
Chapter 5

Line and surface integrals

5.1 Line integrals in two dimensions

Instead of integrating over an interval [a, b] we can integrate over a curve C. Such integrals are called line
integrals. They were invented in the early 19th century to solve problems involving forces, fluid flow and
magnetism.

Work Done We begin by recalling some basic ideas about work done. The work done W , by a variable
force f(x) in moving a particle from a point a to a point b along the x-axis is

W =
∫ b

a

f(x)dx =
∑

f(x)δx = Force × distance=Work.

We now generalise this idea to a particle moving a long a general curve C and this gives a line integral.

Suppose that the force is given by the vector F in the direction
⇀

PR pointing as shown in Figure 5.1. If

the force moves the object from P to Q, then the displacement vector is D =
⇀

PQ. The work done done by
this force is defined to be the product of the component of the force along D and the distance moved:

W = |D||F| cos θ = F ·D ,

Figure 5.1: The force acting in the
⇀

PQ direction is |F| cos θ

1



So then if r(t) = (x(t), y(t)) describes the parameterised curve C, it follows that dr is small step along
that curve and hence

W =
∫

C

F · dr = Force × distance .

The notation is as follows, dr = (dx, dy) and F = (P (x, y), Q(x, y)). For the purposes of this section we only
consider two dimensions, but this can easily be extended to higher dimensions. So in two dimensions the
work done by moving a particle along the curve C is:

∫

C

F · dr =
∫

C

P (x, y)dx + Q(x, y)dy ,

where P (x, y) is the force in the x direction and Q(x, y) is the force in the y direction.
It is usually helpful to parameterise the curve C using a parameter t, say. Starting with a plane curve C

the parametric equations are given by

x = x(t), y = y(t) a ≤ t ≤ b

thus, r(t) = x(t)i + y(t)j. So we can change variables on the line integral by writing dr = dr
dt dt. This gives

∫

C

F · dr =
∫ b

a

F(r(t))
dr
dt

dt =
∫ b

a

P (x(t), y(t))
dx

dt
dt +

∫ b

a

Q(x(t), y(t))
dy

dt
dt .

Example 5.1 Find the work done by the force F(x, y) = x2i − xyj in moving a particle along the curve
which runs from (1, 0) to (0, 1) along the unit circle and then from (0, 1) to (0, 0) along the y-axis (see
Figure 5.2).

Figure 5.2: Shows the force field F and the curve C. The work done is negative because the field impedes
the movement along the curve.
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Solution :

Answer: Workdone=-2/3. Notice the order of limits must reflect the direction along the curve. Work
done is negative because the force field impedes the movement along the cure. ¤
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Example 5.2 Evaluate the line integral
∫

C
(y2)dx+(x)dy, where C is the is the arc of the parabola x = 4−y2

from (−5,−3) to (0, 2)

Solution :

Answer: 245
6 . ¤

Remark When the curve C is something simple like a straight line then it is often easier to not parameterise
the curve and instead use

∫
C

F · dr =
∫

C
P (x, y)dx + Q(x, y)dy as it stands, as we shall see in the following

example.
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Example 5.3 Evaluate the line integral,
∫

C
(x2 + y2)dx + (4x + y2)dy, where C is the straight line segment

from (6, 3) to (6, 0).

Solution :

Answer: -81. ¤

5.2 Green’s Theorem

Green’s Theorem gives the relationship between a line integral around a simple closed curve C and a double
integral over the plane D bounded by C. (See Figure 5.4. We assume that D consists of all points inside C as
well as all points on C). In stating Green’s Theorem we use the convention that the positive orientation
of a simple closed curve C refers to moving round C in an anitclockwise direction. The region D is always
on the left as we move round C. (Warning: if you move round C in the clockwise direction you get negative
the integral you get when you go round in the anticlockwise direction).

Green’s Theorem in two dimensions

Theorem Let C be a positively oriented simple closed curve in the plane and let D be the region bounded
by C. If P (x, y) and Q(x, y) have continuous partial derivatives on an open region that contains D, then

∫

C

P (x, y)dx + Q(x, y)dy =
∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy .
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Figure 5.3: Closed curves C.

Example 5.4 Use Green’s Theorem to evaluate
∫

C
(3y− esin x)dx+(7x+

√
y4 + 1)dy, where C is the circle

x2 + y2 = 9.

Solution :

Answer:36π ¤

Example 5.5 Evaluate
∫

C
(3x− 5y)dx + (x− 6y)dy, where C is the ellipse x2

4 + y2 = 1 in the anticlockwise
direction. Evaluate the integral by (i) Green’s Theorem, (ii) directly.

6



Solution :

¤

5.3 Surface integrals

Consider a crop growing on a hillside S, Suppose that the crop yeild per unit surface area varies across the
surface of the hillside and that it has the value f(x, y, z) at the point (x, y, z). We may then ask what is the
total yield of the crop over the whole surface of the hillside, a surface integrals will give the answer to this
question.

Consider a small element of surface δS containing the point (x, y, z). Then assuming that f is well
behaved the contribution to the total crop from this small element of surface is f(x, y, z)δS. Summing over
all elements of surfave amd taking the limit as δS → 0 we obtain the surface integral of f over the surface
S. ∫ ∫

S

f(x, y, z)dS .
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Figure 5.4: Shows the surface S and the tangent plane.

Evaluating a surface integral

We need to relate δS to the area of an element at the base δxδy as shown in Figure ??. For a curved
surface this relationship changes with x and y. In the special case where the surface S can be expressed as
z = z(x, y), or r = (x, y, z(x, y)) the plane tangent to the surface at a point approximates a small piece of
surface very well. The vector tangent to the surface in the x-directions is rx = (1, 0, ∂z

∂x ). The vector tangent
to the surface in the y-direction is ry = (0, 1, ∂z

∂y ). The area of the tangent plane is then the area of the
plane with sides of length δx and δy and direction given by the two tangent vectors. The area is the area
of a parallelogram, with sides δxrx and δyry. The area of a parallelogram is given by the magnitude of the
cross product which is given by

δS ≈ |rxδx× ryδy| = |rx × ry|δxδy =
∣∣∣∣(−

∂z

∂x
,−∂z

∂y
, 1)

∣∣∣∣ δxδy =

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

δxδy

Rule for evaluating surface integrals

Using the above explanation we can replace dS by

√
1 +

(
∂z
∂x

)2
+

(
∂z
∂y

)2

δxδy in the surface integral

∫ ∫

S

f(x, y, z)dS =
∫ ∫

D

f(x, y, z)

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy ,

where D is the projection of S onto the xy-plane.

Example 5.6 Evaluate ∫ ∫

S

z2 dS

where S is the hemisphere given by x2 + y2 + z2 = 1 with z ≥ 0.
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Solution :

Answer: 2π/3. ¤

Remark A surface integral can also be used to calculate the area of a surface S.
∫ ∫

S

1 dS = Area of surface S

An intuition for this can be obtained be thinking about the crop analogy again. If the crop density is
1kg/square metre (f = 1), and the total crop is 65kg (

∫ ∫
S

1 dS = 65), then the area of the crop is 65 square
metres (Area of S=65).

Example 5.7 Find the area of the ellipse cut on the plane 2x + 3y + 6z = 60 by the circular cylinder
x2 = y2 = 2x.
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Solution :

Answer: 7π/6. ¤

Normal direction to a surface

In order to define surface integrals of vector fields, we need to consider orientable surfaces (2 -sided). The
mobius strip is an example of a nonorientable surface (1-sided). We use the normal to the surface to give
the surface orientation. The normal to the surface at a given point is the direction perpendicular to the
tangent plane at that point. There are two possible possible normals, one points in the opposite direction
to the other. So there are two possible orientations for any orientable surface (see Figure 5.5).

Figure 5.5: The two orientations of an orientable surface.
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Remarks

1. For a surface in the form f(x, y, z) = 0 the normal vector is given by

n =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

2. For a surface in the form z = z(x, y) the normal vector is given by

n =
(

∂z

∂x
,
∂z

∂y
, 1

)

This one follows from the fact that rx × ry is normal to the vectors rx and ry which lie in the tangent
plane (see section 5.3).

Examples

1. For the plane 2x + 7y + 3z = 50 we have f(x, y, z) = 2x + 7y + 3z − 50 = 0, so the normal is,

n =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (2, 7, 3)

as expected.

2. For the sphere x2 + y2 + z2− a2 = 0, the normal is, (2x, 2y, 2z) or (x, y, z) or (x/a, y/a, z/a) i.e. along
the radius vector from the centre of the sphere.

5.3.1 Surface integral of a vector field

Imagine a fluid flowing through a surface S. (Think of S as an imaginary fishing net, so it doesn’t impede
the flow). F is the force field and it is related to the velocity and density of the fluid flowing through the
surface. A measure of the total flux (flow) across the surface is given by

∫ ∫

S

F · n dS,

where n is the unit normal. F · n dS tells us the mass of fluid flowing across a region dS in the direction of
n.

Remark Some books use the alternative notation
∫ ∫

F · dS

for
∫ ∫

S
F · n dS. Notice in the alternative notation that dS is a vector.

5.4 Gauss’ Divergence Theorem

Gauss’ Divergence Theorem will help us calculate
∫ ∫

S
F ·n dS There are some similarities between Green’s

Theorem on R2 and Gauss’ Divergence Theorem in R3 in the following respects:

Green’s Theorem: Line integral round a boundary curve C of a closed region in R2=Double integral over
the enclosed 2-dimensional region.

Gauss’ Theorem: Surface integral over a boundary surface S of a closed region in R3=Triple integral over
the enclosed 3-dimensional region.
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Remark Note that for Green’s Theorem the curve must be a closed curve and for Gauss’ Theorem the
surface must be a closed surface. We will not prove Gauss’s theorem, but advanced books such as Stewart
Calculus contain proofs. Gauss’s Divergence Theorem is named after Gauss (1777-1855) who discovered it
during his work on electrostatics. In Eastern Europe the Divergence Theorem is known as Ostrogradsky’s
Theorem after the Russian mathematician who also discovered and published this result in 1826.

Result: Gauss’ Divergence Theorem

Let V be a closed bounded volume on R3 with boundary surface S, given with positive (outward) orientation.
Let F be a vector field whose component functions have continuous partial derivatives on an open region
containing V . Then ∫ ∫

S

F · n dS =
∫ ∫ ∫

V

div F dx dy dz ,

where n denotes the outward pointing unit normal at each point on the surface S.

Example 5.8 Use Gauss’ Divergence Theorem to evaluate

I =
∫ ∫

S

x4y + y2z2 + xz2 dS,

where S is the entire surface of the sphere x2 + y2 + z2 = 1.

Solution :

Answer: 4π/15. ¤
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Example 5.9 Find I =
∫ ∫

S
F · n dS where F = (2x, 2y, 1) and where S is the entire surface consisting of

S1=the part of the paraboloid z = 1−x2− y2 with z = 0 together with S2=disc {(x, y) : x2 + y2 ≤ 1}. Here
n is the outward pointing unit normal.

Solution :

Answer: 2π.

¤

13



5.5 Curvilinear line integrals in R3

In section 5.1 we considered line integrals of the form
∫

C
F ·dr where C was a curve in R2 this formula works

equally well in three dimensions. Take F = (P (x, y, z), Q(x, y, z), R(x, y, z)) and dr = (dx, dy, dz) and now
consider C as a curve in R3. This integral now represents the work done to move a particle along a cure in
R3.

Independence of path

If we consider two curves C1 and C2 (which are called paths) with the same initial point A and the same
end point B. We know that in general

∫
C1

F · dr 6= ∫
C2

F · dr. However when F = ∇φ for some continuous
scalar-valued function φ then we have

∫
C1

F · dr =
∫

C2
F · dr and we say that the line integral is path

independent.
When we can find a scalar-valued function φ such that F = ∇φ we say that F is a conservative

vector field and we denote φ as the potential function. The fact that F is conservative ensures the
independence of path and gives an integral that is related to the Fundamental Theorem of Calculus which
states

∫ b

a
F ′(x)dx = F (b) − F (a). In fact,

∫
C

F · dr =
∫

C
∇φ dr = φ(r(b)) − φ(r(a)), where r(t) is the

parameterised curve and the parameter t satisfies a ≤ t ≤ b.

Conservative vector fields

The grad of every smooth scalar field is a vector field. It is natural to ask whether all vector fields are the
grad of some scalar field. In general, the answer is “no”, but we can characterise those vector fields F for
which this is the case. If there exists a scalar field φ such that the vector field F = grad φ = ∇φ, we say that
F is conservative and φ is called a potential for F.

These names reflect an application of this notion in physics; a force (vector field) that does not expend
energy is said to be conservative and can be written as the gradient of a potential energy (scalar field).
Gravitational force is a conservative force, whereas friction is not.

We have already seen (See Example 4.12) that curl gradφ = 0 for all smooth scalar fields φ. This means
that if F = grad φ for some φ then curlF = 0. This is a necessary condition for F to be conservative (i.e. if
F is to be conservative then we must have curlF = 0). For a vector field that is defined everywhere then it
is also sufficient (i.e. if F is defined everywhere and curlF = 0 then F is conservative).

Example 5.10 Vector fields V and W are defined by

V = (2x− 3y + z,−3x− y + 4z, 4y + z)

W = (2x− 4y − 5z,−4x + 2y,−5x + 6z) .

One of these is conservative while the other is not. Determine which is conservative and denote it by F.
Find a potential function φ for F and evaluate

∫

C

F · dr ,

where C is the curve from A(1,0,0) to B(0,0,1) in which the plane x + z = 1 cuts the hemisphere given by
x2 + y2 + z2 = 1, y ≥ 0.
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Solution :

Answer: ¤
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