], and in many cases these were also known to
be equal to the 4-ball crossing number.

For all links in the table, the unlinking number is realised by changing a subset
of the crossings in the minimal diagram given in [2]. That the minimal number of
crossings in each case is equal to the 4-ball crossing number follows from applying
one or more of the results in this paper.

The required lower bound is provided by Lemma 2.4 for the links L5a1, L6a4,
L7a1, L7a3, L7a4, L7a6, L8a1, L8a8, L8a9, L8a16, and L9aN for

N ∈ {1, 3, 4, 8, 9, 18, 20, 21, 22, 25, 26, 27, 35, 38, 40, 42}.
The bound comes from Lemma 2.2 for L9a14, L9a29 and L9a36, and from Lemma
4.1 for L9a2, L9a15, L9a17, and L9a30. The bound for L9a10 is obtained in Section
4. For all remaining links in the table the required bound may be obtained using
Lemma 2.5.

The fact that the invariants c∗(L) and u(L) coincide in this table is due to the
small crossing number restriction. There are nontrivial nonsplit prime slice links
with 10-crossing diagrams (for example L10n32 and L10n36 in [5, 2]) for which
these invariants will clearly differ.
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Link L u(L)

L2a1 1
L4a1 2
L5a1 1
L6a1 2
L6a2 3
L6a3 3
L6a4 2
L6a5 3
L6n1 3
L7a1 2
L7a2 3
L7a3 2
L7a4 2
L7a5 1
L7a6 2
L7a7 3
L7n1 3
L7n2 1
L8a1 2
L8a2 1
L8a3 3
L8a4 1
L8a5 3
L8a6 2
L8a7 3
L8a8 2
L8a9 2
L8a10 3
L8a11 3
L8a12 4
L8a13 4
L8a14 4
L8a15 3

Link L u(L)

L8a16 3
L8a17 4
L8a18 4
L8a19 2
L8a20 4
L8a21 4
L8n1 3
L8n2 1
L8n3 4
L8n4 4
L8n5 2
L8n6 4
L8n7 4
L8n8 4
L9a1 2
L9a2 3
L9a3 2
L9a4 2
L9a5 3
L9a6 4
L9a7 3
L9a8 2
L9a9 2
L9a10 3
L9a11 3
L9a12 4
L9a13 3
L9a14 3
L9a15 3
L9a16 3
L9a17 3
L9a18 2
L9a19 2

Link L u(L)

L9a20 2
L9a21 1
L9a22 2
L9a23 4
L9a24 2
L9a25 2
L9a26 2
L9a27 1
L9a28 4
L9a29 3
L9a30 3
L9a31 2
L9a32 4
L9a33 3
L9a34 2
L9a35 2
L9a36 3
L9a37 2
L9a38 1
L9a39 2
L9a40 2
L9a41 2
L9a42 2
L9a43 4
L9a44 4
L9a45 3
L9a46 2
L9a47 3
L9a48 4
L9a49 4
L9a50 3
L9a51 4
L9a52 3

Link L u(L)

L9a53 2
L9a54 3
L9a55 4
L9n1 3
L9n2 2
L9n3 1
L9n4 4
L9n5 2
L9n6 2
L9n7 3
L9n8 2
L9n9 3
L9n10 2
L9n11 2
L9n12 4
L9n13 1
L9n14 2
L9n15 4
L9n16 4
L9n17 2
L9n18 4
L9n19 4
L9n20 4
L9n21 4
L9n22 4
L9n23 3
L9n24 3
L9n25 2
L9n26 3
L9n27 1
L9n28 3

Table 1. Unlinking numbers and 4-ball crossing numbers of prime
nonsplit links with 9 or fewer crossings.
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perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, MA, 1986, pp. 159–180.

10. C. McA. Gordon and R. A. Litherland, On the signature of a link, Invent. Math. 47 (1978),

no. 1, 53–69.
11. Joshua Evan Greene, Donaldson’s theorem, Heegaard Floer homology, and knots with unknot-

ting number one, Adv. Math. 255 (2014), 672–705.

12. The GAP Group, GAP – Groups, Algorithms, and Programming, version 4.7.6, http://www.
gap-system.org, 2014.

13. Saori Kanenobu and Taizo Kanenobu, Oriented gordian distance of two-component links with
up to seven crossings, Journal of Knot Theory and Its Ramifications 24 (2015).

14. L. Kauffman and L. Taylor, Signature of links, Trans. Amer. Math. Soc. 216 (1976), 351–365.

15. A. Kawauchi, The Alexander polynomials of immersed concordant links, Bol. Soc. Mat. Mex.
(3) 20 (2014), no. 2, 559–578.

16. P. Kohn, Unlinking two component links, Osaka J. Math. 30 (1993), no. 4, 741–752.

17. R. Lee and S. Weintraub, On the homology of double branched covers, Proc. Amer. Math.
Soc. 123 (1995), no. 4, 1263–1266.

18. P. Lisca and B. Owens, Signatures, Heegaard Floer correction terms and quasi–alternating

links, Proc. Amer. Math. Soc. 143 (2015), no. 2, 907–914.
19. Duncan McCoy, Alternating knots with unknotting number one, arXiv:1312.1278, 12 2013.

20. K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117

(1965), 387–422.
21. B. Owens and S. Strle, Definite manifolds bounded by rational homology three spheres, Geom-

etry and topology of manifolds, Fields Inst. Commun., vol. 47, Amer. Math. Soc., Providence,
RI, 2005, pp. 243–252.

22. , Rational homology spheres and the four-ball genus of knots, Adv. Math. 200 (2006),

no. 1, 196–216.
23. , Immersed disks, slicing numbers and concordance unknotting numbers,

arXiv:1311.6702, 11 2013.

24. Brendan Owens, Unknotting information from Heegaard Floer homology, Adv. Math. 217
(2008), no. 5, 2353–2376.
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