Chapter 5

Line and surface integrals: Solutions

Example 5.1 Find the work done by the force $\mathbf{F}(x, y) = x^2 \mathbf{i} - xy \mathbf{j}$ in moving a particle along the curve which runs from (1,0) to (0,1) along the unit circle and then from (0,1) to (0,0) along the *y*-axis (see Figure 5.1).

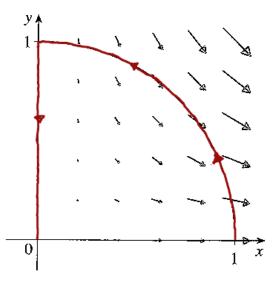


Figure 5.1: Shows the force field \mathbf{F} and the curve C. The work done is negative because the field impedes the movement along the curve.

Solution Split the curve C into two sections, the curve C_1 and the line that runs along the y-axis C_2 . Then,

$$W = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} \, .$$

Curve C_1 : Parameterise C_1 by $\mathbf{r}(t) = (x(t), y(t) = (\cos t, \sin t))$, where $0 \le t \le \pi/2$ and $\mathbf{F} = (x^2, -xy)$ and $d\mathbf{r} = (dx, dy)$. Hence,

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} x^2 dx - xy dy = \int_0^{\pi/2} \cos^2 t \frac{dx}{dt} dt - \int_0^{\pi/2} \cos t \sin t \frac{dy}{dt} dt = -\int_0^{\pi/2} 2\cos^2 t \sin t dt = -2/3,$$

by applying Beta functions to solve the integral where m = 2, n = 1 and K = 1.

Curve C_2 : Parameterise C_2 by $\mathbf{r}(t) = (x(t), y(t) = (0, t)$, where $0 \le t \le 1$. Hence,

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^{\pi/2} 0 \frac{dx}{dt} dt - \int_0^{\pi/2} 0 t \frac{dy}{dt} dt = 0.$$

3+0 = -2/3.

So the work done, W = -2/3 + 0 = -2/3.

Example 5.2 Evaluate the line integral $\int_C (y^2) dx + (x) dy$, where C is the is the arc of the parabola $x = 4 - y^2$ from (-5, -3) to (0, 2)

Solution Parameterise C by $\mathbf{r}(t) = (x(t), y(t) = (4 - t^2, t))$, where $-3 \le t \le 2$, since $-3 \le y \le 2$. $\mathbf{F} = (y^2, x)$ and $d\mathbf{r} = (dx, dy)$. Hence,

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C y^2 dx + x dy = \int_{-3}^2 t^2 \frac{dx}{dt} dt - \int_{-3}^2 (4 - t^2) \frac{dy}{dt} dt = \int_{-3}^2 -2t^3 + (4 - t^2) dt = 245/6.$$

Example 5.3 Evaluate the line integral, $\int_C (x^2 + y^2) dx + (4x + y^2) dy$, where C is the straight line segment from (6,3) to (6,0).

Solution : We can do this question without parameterising C since C does not change in the x-direction. So dx = 0 and x = 6 with $0 \le y \le 3$ on the curve. Hence

$$I = \int_C (x^2 + y^2)0 + (4x + y^2)dy = \int_3^0 24 + y^2dy = -81.$$

Example 5.4 Use Green's Theorem to evaluate $\int_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$, where C is the circle $x^2 + y^2 = 9$.

Solution $P(x,y) = 3y - e^{\sin x}$ and $Q(x,y) = 7x + \sqrt{y^4 + 1}$. Hence, $\frac{\partial Q}{\partial x} = 7$ and $\frac{\partial P}{\partial y} = 3$. Applying Green's Theorem where D is given by the interior of C, i.e. D is the disc such that $x^2 + y^2 \leq 9$.

$$\int_C (3y - e^{\sin x})dx + (7x + \sqrt{y^4 + 1})dy = \int \int_D (7 - 3)dxdy = \int_0^{2\pi} \int_0^3 4r drd\theta = \int_0^{2\pi} 18d\theta = 36\pi$$

The D integral is solved by using polar coordinates to describe D.

Example 5.5 Evaluate $\int_C (3x - 5y)dx + (x - 6y)dy$, where C is the ellipse $\frac{x^2}{4} + y^2 = 1$ in the anticlockwise direction. Evaluate the integral by (i) Green's Theorem, (ii) directly.

Solution (i) **Green's Theorem:** P(x, y) = 3x - 5y and Q(x, y) = x - 6y. Hence, $\frac{\partial Q}{\partial x} = 1$ and $\frac{\partial P}{\partial y} = -5$. Applying Green's Theorem where D is given by the interior of C, i.e. D is the ellipse such that $x^2/4 + y^2 \leq 1$.

$$\int_C (3x - 5y)dx + (x + 6y)dy = \int \int_D (1 - (-5))dxdy = 6 \int \int_D 1dxdy = 6 \times (\text{Area of the ellipse}) = 6 \times 2\pi A$$

See chapter 2 for calculating the area of an ellipse by change of variables for a double integral.

(i) **Directly:** Parameterise C by $x(t) = 2\cos t$, $y(t) = \sin t$, where $0 \le t \le 2\pi$.

$$I = \int_0^{2\pi} (6\cos t - 5\sin t) \frac{dx}{dt} dt + (2\cos t - 6\sin t) \frac{dy}{dt} dt$$
$$= \int_0^{2\pi} 18\cos t \sin t + 10\sin^2 t + 2\cos^2 t dt$$
$$= 0 + 40 \int_0^{\pi/2} \sin^2 t dt + 8 \int_0^{\pi/2} \cos^2 t dt$$
$$= 0 + 40 \frac{\pi}{2} (1/2) + 8 \frac{\pi}{2} (1/2) = 12\pi.$$

The integrals are calculated using symmetry properties of $\cos t$ and $\sin t$ and beta functions. Using the table of signs below we see that $\int_0^{2\pi} \sin^2 t = 4 \int_0^{\pi/2} \sin^t dt$ etc.

Quadrant	1	2	3	4	Total
$\cos t$	+	—	_	+	
$\sin t$	+	+	_	_	
$\cos t \sin t$	+	_	+	_	0
$\sin^2 t$	+	+	+	+	4
$\cos^2 t$	+	+	+	+	4

Example 5.6 Evaluate

$$\int \int_{S} z^2 \, dS$$

where S is the hemisphere given by $x^2 + y^2 + z^2 = 1$ with $z \ge 0$.

Solution We first find $\frac{\partial z}{\partial x}$ etc. These terms arise because $dS = \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} dxdy$. Since this change of variables relates to the surface S we find these derivatives by differentiating both sides of the surface $x^2 + y^2 + z^2 = 1$ with respect to x, giving $2x + 2z\frac{\partial z}{\partial x} = 0$. Hence, $\frac{\partial z}{\partial x} = -x/z$. Similarly, $\frac{\partial z}{\partial y} = -y/z$. Hence,

$$\sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} = \sqrt{1 + \frac{x^2}{z^2} + \frac{y^2}{z^2}} = 1/z.$$

Then the integrals becomes the following, where D is the projection of the surface, S, onto the x - y-plane. i.e. $D = \{(x, y) : x^2 + y^2 \le 1\}$.

$$\int \int_{S} z^{2} dS = \int \int_{D} z^{2} \frac{1}{z} dx dy$$
$$= \int \int_{D} \sqrt{1 - x^{2} - y^{2}} dx dy$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{1} \sqrt{1 - r^{2}} r dr$$
$$= -\int_{0}^{2\pi} d\theta \int_{1}^{0} \frac{1}{2} \sqrt{u} du$$
$$= \int_{0}^{2\pi} \frac{1}{3} d\theta$$
$$= 2\pi/3.$$

Example 5.7 Find the area of the ellipse cut on the plane 2x + 3y + 6z = 60 by the circular cylinder $x^2 = y^2 = 2x$.

Solution The surface S lies in the plane 2x+3y+6z = 60 so we use this to calculate $dS = \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} dx dy$. Differentiating the equation for the plane with respect to x gives,

$$2 + 6\frac{\partial z}{\partial x} = 0$$
 thus, $\frac{\partial z}{\partial x} = -1/3$.

Differentiating the equation for the plane with respect to y gives,

$$3 + 6\frac{\partial z}{\partial y} = 0$$
 thus, $\frac{\partial z}{\partial y} = -1/2$.

Hence,

$$\sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} = \sqrt{1 + \frac{1}{9} + \frac{1}{4}} = 7/6.$$

Then the area of S is found be calculating the suface integral over S for the function f(x, y, z) = 1. The the projection of the surface, S, onto the x - y-plane is given by $D = \{(x, y) : x^2 - 2x + y^2 = (x - 1)^2 + y^2 \le 1\}$. Hence the area of S is given by

$$\int \int_{S} 1dS = \int \int_{D} 1\frac{7}{6}dxdy$$
$$= \frac{7}{6} \int \int_{D} 1dxdy$$
$$= \frac{7}{6} \times \text{ Area of } D = \frac{7}{6}\pi.$$

Note, since D is a cricle or radius 1 centred at (1,0) the area of D is the area of a unit circle which is π . \Box

Example 5.8 Use Gauss' Divergence Theorem to evaluate

$$I = \int \int_{S} x^{4}y + y^{2}z^{2} + xz^{2} \, dS,$$

where S is the entire surface of the sphere $x^2 + y^2 + z^2 = 1$.

Solution In order to apply Gauss' Divergence Theorem we first need to determine **F** and the unit normal **n** to the surface S. The normal is $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = (2x, 2y, 2z)$, where $f(z, y, z) = x^2 + y^2 + z^2 - 1 = 0$. We require the unit normal, so $\mathbf{n} = (2x, 2y, 2z)/|(2x, 2y, 2z)| = (2x, 2y, 2z)/2 = (x, y, z)$. To find $\mathbf{F} = (F_1, F_2, F_3)$ we note that

$$\mathbf{F} \cdot \mathbf{n} = x^4 y + y^2 z 62 + x z^2$$
$$= F_1 x + F_2 y + F_3 z$$

Hence, comparing terms we have $F_1 = x^3y$, $F_2 = yz^2$ and $F_3 = xz$. Applying the Divergence Theorem noting that V is the volume enclosed by the sphere S gives

$$I = \iint \int_{S} \mathbf{F} \cdot \mathbf{n} dS = \iint \int \int_{V} \operatorname{div} \mathbf{F} dx dy dz$$

=
$$\iint \int \int_{V} 3x^{2}y + z^{2} + x dx dy dz$$

=
$$0 + \iint \int \int_{V} z^{2} dx dy dz + 0$$

=
$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \int_{0}^{1} r^{2} \cos^{2} \theta r^{2} \sin \theta dr$$

=
$$2\pi \iint \int_{0}^{\pi} \cos^{2} \theta \sin \theta d\theta \int_{0}^{1} r^{4} dr$$

=
$$2\pi \times 2 \times \frac{1 \cdot 1}{3 \cdot 1} \times 1 = \frac{4\pi}{15}.$$

Remarks

- 1. As V is a sphere it is natural to use spherical polar coordinates to solve the integral. Thus, $x = r \cos \phi \sin \theta$, $y = r \sin \phi \sin \theta$, and $z = r \cos \theta$ and $dx dy dz = r^2 \sin \theta$.
- 2. $\int \int \int_V 3x^2y dx dy dz = 0$ and $\int \int \int_V x dx dy dz = 0$ from the symmetry of the cosine and sine functions. We look at the signs in each quadrant as ϕ changes. Think about a fixed θ . $\cos \phi$ and $\sin \phi$ terms in x^2y and x then have the following signs

Quadrant	1	2	3	4	Total
$\cos\phi$	+	—	—	+	
$\sin\phi$	+	+	_	_	
x^2y	+	+	—	—	0
x	+	+	_	_	0

The positive and negative contribution from the integral cancel out in these two cases so the integrals are zero.

Example 5.9 Find $I = \int \int_S \mathbf{F} \cdot \mathbf{n} \, dS$ where $\mathbf{F} = (2x, 2y, 1)$ and where S is the entire surface consisting of S_1 =the part of the paraboloid $z = 1 - x^2 - y^2$ with z = 0 together with S_2 =disc $\{(x, y) : x^2 + y^2 \le 1\}$. Here **n** is the outward pointing unit normal.

Solution Applying the Divergence Theorem noting that V is the volume enclosed by S_1 and S_2 and div $\mathbf{F} = 2 + 2 + 0$ gives

$$\begin{split} I &= \int \int_{S} \mathbf{F} \cdot \mathbf{n} dS = \int \int \int_{V} \operatorname{div} \mathbf{F} dx dy dz \\ &= \int \int \int_{V} 4 dx dy dz \\ &= 4 \int \int_{\{(x,y:)x^{2}+y^{2} \leq 1\}} dx dy \int_{0}^{1-x^{2}-y^{2}} 1 dz \\ &= 4 \int \int_{\{(x,y:)x^{2}+y^{2} \leq 1\}} 1 - x^{2} - y^{2} dx dy \\ &= 4 \int_{0}^{2\pi} d\theta \int_{0}^{1} (1 - r^{2}) r \, dr \\ &= 4 \times 2\pi (1/2 - 1/4) = 2\pi. \end{split}$$

Example 5.10 Vector fields V and W are defined by

$$\mathbf{V} = (2x - 3y + z, -3x - y + 4z, 4y + z)$$
$$\mathbf{W} = (2x - 4y - 5z, -4x + 2y, -5x + 6z)$$

One of these is conservative while the other is not. Determine which is conservative and denote it by \mathbf{F} . Find a potential function ϕ for \mathbf{F} and evaluate

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

where C is the curve from A(1,0,0) to B(0,0,1) in which the plane x + z = 1 cuts the hemisphere given by $x^2 + y^2 + z^2 = 1, y \ge 0.$

 ${\bf Solution} \quad {\rm We \ have} \quad$

$$\operatorname{curl} \mathbf{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x - 3y + z & -3x - y + 4z & 4y + z \end{vmatrix}$$
$$= (0, 1, 0) \neq \mathbf{0}.$$

Since $\operatorname{curl} \mathbf{V} \neq \mathbf{0}$, **F** is **NOT** conservative.

We have

$$\operatorname{curl} \mathbf{W} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x - 4y - 5z & -4x + 2y & -5x + 6z \\ = (0, 0, 0) = \mathbf{0}. \end{vmatrix}$$

Since $\operatorname{curl} \mathbf{V} = \mathbf{0}$, \mathbf{F} is conservative.

Suppose that $\operatorname{grad} \phi = \mathbf{W}$. Then

$$\frac{\partial \phi}{\partial x} = 2x - 4y - 5z,\tag{1}$$

$$\frac{\partial\phi}{\partial y} = -4x + 2y,\tag{2}$$

$$\frac{\partial \phi}{\partial z} = -5x + 6z. \tag{3}$$

Integrating (1) with respect to x, holding the other variables constant, we get

$$\phi = \int_{y,z \text{ fixed}2x - 4y - 5z} dx = x^2 - 4yx - 5zx + A(y, z),$$

where A is an arbitrary function. Substituting this expression into (2) gives,

$$-4x + \frac{\partial A}{\partial y} = -4x + 2y$$
, i.e. $\frac{\partial A}{\partial y} = 2y$,

and therefore

$$A(y,z) = \int_{z \text{ fixed}} (2y) \, dy = y^2 + B(z),$$

where B is an arbitrary function, giving

$$\phi = x^2 - 4yx - 5zx + y^2 + B(z).$$

Finally, substituting this into (3) gives

$$-5x + \frac{dB}{dz} = -5x + 6z, \quad \text{i.e. } \frac{dB}{dz} = 6z,$$

so that $B = 3z^2 + C$, where C is a constant. Hence, by taking C = 0 we obtain a potential

$$\phi = x^2 - 4yx - 5zx + y^2x + 3z^2.$$

Remark Notice that the potential function is not unique; we may always add an arbitrary constant to a potential and it remains a potential.

So the line integral is:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \operatorname{div} \phi \cdot d\mathbf{r} = \phi(0, 0, 1) - \phi(1, 0, 0) = 3 - 1 = 2.$$