Chapter 5

Line and surface integrals: Solutions

Example 5.1 Find the work done by the force F(z,y) = 2%i — zyj in moving a particle along the curve

which runs from (1,0) to (0,1) along the unit circle and then from (0,1) to (0,0) along the y-axis (see
Figure 5.1).

Figure 5.1: Shows the force field F and the curve C'. The work done is negative because the field impedes
the movement along the curve.

Solution Split the curve C' into two sections, the curve C7 and the line that runs along the y-axis Cs.

Then,
W:/F-dr:/ F-dr+/ F-dr.
C Cq Cs

Curve Cy: Parameterise C; by r(t) = (z(t),y(t) = (cost,sint), where 0 < ¢ < 7/2 and F = (2%, —zy) and
dr = (dz,dy). Hence,

/2 dx /2 dy w/2
/ F.dr = / 2?dx — aydy = / cos? t—dt — / costsint—=dt = —/ 2 cos? tsintdt = —2/3,
C1 C 0 dt 0 dt 0



by applying Beta functions to solve the integral where m =2, n =1 and K = 1.

Curve Cy: Parameterise Cy by r(t) = (z(t),y(t) = (0,¢), where 0 < ¢ < 1. Hence,

w/2 w/2
/ F-dI':/ Od—xdt—/ Ot@dtzo.

So the work done, W = —2/3 +0 = —2/3. O

Example 5.2 Evaluate the line integral fc(yz)dx—i— (x)dy, where C is the is the arc of the parabola z = 4—y?
from (—5,—3) to (0,2)

Solution Parameterise C by r(t) = (#(t).y(t) = (4 — %), where =3 < ¢ < 2, since —3 < y < 2.
F = (y2,2) and dr = (dz, dy). Hence,

2 2 2
/F-dr:/dex+a:dy:/ th—mdt—/ (4—t2)@dt:/ —2t3 4 (4 — t?)dt = 245/6.
c c —3 dt -3 dt -3

Example 5.3 Evaluate the line integral, fc(x2 +y2)dx + (42 + y?)dy, where C is the straight line segment
from (6, 3) to (6,0).

Solution : We can do this question without parameterising C' since C' does not change in the z-direction.
So dx =0 and x = 6 with 0 <y < 3 on the curve. Hence

0
I:/($2+92)0+(4x+y2)dy=/ 24 + y2dy = —81.
c 3

Example 5.4 Use Green’s Theorem to evaluate [, (3y —e¥"*)dx + (7x + /y* + 1)dy, where C is the circle
2?2 4+y%=09.

Solution P(x,y) =3y — "% and Q(z,y) = 7Tx+ /y* + 1. Hence, % =7 and %_1; = 3. Applying Green’s
Theorem where D is given by the interior of C, i.e. D is the disc such that z2 + y2 < 9.

27 3 27
/ 3y — e ") dx + (To + Vy* + 1)dy = // (7 —3)dxdy = / / drdrdf = / 18d6 = 367
c D o Jo 0

The D integral is solved by using polar coordinates to describe D. O

Example 5.5 Evaluate [ (3z — 5y)dz + (z — 6y)dy, where C'is the ellipse 9”4—2 + 9% = 1 in the anticlockwise
direction. Evaluate the integral by (i) Green’s Theorem, (ii) directly.



Solution (i) Green’s Theorem: P(x,y) = 3z — by and Q(x,y) = = — 6y. Hence, % =1 and %—I; = —5.

Applying Green’s Theorem where D is given by the interior of C', i.e. D is the ellipse such that m2/4—|(—y2 <1.

/ (3z — 5y)dx + (x + 6y)dy = // (1 —(=5))dady = 6// 1dzdy = 6 x (Area of the ellipse) = 6 x 2.
c D D

See chapter 2 for calculating the area of an ellipse by change of variables for a double integral.

(i) Directly: Parameterise C' by x(t) = 2cost, y(t) = sint, where 0 < t < 2.

I= fgw(Gcost—E)sint)%dt—i—(2cost—651nt)%dt
= fo% 18 costsint + 10sin? t + 2 cos? tdt

= 0440 foﬂ/Q sin? tdt + 8 foﬂ/Q cos? tdt

= 0+40Z(1/2) +8Z(1/2) = 12r.

The integrals are calculated using symmetry properties of cost and sint¢ and beta functions. Using the table
of signs below we see that fo% sin?t =4 foﬁ/z sin® dt etc.

Quadrant 1 2 3 4 Total
cost + - - +
sint + + - -
costsint + — + — 0
sin’t  + + 4+ + 4
cos?t + 4+ + + 4

Example 5.6 Evaluate

//SszS

where S is the hemisphere given by 22 + y? + 22 = 1 with z > 0.

Solution We first find % etc. These terms arise because dS = \/1 + (%)2 + (g—i)Qdmdy. Since this
change of variables relates to the surface S we find these derivatives by differentiating both sides of the
surface 22 +y2 + 22 = 1 with respect to z, giving 2x + Zz% = 0. Hence, % = —x/z. Similarly, g—z = —y/z.
Hence,

0z 0z x2 2
\/14-(%)24'(8—?4)2: 1+?+§=1/z.



Then the integrals becomes the following, where D is the projection of the surface, S, onto the x — y-plane.

ie. D={(x,y): 2% +y> <1}
1
//z%lSz// 2% = dxdy
s D 2
:// V1 — 22 —y2dzdy
D

27 1
z/ d@/ V1 —r2rdr
0 0
27 0 1
:—/ d9/ —udu
0 1 2

27
1
:/ ~do
0o 9
= 2m/3.
O

Example 5.7 Find the area of the ellipse cut on the plane 2z + 3y 4+ 6z = 60 by the circular cylinder
2% =y? = 2z.

Solution The surface S lies in the plane 22+3y+62z = 60 so we use this to calculate dS = \/1 + (%)2 + (g—;)dedy.

Differentiating the equation for the plane with respect to x gives,
0z 0z
24+6— =0 thus, — = —1/3.
ox ox /
Differentiating the equation for the plane with respect to y gives,
0z

0z
3+6— =0 thus, — = —1/2.
+ ay us, oy /

0 0 1 1
\/1+<a—§>2+<8—;>2=\/1+§+1:7/6.

Then the area of S is found be calculating the suface integral over S for the function f(z,y,z) = 1. The the
projection of the surface, S, onto the z — y-plane is given by D = {(x,y) : 2% —2x +y* = (v — 1) +¢% < 1}.

Hence the area of S is given by
// 1dS = // 1zdxdy
s p 6

7

= — 1
6//]3 dedy
7

7
:6>< AreaofD:EW.

Hence,

Note, since D is a cricle or radius 1 centred at (1,0) the area of D is the area of a unit circle which is 7. O

Example 5.8 Use Gauss’ Divergence Theorem to evaluate

I://x4y+y222—|—azz2 ds,
s

where S is the entire surface of the sphere 22 + y? + 22 = 1.



Solution In order to apply Gauss’ Divergence Theorem we first need to determine F and the unit normal
n to the surface S. The normal is (%, g—{l, %) = (2x,2y,22), where f(z,y,2) =22 +9y?+22—-1=0. We
require the unit normal, so n = (2x, 2y, 22)/|(2z, 2y, 22)| = (2x,2y,22)/2 = (z,y, z). Tofind F = (Fy, Fs, F3)
we note that

F-n=z'y+ %262 + 222
= le —|— ng —|— FgZ

Hence, comparing terms we have Fy = 23y, F» = yz? and F3y = zz. Applying the Divergence Theorem
noting that V' is the volume enclosed by the sphere S gives

I://F-ndS:///didexdydz
s 1%
z///3x2y—|—22+xdxdydz
1%
=0—|—///z2dxdydz+0
1%
2m ™ 1
:/ qu/ d@/ 2 cos? Or? sin Odr
0 0 0
™ 1
=27r// COSQHSinﬁdG/ ridr
0 0
1- 47

1
T X ><3-1>< 15

Remarks

1. As V is a sphere it is natural to use spherical polar coordinates to solve the integral. Thus, z =
rcos¢sinf, y = rsin¢sinf, and z = r cos and dxdydz = r?sin 6.

2. [ [ [, 3a*ydxdydz = 0 and [ [ [, zdedydz = 0 from the symmetry of the cosine and sine functions.
We look at the signs in each quadrant as ¢ changes. Think about a fixed 6. cos¢ and sin ¢ terms in
2%y and z then have the following signs

Quadrant 1 2 3 4 Total
cos ¢ + - - +
sin ¢ + + - -
22y + + - - 0
z + + = = 0

The positive and negative contribution from the integral cancel out in these two cases so the integrals
are zero.

Example 5.9 Find I = [ fs F -n dS where F = (2z,2y,1) and where S is the entire surface consisting of
S1=the part of the paraboloid z = 1 — 2% — y? with z = 0 together with Sa=disc {(z,y) : 22 +y? < 1}. Here
n is the outward pointing unit normal.



Solution Applying the Divergence Theorem noting that V is the volume enclosed by S; and Sy and

I://F'ndSZ///didexdydz
S 1%
Z///4dxdydz
1%
1,I2,y2
:4// dxdy/ 1dz
{(zy)22+y2<1} 0
:4// 1 — 22 — y?dxdy
{(zy)x2+y2<1}

2 1
=4/ d9/ (1 —7%)rdr
0 0

=4 x2n(1/2-1/4) =27,

divF =24 240 gives

Example 5.10 Vector fields V and W are defined by

V=_2r—-3y+z -3z—y+4z,4y + 2)

W = (22 — 4y — 5z, —4x + 2y, —5x + 62) .

One of these is conservative while the other is not. Determine which is conservative and denote it by F.

/F-dr7
c

where C'is the curve from A(1,0,0) to B(0,0,1) in which the plane x + z = 1 cuts the hemisphere given by

Find a potential function ¢ for F and evaluate

224y +22=1,9>0.

Solution We have

i

0
curl V.= e
2z — 3y + 2
=(0,1,0) # 0.
Since curl V # 0, F is NOT conservative.
We have
i
curl W = 2
Oz
2z — 4y — 5z

— (0,0,0) = 0.

j k
9 9
dy 0z
—3rx—y+4z 4dy+=z
j k
9 9
dy 0z
—4dx+2y —br+ 62



Since curl V = 0, F is conservative.
Suppose that grad ¢ = W. Then

oo
9 2x — 4y — bz, (1)
06
oo

Integrating (1) with respect to z, holding the other variables constant, we get
¢=/ dx = 2% — dyx — 5z + Ay, 2),
y,z fixed2x—4y—52

where A is an arbitrary function. Substituting this expression into (2) gives,

—4x + % = —4dr+ 2y, ie. % = 2y,
dy dy

and therefore
A= [ @pdy=s*+B(e)

where B is an arbitrary function, giving
¢ = x? — dyx — 5zx +y* + B(2).
Finally, substituting this into (3) gives

—bx + ﬁ = -5z + 6z, ie. @ =62z,
dz dz

so that B = 322 + C, where C is a constant. Hence, by taking C' = 0 we obtain a potential

¢ = % — dyx — 5z + vz + 322

Remark Notice that the potential function is not unique; we may always add an arbitrary constant to a
potential and it remains a potential.

So the line integral is:

/F-dr:/div¢-dr:¢(0,0,1)—¢(1,0,0):3—1:2.
C C



