
Chapter 1

Partial differentiation

1.1 Functions of one variable

We begin by recalling some basic ideas about real functions of one variable. For example, the volume V of
a sphere only depends on its radius r and is given by the formula

V = 4
3πr3.

We write V = f(r), where f(r) = 4
3πr3 to emphasise the fact that volume is a function f of the radius

(only). Two related ideas should also be recalled.

Domain In general, the domain D is the set of points at which the formula is to be calculated. In the
present example, since the radius should be real and cannot be negative, the domain consists of all non-
negative real numbers, [0,∞) (it is debatable whether or not 0 should be included or excluded but this is
not an important issue).

To be precise when we define a real function f , we should specify not only the formula but also its domain
D by writing f : D → R. If we do not specify the domain, we assume that the domain is the maximal domain,
that is the set of all points at which the formula makes sense. For the present example, f is defined by

f : [0,∞) → R, where f(r) = 4
3πr3.

If we were to say simply that f was defined by

f(r) = 4
3πr3,

then it would be assumed that the domain of f is the maximal domain which is R = (−∞,∞) since the
formula makes sense for all real numbers r.

Example 1.1 What is the maximal domain of the real function g defined by g(x) =
√

x2 + 3x + 2?
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Solution :

Answer: The maximal domain is (−∞,−2] ∪ [−1,∞). ¤

Graph In general, this is the set of all ordered pairs (a, f(a)) where a is a point in the domain. This
is usually shown as a curve in the cartesian plane. In the present example, the graph is the set of point
(r, 4

3πr3) for all r ≥ 0 and is illustrated in Figure 1.1.

Figure 1.1: Graph of f : D → R

The volume V of a cylinder, on the other hand, depends on two dimensions, the radius r and the height
h. In this case we might write V = g(r, h), where g(r, h) = πr2h defines a function of two variables. In the
next section we will extend the notions of domain and graph to functions of several variables.

1.2 Functions of several variables

We will only discuss the case of two variables but the main ideas are valid for any number of variables.
Let D be a subset of R2, that is, a region in a plane. A typical element of D is a point (x, y). A function

f : D → R is a rule which determines a unique real number z = f(x, y) for each (x, y) ∈ D. The graph of
g is the set of points (a, b, c) ∈ R3 such that (a, b) ∈ D and c = f(a, b). This is typically represented as a
surface in (three dimensional) space. Figure 1.2 illustrates this.
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Figure 1.2: Graph of f : D → R

Similar definitions exists for functions of any number of variables but the graph of a function of more
that two variables cannot be simply represented.

Remark As with real functions of one variable, we often don’t give the domain of a function f of several
variables explicitly; instead we assume that the domain of f is maximal.

Example 1.2 Determine the maximal domain of the function f defined by f(x, y) =
√

1− x2 − y2.

Solution :

Answer: D = {(x, y) : x2 + y2 ≤ 1}, which is the unit disk centre (0, 0). ¤

Aids to visualisation of surfaces

In several parts of this module, and in module 2Y, it will be important to be able to visualise a surface which
is either the graph of a function of two variables z = f(x, y) or, more generally, is a relation F (x, y, z) = 0.
We will here give several examples illustrating some useful techniques.
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Spheres

A sphere of radius r, centre (a, b, c) consists of those points (x, y, z) which are a distance r from (a, b, c).
Thus, by Pythagoras’s theorem, this sphere is defined by

(x− a)2 + (y − b)2 + (z − c)2 = r2.

Furthermore, if we solve for z we get

z = c±
√

r2 − (x− a)2 − (y − b)2.

Because of this, for any given a, b, c, the graph of a function f(x, y) = c +
√

r2 − (x− a)2 − (y − b)2 is the
“northern” hemisphere and f(x, y) = c −

√
r2 − (x− a)2 − (y − b)2 the corresponding “southern” hemi-

sphere.
Given an equation

x2 + y2 + z2 + αx + βy + γz + δ = 0,

one may always complete the square to write this in the form

(x + 1
2α)2 + (y + 1

2β)2 + (z + 1
2γ)2 =

1
4
(α2 + β2 + γ2)− δ

which defines a sphere if and only if 1
4 (α2 + β2 + γ2)− δ > 0.

Example 1.3 Sketch the graph of f(x, y) = −
√

1− 2x− x2 − y2.

Solution :

¤

Taking cross-sections

The plane x = constant is parallel to the yz-plane and may, or may not, have a non-empty intersection
with the surface F (x, y, z) = 0. This intersection is called a cross-section of the surface. Typically, this
cross-section will be a curve on the plane can give useful clues to the overall nature of the surface. Similarly,
we may take cross-section with the planes y = constant and z = constant.
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Figure 1.3: Graph of f(x, y) = −
√

1− 2x− x2 − y2

In particular, for a surface z = f(x, y), the cross-section with the plane z = c, where c is a constant, is
the curve f(x, y) = c and is called a level curve or contour. The second name is used because of the close
connection with contour lines on a map (lines linking points with the same height above sea-level). In this
analogy, z = f(x, y) represents part of the surface of the earth and each level curve represents a particular
contour line on a map.

For each choice of c the level curve is denoted Lc and is the set of points (x, y) in D for which f(x, y)
has the value c. For different choices of c, Lc may be a curve, a point or points, or the empty set. Note that
each point in the domain of f lies on a particular level curve.

Example 1.4 By considering the level curves and the cross-sections x = 0 and y = 0, obtain a sketch of
z =

√
x2 + y2.
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Solution :

Putting this information together, we see that the surface defined by z =
√

x2 + y2 is a (circular) cone
with vertex at (0, 0) (Figure 1.5).

¤

Planes

Recall that a plane with normal vector n = (α, β, γ) has equation αx + βy + γz = δ.

In particular, the graph of f(x, y) = ax+by+c is the plane z = ax+by+c with normal (a, b,−1) passing
through the point (0, 0, c). Observe that the cross-sections of a plane are either straight lines (or ∅.)

Example 1.5 Sketch the part of the surface

2x + y + 4z = 1,

where x, y, z ≥ 0.

6



Figure 1.4: Cross sections

Solution :

Answer: A sketch of the plane is shown in Figure 1.6. ¤
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Figure 1.5: The cone z =
√

x2 + y2

Figure 1.6: The plane 2x + y + 4z = 1

Other surfaces

Other standard surfaces are shown in Advanced Caclulus - Section 138.

1.3 Partial derivatives

In this section we want to generalise, to functions of several variables, the notion of gradient as it is understood
for functions of one variable. Recall that if the limit

lim
h→0

g(a + h)− g(a)
h

exists then this limit is called derivative of g at a. This is written as

dg

dx
(a) or g′(a),

and is the gradient of the tangent to the graph of g at a point (a, g(a)).
Now consider f , a function of two variables. On the surface z = f(x, y), there is no single meaning of

gradient. Imagine this surface to be a mountainside. When walking or skiing straight down the mountain
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Figure 1.7: Derivative of a function of one variable

the gradient may be very large but traversing the mountain the gradient is much less. Indeed by choosing
a direction one may make the gradient have any value in between. For this reason it is necessary to define
two gradients in terms of vertical cross-section of the surface in the x and y directions.

Figure 1.8: Gradients on cross-sections

As in Figure 1.8, consider a point (a, b, f(a, b)) on the surface. Taking the cross-sections x = a and
y = b through this point we obtain the graphs of two functions of one variable; z = f(x, b) = g(x) (say)
and z = f(a, y) = h(y) (say). For each of these functions we can (provided the derivatives exist) determine
gradients called the partial x and y derivatives of f at (a, b) and written as

∂f

∂x
(a, b) = derivative of f(x, y) w.r.t. x with y held constant, evaluated at (x, y) = (a, b). This equals g′(a).

and
∂f

∂y
(a, b) = derivative of f(x, y) w.r.t. y with x held constant, evaluated at (x, y) = (a, b). This equals h′(b).

For a function f of n variables x1, x2, . . . , xn we define n partial derivatives

∂f

∂xi
= derivative of f(x1, . . . , xn) w.r.t. xi with all other variables held constant.
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Remarks

1. It is important to distinguish the notation used for partial derivatives
∂f

∂x
from ordinary derivatives

df

dx
.

2. We also use subscript notation for partial derivatives. If f = f(x, y) then we may write

∂f

∂x
≡ fx ≡ f1, and

∂f

∂y
≡ fy ≡ f2.

In general, the notation fn, where n is a positive integer, means the derivative of f with respect to its
n-th argument, (with all other variables held constant). This notation is the direct analogue of the ′

notation for ordinary derivatives. Recall we can use the chain rule to calculate

d

dx
f(x2) = f ′(x2)

d

dx
(x2) = 2xf ′(x2).

Below we carry out similar calculations involving partial derivatives.

3. Like ordinary derivatives, partial derivatives do not always exist at every point. In this module we will
always assume that derivatives exist unless it is otherwise stated.

4. If z = f(x, y) then the partial derivatives ∂f
∂x and ∂f

∂y can be interpreted as the gradients of the tangent
lines to the surface z = f(x, y) in the directions parallel to the x− and y−axes, respectively.

Formal definition of Partial Derivative

Suppose f is a suitably well behaved function of three variables x, y, z. Then at (a, b, c),

∂f

∂x
= lim

h→0

f(a + h, b, c)− f(a, b, c)
h

.

This is by analogy with the definition of ordinary derivatives. Note how the y and z coordinates are
unaffected.

Example 1.6 Find
∂f

∂x
and

∂f

∂y
where

(a) f(x, y) = x3y2 + x, (b) f(x, y) = sin(x + xy).

Solution :
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(a)

Answer: fx = 3x2y2 + 1 and fy = 2x3y.

(b)

Answer: fx = (1 + y) cos(x + xy) and fy = x cos(x + xy). ¤

Example 1.7 Find
∂z

∂x
where z = sin−1

(
x

x + y

)
and x, y > 0.

[Note that sin−1 u is the inverse sine function (sometimes written as arcsin u), and not the reciprocal 1/ sin u.
The domain of sin−1 is [−1, 1] and, since x, y > 0, x/(x + y) lies in this domain.]
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Solution :

Answer: zx = y
x+y

1√
2xy+y2

. ¤

Example 1.8 Let u = f(r) where r2 = x2 + y2 + z2. Show that

xux + yuy + zuz = rf ′(r).
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Solution :

¤

See Advanced Caclulus - Section 87 for other examples of implicit partial differentiation.

1.4 Higher order derivatives

Let u be a function of several variables x, y, . . . . Then ux (if it exists) is also a function of the same variables
and so may also have partial derivatives. We define

∂2u

∂x2
=

∂

∂x
(ux) = uxx = u11,

∂2u

∂y∂x
=

∂

∂y
(ux) = uxy = u12,

∂2u

∂x∂y
=

∂

∂x
(uy) = uyx = u21,

∂2u

∂y2
=

∂

∂y
(uy) = uyy = u22, etc.

In general, uxyz... denotes the result of taking the x-derivative, then the y-derivative, then the z-derivative,
. . . of u. The total number of partial derivatives taken is called the order of the derivative. For example,
uxxy = u112 is a third order derivative.

There is no automatic guarantee that, for example, uxy = uyx but the following theorem (the proof
of which is omitted) states the conditions under which the order in which the derivatives are taken is
unimportant.

Theorem Let u be a function of x, y such uxy and uyx exist and are continuous at a point (a, b). [Roughly
speaking, this means that there are no hole or jump in the graphs of uxy and uyx at (a, b).] Then,

uxy(a, b) = uyx(a, b).
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Remarks

1. This result extends to functions of any number of variables and to third and higher order derivatives.
For example, let u depend on three variables then, provided these derivatives exist and are continuous,

u1213 = u3211 = u2113 = · · · = u1123.

2. Unless otherwise stated, functions considered in this module will be assumed to have continuous partial
derivatives of all orders. Hence the order in which we take partial derivatives will be unimportant.

Example 1.9 Determine all second order derivatives of u = sin xy and verify that uxy = uyx.

Solution :

Answer: The first derivatives are ux = y cosxy, uy = x cos xy. ¤

See Advanced Caclulus - Section 86 for other examples of the product rule in partial differentiation.

Example 1.10 Let u = f(x/y), where f is an arbitrary (twice differentiable, with continuous second deriva-
tive) function of one variable. Show that

xux + yuy = 0,

and deduce that

x2uxx + 2xyuxy + y2uyy = 0.
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Solution :

¤

1.5 The chain rule for functions of several variables

We have already made extensive use of the chain rule for functions of one variable. This is used to find the
derivative of a composition of functions; if F (x) = f(u(x)) then

dF

dx
=

du

dx

df

du
= u′(x)f ′(u(x)).

We now want to extend this technique to functions of several variables.

Theorem Let F (x, y) = f
(
u(x, y), v(x, y)

)
. Then

∂F

∂x
=

∂u

∂x

∂f

∂u
+

∂v

∂x

∂f

∂v
and

∂F

∂y
=

∂u

∂y

∂f

∂u
+

∂v

∂y

∂f

∂v
.

This is called the chain rule for functions of two variables.

Remarks
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1. Observe the pattern
∂F

∂x
=

∂u

∂x

∂f

∂u
+

∂v

∂x

∂f

∂v
,

[all terms on the right have ∂f on top and ∂x on bottom and ∂u or ∂v which “cancels”.]

2. The chain rule is extended in an obvious way to functions of any number of variables. For example, if
F (x, y, z) = f

(
u(x, y, z), v(x, y, z), w(x, y, z)

)
then

∂F

∂x
=

∂u

∂x

∂f

∂u
+

∂v

∂x

∂f

∂v
+

∂w

∂x

∂f

∂w
.

3. There are two special cases of this formula. First, the one variable chain rule that we used above; if
F (x, y) = f(u(x, y)) then

∂F

∂x
=

∂u

∂x

df

du
.

Second, if F (x) = f(u(x), v(x)) then

dF

dx
=

du

dx

∂f

∂u
+

dv

dx

∂f

∂v
.

Notice that the partial derivatives in the formula become ordinary derivatives wherever the function
being differentiated is a function of only one variable.

Example 1.11 Let w = u2 + v2 where u = sin θ and v = cos φ. Use the chain rule to calculate wθ and wφ

in terms of θ and φ.

Solution :

Answer: wθ = sin 2θ and wφ = − sin 2φ. ¤

1.6 Partial differential equations

A differential equation is a relation between an unknown function and its derivatives. Such equations are
extremely important in all branches of science; mathematics, physics, chemistry, biochemistry, economics,. . .

Typical example are

• Newton’s law of cooling which states that
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the rate of change of temperature is proportional to the temperature difference between it
and that of its surroundings.

This is formulated in mathematical terms as the differential equation

dT

dt
= k(T − T0),

where T (t) is the temperature of the body at time t, T0 the temperature of the surroundings (a
constant) and k a constant of proportionality,

• the wave equation,

∂2u

∂t2
= c2 ∂2u

∂x2
,

where u(x, t) is the displacement (from a rest position) of the point x at time t and c is the wave speed.

The first example has unknown function T depending on one variable t and the relation involves the first

order (ordinary) derivative
dT

dt
. This is a ordinary differential equation, abbreviated to ODE.

The second example has unknown function u depending on two variables x and t and the relation involves

the second order partial derivatives
∂2u

∂x2
and

∂2u

∂t2
. This is a partial differential equation, abbreviated to PDE.

The order of a differential equation is the order of the highest derivative that appears in the relation.

The unknown function is called the dependent variable and the variable or variables on which it depend
are the independent variables.

A solution of a differential equation is an expression for the dependent variable in terms of the independent
one(s) which satisfies the relation. The general solution includes all possible solutions and typically includes
arbitrary functions (in the case of a PDE.) A solution without arbitrary functions is called a particular
solution. Often we find a particular solution to a differential equation by giving extra conditions in the form
of initial or boundary conditions.

Example 1.12 Find the general solution of the PDE,

∂f

∂x
= x2 + y + 9,

where f is a function of two independent variables x and y.
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Solution :

Answer: ¤

Example 1.13 Find the general solution of the PDE,

∂2f

∂x∂y
= 2x,

where f is a function of two independent variables x and y.
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Solution :

Answer: ¤

Solutions to PDEs by change of variable

In this section certain first order PDEs will be solved by means of a change of variables. Although there is
a theory which may be used to determine the appropriate change of variable (see Mathematics 3H PDEs or
3S), in this module the change of variable will always be given.

We will make a change of independent variables from x, y to u, v (say). If z = z(x, y) and we introduce
new variables u = u(x, y), v = v(x, y) then the chain rule gives

∂z

∂x
=

∂u

∂x

∂z

∂u
+

∂v

∂x

∂z

∂v
.

More generally, this shows that for any expression ∗ that is to be thought of as a function of x, y or of u, v,

∂

∂x
(∗) =

∂u

∂x

∂

∂u
(∗) +

∂v

∂x

∂

∂v
(∗). (1)

This general form of the chain rule is useful when calculating second order derivatives.

Example 1.14 By changing variables from (x, y) to (u, v), where u = xy, v = x/y, solve the PDE

x
∂z

∂x
+ y

∂z

∂y
= 2x2 sin(xy).
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Solution Answer: z = −x
y cos(xy) + A

(
x
y

)
, where A is an arbitrary function. ¤

Example 1.15 By changing variables from (x, y) to (u, v), where u = x3/y, v = x, find ∂f
∂x and ∂f

∂y in terms
of parital derivatives with respect to u and v. Hence, solve the PDE

x
∂f

∂x
+ 3y

∂f

∂y
=

6x5

y
.

Solution Answer: f = − 3x5

y + A
(

x3

y

)
, where A is an arbitrary function. ¤
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