
Analysis of a Generic Model of Eukaryotic Cell-Cycle Regulation

Attila Csikász-Nagy,*y Dorjsuren Battogtokh,* Katherine C. Chen,* Béla Novák,y and John J. Tyson*
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ABSTRACT We propose a protein interaction network for the regulation of DNA synthesis and mitosis that emphasizes the
universality of the regulatory system among eukaryotic cells. The idiosyncrasies of cell cycle regulation in particular organisms
can be attributed, we claim, to specific settings of rate constants in the dynamic network of chemical reactions. The values of
these rate constants are determined ultimately by the genetic makeup of an organism. To support these claims, we convert the
reaction mechanism into a set of governing kinetic equations and provide parameter values (specific to budding yeast, fission
yeast, frog eggs, and mammalian cells) that account for many curious features of cell cycle regulation in these organisms. Using
one-parameter bifurcation diagrams, we show how overall cell growth drives progression through the cell cycle, how cell-size
homeostasis can be achieved by two different strategies, and how mutations remodel bifurcation diagrams and create unusual
cell-division phenotypes. The relation between gene dosage and phenotype can be summarized compactly in two-parameter
bifurcation diagrams. Our approach provides a theoretical framework in which to understand both the universality and
particularity of cell cycle regulation, and to construct, in modular fashion, increasingly complex models of the networks
controlling cell growth and division.

INTRODUCTION

The cell cycle is the sequence of events by which a cell rep-

licates its genome and distributes the copies evenly to two

daughter cells. In most cells, the DNA replication-division

cycle is coupled to the duplication of all other components of

the cell (ribosomes, membranes, metabolic machinery, etc.),

so that the interdivision time of the cell is identical to its mass

doubling time (1,2). Usually mass doubling is the slower pro-

cess; hence, temporal gaps (G1 and G2) are inserted in the

cell cycle between S phase (DNA synthesis) and M phase

(mitosis). During G1 and G2 phases, the cell is growing and

‘‘preparing’’ for the next major event of the DNA cycle (3).

‘‘Surveillance mechanisms’’ monitor progress through the cell

cycle and stop the cell at crucial ‘‘checkpoints’’ so that

events of the DNA and growth cycles do not get out of order

or out of balance (4,5). In particular, in protists (for sure) and

metazoans (to a lesser extent), cells must grow to a critical

size to start S phase and to a larger size to enter mitosis.

These checkpoint requirements assure that the cycle of DNA

synthesis and mitosis will keep pace with the overall growth

of cells (6). Other checkpoint signals monitor DNA damage

and repair, completion of DNA replication, and congression

of replicated chromosomes to the metaphase plate (7).

Eukaryotic cell cycle engine

These interdependent processes are choreographed by a com-

plex network of interacting genes and proteins. The main

components of this network are cyclin-dependent protein

kinases (Cdk’s), which initiate crucial events of the cell cycle

by phosphorylating specific protein targets. Cdk’s are active

only if bound to a cyclin partner. Yeasts have only one es-

sential Cdk, which can induce both S and M phase de-

pending on which type of cyclin it binds. Because Cdk

molecules are always present in excess, it is the availability

of cyclins that determines the number of Cdk/cyclin com-

plexes in a cell (8). Cdk/cyclin complexes can be down-

regulated a), by inhibitory phosphoryation of the Cdk subunit

and b), by binding to a stoichiometric inhibitor (cyclin-

dependent kinase inhibitor (CKI)) (9).

Some years ago Paul Nurse (10) proposed, and since then

many experimental studies have confirmed, that the DNA

replication-division cycle in all eukaryotic cells is controlled

by a common set of proteins interacting with each other by a

common set of rules. Nonetheless, each particular organism

seems to use its own peculiar mix of these proteins and inter-

actions, generating its own idiosyncrasies of cell growth and

division. The ‘‘generic’’ features of cell cycle control concern

these common genes and proteins and the general dynamical

principles by which they orchestrate the replication and par-

titioning of the genome from mother cell to daughter. The

peculiarities of the cell cycle concern exactly which parts of

the common machinery are functioning in any given cell

type, given the genetic background and developmental stage

of an organism. We formulate the genericity of cell cycle

regulation in terms of an ‘‘underlying’’ set of nonlinear

ordinary differential equations with unspecified kinetic param-

eters, and we attribute the peculiarities of specific organisms

to the precise settings of these parameters. Using bifurcation

diagrams, we show how specific physiological features of
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the cell cycle are determined ultimately by levels of gene ex-

pression.

Mathematical modeling of the cell cycle

The dynamic properties of complex regulatory networks

cannot be reliably characterized by intuitive reasoning alone.

Computers can help us to understand and predict the be-

havior of such networks, and differential equations (DEs)

provide a convenient language for expressing the meaning of

a molecular wiring diagram in computer-readable form (11).

Numerical solutions of the DEs can be compared with ex-

perimental results, in an effort to determine the kinetic rate

constants in the model and to confirm the adequacy of the

wiring diagram. Eventually the model, with correct equa-

tions and rate constants, should give accurate simulations of

known experimental results and should be pressed to make

verifiable predictions. This method has been used for many

years to create mathematical models of eukaryotic cell cycle

regulation (12–29). The greatest drawback to DE-based

modeling is that the modeler must estimate all the rate

constants from the available data and still have some

observations ‘‘left over’’ to test the model. In the case of

cell cycle regulation, very few of these rate constants have

been measured directly (30,31) although the available data

provide severe constraints on rate constant values (15,32).

To complement the important but tedious work of parameter

estimation by data fitting, we need analytical tools for

characterizing the parameter-dependence of solutions of DEs

and for associating a model’s robust dynamical properties to

the physiological characteristics of living cells.

Bifurcation theory and regulatory networks

Bifurcation theory is a general tool for classifying the at-

tractors of a dynamical system and describing how the quali-

tative properties of these attractors change as a parameter value

changes. Bifurcation theory has been used successfully to un-

derstand transitions in the cell cycle by our group (33–37) and

by others (12,26,38). In this article, we use bifurcation theory

to examine a generic model of eukaryotic cell cycle controls,

bringing out the similarities and differences in the dynamical

regulation of cell cycle events in yeasts, frog eggs, and mam-

malian cells. To understand our approach, the reader must be

familiar with a few elementary bifurcations of nonlinear DEs

and how they are generated by positive and negative feedback

in the underlying molecular network. For more details, the

reader may consult the Appendix to this article and some

recent review articles (36,37).

MATERIALS AND METHODS

In Fig. 1 we propose a general protein interaction network for regulating

cyclin-dependent kinase activities in eukaryotic cells. (Fig. 1 uses ‘‘generic’’

names for each protein; in Table 1 we present the common names of each

component in specific cell types: budding yeast, fission yeast, frog eggs, and

FIGURE 1 Wiring diagram of the

generic cell-cycle regulatory network.

Chemical reactions (solid lines), regu-

latory effects (dashed lines); a protein

sitting on a reaction arrow represents an

enzyme catalyst of the reaction. Regu-

latory modules of the system are dis-

tinguished by shaded backgrounds: (1)

exit of M module, (2) Cdh1 module, (3)

CycB transcription factor, (4) CycB

synthesis/degradation, (5) G2 module,

(6) CycB inhibition by CKI (also

includes the binding of phosphorylated

CycB, if that is present), (7) CKI

transcription factor, (8) CKI synthesis/

degradation, (9) CycE inhibition by

CKI, (10) CycE synthesis/degradation,

(11) CycE/A transcription factor, (12)

CycA inhibition by CKI, (13) CycA

synthesis/degradation. Open-mouthed

PacMan represents active form of reg-

ulated protein; gray rectangles behind

cyclins represent their Cdk partners.

We assume that all Cdk subunits are

present in constant, excess amounts.
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mammalian cells.) Using basic principles of biochemical kinetics, we trans-

late the generic mechanism into a set of coupled nonlinear ordinary differ-

ential equations (Supplementary Material, Table SI) for the temporal dynamics

of each protein species. Although the structure of the DEs is fixed by the

topology of the network, the forms of the reaction rate laws (mass action,

Michaelis-Menten, etc.) are somewhat arbitrary and would vary from one

modeller to another. We use rate laws consistent as much as possible with

our earlier choices (15,18,25,39–41). In addition, most of the parameter values

for each organism (Supplementary Material, Table SII) were inherited from

earlier models.

For numerical simulations and bifurcation analysis of the DEs, we used

the computer program XPP-AUT (42), with the ‘‘stiff’’ integrator.

Instructions on how to reproduce our simulations and diagrams (including

all necessary .ode and .set files, and an optional SBML version of the model)

can be downloaded from our website (43).

All protein concentrations in the model are expressed in arbitrary units

(au) because, for the most part, we do not know the actual concentrations of

most regulatory proteins in the cell. Hence, all rate constants capture only the

timescales of processes (rate constant units are min�1). For each mutant, we

use the same equations and parameter values except for those rate constants

that are changed by the mutation (e.g., for gene deletion we set the synthesis

rate of the associated protein to zero).

RESULTS

A generic model of cell cycle regulation

Since the advent of gene-cloning technologies in the 1980s,

molecular cell biologists have been astoundingly successful

in unraveling the complex networks of genes and proteins

that underlie major aspects of cell physiology. These results

have been collected recently in comprehensive molecular

interaction maps (44–48). In the same spirit, but with an eye

toward a computable, dynamic model, we collected the most

important regulatory ‘‘modules’’ of the Cdk network. Our

goal is to describe a generic network (Fig. 1) that applies

equally well to yeasts, frogs, and humans. We do not claim

that Fig. 1 is a complete model of eukaryotic cell-cycle con-

trols, only that it is a starting point for understanding the

basic cell-cycle engine across species.

Regulatory modules

The network, which tracks the three principal cyclin families

(cyclins A, B, and E) and the proteins that regulate them at the

G1-S, G2-M, and M-G1 transitions, can be subdivided into 13

modules. (Other, coarser subdivisions are possible, but these

13 modules are convenient for describing the similarities and

differences of regulatory signals among various organisms.)

Modules 4, 10, and 13: synthesis and degradation of

cyclins B, E, and A. Cyclin E is active primarily at the G1-S

transition, cyclin A is active from S phase to early M phase,

and cyclin B is essential for mitosis.

Modules 1 and 2: regulation of the anaphase promoting

complex (APC). The APC works in conjunction with Cdc20

and Cdh1 to ubiquitinylate cyclin B, thereby labeling it for

degradation by proteasomes. The APC must be phosphor-

ylated by the mitotic CycB kinase before it will associate

readily with Cdc20, but not so with Cdh1. On the other hand,

Cdh1 can be inactivated by phosphorylation by cyclin-

dependent kinases. Cdc14 is a phosphatase that opposes Cdk

by dephosphorylating and activating Cdh1.

Module 8: synthesis and degradation of CKI (cyclin-

dependent kinase inhibitor). Degradation of CKI is promoted

by phosphorylation by cyclin-dependent kinases and inhib-

ited by Cdc14 phosphatase.

Modules 6, 9, and 12: reversible binding of CKI to cyclin/

Cdk dimers to produce catalytically inactive trimers (stoi-

chiometric inhibition).

Modules 3, 7, and 11: regulation of the transcription

factors that drive expression of cyclins and CKI. TFB is ac-

tivated by cyclin B-dependent kinase. TFE is activated by

some cyclin-dependent kinases and inhibited by others. TFI

TABLE 1 Protein name conversion table and modules used for each organism

In Fig. 1 Budding yeast Fission yeast Xenopus embryo Mammalian cells Function

CycB Cdc28/Clb1,2 Cdc2/Cdc13 Cdc2/CycB Cdc2/CycB Mitotic Cdk/cyclin complex

CycA Cdc28/Clb5,6 Cdc2/Cig2 Cdk1,2/CycA Cdk1,2/CycA S-phase Cdk/cyclin complex

CycE Cdc28/Cln1,2 – Cdk2/CycE Cdk2/CycE G1/S transition inducer Cdk/cyclin

CycD Cdc28/Cln3 Cdc2/Puc1 Cdk4,6/CycD Cdk4,6/CycD Starter Cdk/cyclin complex

CKI Sic1 Rum1 Xic1 p27 Kip1 Cdk/cyclin stoichometric inhibitor

Cdh1 Cdh1 Ste9 Fzr hCdh1 CycB degradation regulator with APC

Wee1 Swe1 Wee1 Xwee1 hWee1 Cdk/CycB inhibitory kinase

Cdc25 Mih1 Cdc25 Xcdc25 Cdc25C Cdk/CycB activatory phosphatase

Cdc20 Cdc20 Slp1 Fizzy p55 Cdc CycB, CycA degradation regulator with APC

Cdc14 Cdc14 Clp1/Flp1 Xcdc14 hCdc14 Phosphatase working against the Cdk’s

TFB Mcm1 – – Mcm CycB transcription factor

TFE Swi4/Swi6 Mbp1/Swi6 Cdc10/Res1 XE2F E2F CycE/A transcription factor

(SBF1MBF in budding yeast)

TFI Swi5 – – – CKI transcription factor

APC APC APC APC APC Anaphase promoting complex

Active

modules

1, 2, 3, 4, 6, 7, 8,

10, 11, 12, 13, (5*)

1, 2, 4, 5, 6, 8,

11, 12, 13

1, 4, 5 1, 2, 3, 4, 6, 8, 9,

10, 11, 12, 13, (5*)

Modules of Fig. 1, used for

simulation of organism

*Module 5 is not introduced into the first version of budding yeast and mammalian models.

Generic Model of Cell-Cycle Regulation 4363

Biophysical Journal 90(12) 4361–4379



is inhibited by cyclin B-dependent kinase and activated by

Cdc14 phosphatase.

Module 5: regulation of cyclin B-dependent kinase by

tyrosine phosphorylation and dephosphorylation (by Wee1

kinase and Cdc25 phosphatase, respectively). The tyrosine-

phosphorylated form is less active than the unphosphory-

lated form. Cyclin B-dependent kinase phosphorylates both

Wee1 (inactivating it) and Cdc25 (activating it), and these

phosphorylations are reversed by Cdc14 phosphatase.

The model is replete with positive feedback loops (CycB

activates TFB, which drives synthesis of CycB; CycB acti-

vates Cdc25, which activates CycB; CKI inhibits CycB, which

promotes degradation of CKI; Cdh1 degrades CycB, which

inhibits Cdh1), and negative feedback loops (CycB activates

APC, which activates Cdc20, which degrades CycB; CycB

activates Cdc20, which activates Cdc14, which opposes CycB;

TFE drives synthesis of CycA, which inhibits TFE). These

complex, interwoven feedback loops create the interesting

dynamical properties of the control system, which account for

the characteristic features of cell cycle regulation, as we in-

tend to show.

The model (at present) neglects important pathways that

regulate, e.g., cell proliferation in metazoans (retinoblastoma

protein), mitotic exit in yeasts (the FEAR, MEN, and SIN

pathways), and the ubiquitous DNA-damage and spindle as-

sembly checkpoints. We intend to remedy these deficiencies in

later publications, as we systematically grow the model to in-

clude more and more features of the control system.

Role of cell growth

In yeasts and other lower eukaryotes, a great deal of evidence

shows the dominant role of cell growth in setting the tempo

of cell division (2,49–52). In somatic cells of higher eu-

karyotes there are many reports of size control of cell-cycle

events (e.g., (53–55)), although other authors have cast

doubts on a regulatory role for cell size (e.g., (56,57)). For

embryonic cells and cell extracts, the activation of Cdk1 is

clearly dependent on the total amount of cyclin B available

(58,59). To create a role for cell size in the regulation of Cdk

activities, we assume, in our models, that the rates of syn-

thesis of cyclins A, B, and E are proportional to cell ‘‘mass’’.

The idea behind this assumption (see also Futcher (60)) is

that cyclins are synthesized in the cytoplasm on ribosomes at

an increasing rate as the cell grows. The cyclins then find a

Cdk partner and move into the nucleus where they perform

their functions. Presumably the effective, intranuclear con-

centrations of the cyclin-dependent kinases increase as the

cell grows because they become more concentrated at their

sites of action. Other regulatory proteins in the network, we

assume, are not compartmentalized in the same way, so their

effective concentrations do not increase as the cell grows.

This basic idea for size control of the cell cycle was tested

experimentally in budding yeast by manipulating the ‘‘nu-

clear localization signals’’ on cyclin proteins (8). As pre-

dicted by the model, cell size is larger in cells that exclude

cyclins from the nucleus and smaller in cells that over-

accumulate cyclins in the nucleus. A recent theoretical study

by Yang et al. (61) may shed light on how cell size couples to

cell division without assuming a direct dependence of cyclin

synthesis rate on mass, but, for this article, we adopt the as-

sumption as a simple and effective way to incorporate size

control into nonlinear DE models for the control of cyclin-

dependent kinase activities.

For simplicity, we assume that cell mass increases ex-

ponentially (with a mass doubling time (MDT) suitable for

the organism under consideration) and that cell mass is

exactly halved at division. Our qualitative results (bifurca-

tion diagrams, etc.) are not dependent on these assumptions.

Cell growth may be linear or logistic, and cell division may

be asymmetric or inexact—it doesn’t really matter to our

models. The important features are that ‘‘mass’’ increases

monotonically as the cell grows (driving the control system

through bifurcations that govern events of the cell cycle) and

that mass decreases abruptly at cell division (resetting the

control system back to a G1-like state—unreplicated chro-

mosomes and low Cdk activity).

Equations and parameter values

The dynamical properties of the regulatory network in Fig.

1 can be described by a set of ordinary differential equations

(Supplementary Material, Table SI), given a table of pa-

rameter values suitable for specific organisms (Table SII). For

each organism we analyze the effects of physiological and

genetic changes on the transitions between cell cycle phases,

in terms of bifurcations of the vector fields defined by the DEs

(for background on dynamical systems, see the Appendix).

Frog embryos: Xenopus laevis

To validate our equations and tools, we first verified our

earliest studies of bifurcations in the frog-egg model. The

combination of modules 1, 4, and 5 of Fig. 1 was used to

recreate the bifurcation diagram of Borisuk and Tyson (33);

see Supplementary Material, Fig. S1. Our bifurcation pa-

rameter, ‘‘cell mass’’, can be interpreted as the rate constant

for cyclin B synthesis. For small rates of cyclin synthesis, the

control system is arrested in a stable ‘‘interphase’’ state with

low activity of CycB-dependent kinase. For larger rates of

cyclin synthesis, the model exhibits spontaneous limit cycle

oscillations, which begin at a SNIPER bifurcation (long

period, fixed amplitude). Eventually, as the rate of cyclin

synthesis gets large enough, the oscillations are lost at a Hopf

bifurcation (fixed period, vanishing amplitude). Beyond the

Hopf bifurcation, the control system is arrested in a stable

‘‘mitotic’’ state with high activity of CycB-dependent kinase.

These types of states of the control system are reminiscent of

the three characteristic states of frog eggs: interphase arrest

(immature oocyte), metaphase arrest (mature oocyte), and
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spontaneous oscillations (fertilized egg). For more details,

see Novak and Tyson (18) and Borisuk and Tyson (33).

Fission yeast: Schizosaccharomyces pombe

Wild-type cell cycle

The fission yeast cell cycle network, composed of modules 1, 2,

4, 5, 6, 8, 11, 12, and 13, is described in Fig. 2 in terms of a one-

parameter bifurcation diagram (Fig. 2 A) and a simulation (Fig.

2 B). In the simulation, we plot protein levels as a function of

cell mass rather than time, but because mass increases expo-

nentially with time, one may think of the lower abscissa as emt.

We present the simulation this way so that we can ‘‘lift it up’’

onto the bifurcation diagram: the gray curve in Fig. 2 A is

identical to the solid black curve (actCycB) in Fig. 2 B. In Fig.

2 A, a stable, G1-like, steady state exists at very low level of

actCycB (active Cdk/CycB dimers). This steady state is lost at a

saddle-node bifurcation (SN1) at cell mass ¼ 0.8 au. Between

SN1 and SN2 (at cell mass ¼ 2.6 au), the control system has a

single, stable, steady-state attractor with an intermediate

activity (;0.1) of cyclin B (an S/G2-like steady state). The

other steady-state branches are unstable and physiologically

unnoticeable. For mass .2.6 au, the only stable attractor is

a stable limit cycle oscillation. This branch of stable limit

cycles is lost by further bifurcations at very large mass (of

little physiological significance for wild-type cells).

The gray trajectory in Fig. 2 A represents the path of a

growing-dividing yeast cell projected onto the bifurcation

diagram. Let us pick up the trajectory of a growing cell at

mass ¼ 2.2 au, where the cell cycle control system has been

captured by the stable S/G2 steady state. As the cell continues

to grow, it leaves the S/G2 state at SN2 and prepares to enter

mitosis. At cell mass .2.6, the only stable attractor is a limit

cycle. This limit cycle, which bifurcates from SN2, has

infinite period at the onset of the bifurcation (hence, the onset

point is commonly called a SNIPER—saddle-node-infinite-

period—bifurcation). Because the limit cycle has a very long

period at first, and the cell enters the limit cycle at the place

where the saddle-node used to be, the cell is stuck in a

semistable transient state (where the gray trajectory ‘‘over-

shoots’’ SN2). As the cell grows, it eventually escapes the

semistable state (at cell mass� 3), and then actCycB increases

dramatically (note the log-scale on the ordinate), driving the

cell into mitosis. Because the control system is now captured

by the stable limit cycle, actCycB inevitably decreases and the

cell is driven out of mitosis. We presume that the cell divides

when actCycB falls below 0.1; hence, cell mass is halved

(3.4 / 1.7), and the control system is now attracted to the

S/G2 steady state (the only stable attractor at this cell mass).

The newly divided cell makes its way to the S/G2 attractor by

a circuitous route that looks like a brief G1 state (very low

actCycB) but is not a stable and long-lasting G1 state. This

transient G1 state is characteristic of wild-type fission yeast

cells (62).

Overshoot of a SNIPER bifurcation point (as in Fig. 2 A) is

a common feature of our cell cycle models, and recent

experimental evidence (63) confirms this prediction in frog

egg extracts. These authors located the position of the

steady-state SN bifurcation in a nonoscillatory extract and

then showed that during oscillations the Cdk-regulatory

system overshoots the SN point by twofold or more.

The one-parameter bifurcation diagram in Fig. 2 A is a

compact way to display the interplay between the DNA

replication-segregation cycle (regulated by Cdk/CycB activity)

FIGURE 2 One-parameter bifurcation diagram (A) and cell-cycle trajec-

tory (B) of wild-type fission yeast. Both figures share the same abscissa.

Notice that cell mass is just the logarithm of age, because we assume that

cells grow exponentially between birth (age ¼ 0) and division (age ¼ MDT).

The gray curve in panel A (a ‘‘cell-cycle trajectory’’ for MDT ¼ 120 min) is

identical to the solid black curve in panel B. Key to panel A: solid line, stable

steady state; dashed line, unstable steady state; solid circles, maxima and

minima of stable oscillations; open circles, maxima and minima of unstable

oscillations; SN1 (saddle-node bifurcation that annihilates the G1 steady

state), SN2 (saddle-node bifurcation that annihilates the G2 steady state),

and HB1 (Hopf bifurcation on the S/G2 branch of steady states that gives

rise to endoreplication cycles). SN2 is a SNIPER bifurcation; i.e., it gives

way to stable periodic solutions of infinite period (at the bifurcation point).

The other (unmarked) bifurcation points in this diagram are not pertinent to

cell-cycle regulation.
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and the growth-division cycle (represented on the abscissa

by the steady increase of cell mass and its abrupt resetting at

division). The very strong ‘‘cell size control’’ in late G2

phase of the fission yeast cell cycle, which has been known

to physiologists for 30 years (52), is here represented by

growing past the SNIPER bifurcation, which eliminates the

stable S/G2 steady state and allows the cell to pass into and

out of mitosis (the stable limit cycle oscillation).

A satisfactory model of fission yeast must account not

only for the phenotype of wild-type cells but also for the un-

usual properties of the classic cdc and wee mutants that

played such important roles in deducing the cell-cycle

control network. Mutations change the values of specific rate

constants, which remodel the one-parameter bifurcation

diagram and thereby change the way a cell progresses

through the DNA replication-division cycle. For example

(Fig. 3 A), for a wee1� mutant (reduce Wee1 activity to 10%

of its wild-type value) SN2 moves to the left of SN1 and the

infinite-period limit cycle now bifurcates from SN1. Hence,

the cell cycle in wee1� cells is now organized by a SNIPER

bifurcation at the G1/S transition: wee1� cells are about half

the size of wild-type cells, they have a long G1 phase and

short G2, and slowly growing cells pause in G1 (unreplicated

DNA) rather than in G2 (replicated DNA).

In the Supplementary Material (Fig. S2) we present

bifurcation diagrams for four other fission yeast mutants

(cig2D, cig2D rum1D, wee1D cdc25D, wee1D rum1D), to

confirm that our ‘‘generic’’ version is indeed consistent with

the known physiology of these mutants. Because they have

been described in detail elsewhere (37), we turn our attention

instead to some novel results.

Endoreplicating mutants

On the wild-type bifurcation diagram (Fig. 2 A) we can notice

a very small oscillatory regime at the beginning of the S/G2

branch of steady states (labeled as HB1, at cell mass ¼ 0.79).

This stable periodic solution is a consequence of a negative

feedback loop whereby Cig2 inhibits its own transcription

factor, Cdc10, by phosphorylation (64). (In the generic

FIGURE 3 One-parameter (A) and two-parameter (B)

bifurcation diagrams for mutations at the wee1 locus in

fission yeast. Panel A should be interpreted as in Fig. 2.

Key to panel B: dashed black line, locus of SN1 bifurcation

points; solid black line, locus of SN2 bifurcation points;

red line, locus of HB1 bifurcation points; black bars,

projections of the cell-cycle trajectories in Figs. 2 A and 3 A

onto the two-parameter plane. Within regions of stable

limit cycles, the color code denotes the period of oscilla-

tions. Notice that the period becomes very long as the limit

cycles approach the locus of SNIPER bifurcations. The

limit cycles switch their allegiance from SN2 to SN1

at Wee1 activity ;0.07 (by a complex sequence of

codimension-two bifurcations that are not indicated here).

Notice that wee11 overexpression leads to large cells, size-

controlled at the G2-to-M transition, but wee1 deletion

leads to small cells (half the size of wild-type), size-

controlled at the G1-to-S transition.
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nomenclature, Cig2 is ‘‘CycA’’ and Cdc10 is ‘‘TFE’’.) The

negative feedback loop can generate oscillations if there is

positive feedback in the system as well, which is provided by

the Cdk inhibitor (CKI). As CycA slowly accumulates, it is at

first sequestered in inactive complexes with CKI, but

eventually CycA saturates CKI and active (uninhibited)

Cdk/CycA appears. ActCycA phosphorylates CKI, which

labels CKI for proteolysis (65). As CKI is degraded, actCycA

rises even faster because it is released from the inactive com-

plexes. At this point the negative feedback turns on and CycA

synthesis is blocked. With no synthesis but continued de-

gradation, CycA level drops, which allows CKI to come

back (provided there is no other Cdk activity that can

phosphorylate CKI and keep its level low). CKI comeback

returns the control system to G1. In wild-type cells, the CycA-

TFE-CKI interactions cannot create stable oscillations be-

cause CycB takes over from CycA and keeps CKI low in G2

and M phases. But if CycB is absent (as in cdc13D mutants of

fission yeast), then CKI and CycA generate multiple rounds of

DNA replication without intervening mitoses (called ‘‘endor-

eplication’’), precisely the phenotype of cdc13D mutants

(66).

In Fig. 4 A we show the bifurcation diagram of cdc13D
cells. Over a broad range of cell mass, large amplitude stable

oscillations of Cdk/CycA (from a SNIPER bifurcation at

SN1) drive multiple rounds of DNA synthesis without in-

tervening mitoses. Because this negative feedback loop also

exists in metazoans, it may explain the core mechanism of

developmental endoreplication (67).

Mutant analysis on the genetics-physiology plane

In our view, genetic mutations are connected to cell pheno-

types through bifurcation diagrams. Mutations induce

changes in parameter values, which may change the nature

of the bifurcations experienced by the control system, which

will have observable consequences in the cell’s physiology.

Mutation-induced changes in parameter values may be large

or small: e.g., the rate constant for CycB synthesis ¼ 0 in a

cdc13D cell, but a wee1ts (‘‘temperature sensitive’’) mutant

FIGURE 4 One-parameter (A) and two-parameter (B)

bifurcation diagrams for mutations at the cdc13 locus in

fission yeast. Panels A and B should be interpreted as in

Fig. 3. cdc131 overexpression has little effect on cell-cycle

phenotype, but cdc13 deletion prevents mitosis and

permits endoreplication.
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may cause only a minor change in the catalytic activity of

Wee1 kinase. Whether these changed parameter values

cause a qualitative change in bifurcation points on the one-

parameter diagram (Figs. 2 A and 3 A), or merely a

quantitative shift of their locations, depends on whether the

parameter change crosses a bifurcation point or not. In

principle, we can imagine a sequence of bifurcation diagrams

(and associated phenotypes) connecting the wild-type cell to a

mutant cell as the relevant kinetic parameter changes con-

tinuously (up or down) from its wild-type value. This the-

oretical sequence of morphing phenotypes can be captured on

a two-parameter bifurcation diagram, where cell mass con-

tinues to stand in for the physiology of the cell cycle (growth

and division) and the second parameter is a rate constant that

varies continuously between 0 (the deletion mutant) and some

large value (the overexpression mutant). Plotted this way, the

two-parameter bifurcation diagram spans the entire range of

molecular biology from genetics to cell physiology! (For

more details on two-parameter bifurcation diagrams, see the

Appendix.)

To illustrate this idea, we first consider wee1 mutations.

On the two-parameter bifurcation diagram in Fig. 3 B we

follow the loci of bifurcation points (SN1, SN2, and HB1)

from their position in wild-type cells (‘‘Wee1 activity’’ ¼
0.5) in the direction of overexpression (.0.5) or deleterious

mutation (,0.5). The one-parameter bifurcation diagrams of

wild-type (Fig. 2 A) and wee1� (Fig. 3 A) cells are cuts of this

plane at the marked levels of Wee1 activity. For over-

expression mutations, the SNIPER bifurcation moves toward

larger cell mass, and the heavy bar shows where the

simulation of 2 3 wee11 cells projects onto the genetics-

physiology plane. Clearly, the size of wee1op cells increases

in direct proportion to gene dosage (68). As Wee1 activity

decreases below 0.5, e.g., in a heterozygote diploid cell

(activity ¼ 0.25) or in wee1ts mutants, the SNIPER bifur-

cation moves toward smaller cell mass. Eventually, the SN1

and SN2 loci cross, and the infinite-period oscillations switch

from SN2 to SN1 by a short but complicated sequence of

codimension-two bifurcations (not shown on the diagram).

Because SN1 is not dependent on Wee1 activity, the critical

cell size at the SNIPER bifurcation drops no further as Wee1

activity decreases.

The two-parameter bifurcation diagram for cyclin B

(Cdc13) expression (Fig. 4 B) shows how mitotic cycles

are related to endoreplication cycles. As Cdc13 synthesis rate

decreases from its wild-type value (0.02 min�1), there is a

dramatic increase of the critical cell mass for mitotic

oscillations (the SNIPER bifurcation associated with SN2).

In addition, endoreplication cycles appear at the intersection

of HB1 and SN1 (by a sequence of codimension-two bifu-

rcations, which we are not focusing on here). At first appear-

ance, the endoreplication cycles have a very long period, but

as Cdc13 synthesis rate decreases further, the period of

endoreplication cycles decreases and the range of these oscil-

lations increases.

The two-parameter bifurcation diagrams in Figs. 3 and 4

are incomplete: they do not show all loci of codimension-one

bifurcations or any of the characteristic codimension-two

bifurcations. Examples of more complete two-parameter bifu-

rcation diagrams can be found in the Supplementary Material

(Fig. S3) and on our web site (69).

Budding yeast: Saccharomyces cerevisiae

Our generic model of the budding yeast cell cycle is based on

a detailed model published recently by Chen et al. (15). The

generic model bypasses details of the mitotic exit network

(MEN) in Chen’s model, assuming instead that Cdc20

directly activates Cdc14. We had to change some parameters

compared to Chen et al. (15) because of this and other minor

changes in the network. We found these new parameter

values by fitting simulations of wild-type and some mutant

cells (15).

Wild-type cells

One-dimensional bifurcation diagrams of wild-type cells

created by the full model (15) and by our generic model

(Fig. 5, A and B) look very similar. Both figures show a stable

G1 steady state that disappears at a SNIPER bifurcation

(G1-S transition at cell mass ¼ 1.13 au), giving rise to

oscillations that correspond to progression through S/G2/M

phases. There is no attractor representing a stable G2 phase

in wild-type budding yeast cells. The green, red, and blue

curves superimposed on the bifurcation diagram are ‘‘cell

cycle trajectories’’ at mass doubling time of 150, 120, and 90

min, respectively (MDT ¼ ln2/m, where m¼ specific growth

rate). Notice that cells get larger as MDT gets smaller (as m

increases). For simplicity, we are neglecting the asymmetry

of division of budding yeast in these simulations.

Two ways to achieve size homeostasis

Fig. 5 A shows that the relation of the cell cycle trajectory to

the SNIPER bifurcation point depends strongly on MDT. At

slow growth rates (MDT $ 150 min), newborn cells are

smaller than the size at the SNIPER bifurcation; hence the

Cdk-control system is attracted to the stable G1 steady state

(seen more clearly in Fig. 5 B than in Fig. 5 A), and the cell is

waiting until it grows large enough to surpass the SNIPER

bifurcation. Only then can the cell commit to the S/G2/M

sequence. This is a mathematical representation of the classic

notion of ‘‘size control’’ to achieve balanced cell growth and

division (49,50,52,70). At faster growth rates, however,

newborn cells are already larger than the critical size at the

SNIPER bifurcation, and they do not linger in a stable G1

state, waiting to grow large enough to start the next chromo-

some replication cycle. How then is cell-size homeostasis

achieved, if the classic ‘‘sizer’’ mechanism is inoperative?
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Fig. 6 shows the relationship between limit cycle period

and distance from the SNIPER bifurcation. For mass ,1.13,

there is no limit cycle; the stable attractor is the G1 steady

state. For mass slightly .1.13, the limit cycle period is very

long, approaching infinity as mass approaches 1.13 from

above. Depending on MDT, the cell cycle trajectory finds a

location on the cell-mass axis such that the average cell-

cycle-progression time (time spent in G1/S/G2/M) is equal to

the mass doubling time. For MDT ¼ 90 min (bottom curve in

Fig. 6), the cell is born at mass ¼ 2 and divides at mass ¼ 4,

spending its entire lifespan in the oscillatory region, with an

average cell-cycle-progression time of 90 min. As MDT

lengthens to 120 min (second curve from bottom), the cell

cycle trajectory shifts to smaller size, so that the average cell-

cycle-progression time can lengthen to 120 min. Still slower

growth rates (MDT $ 150 min) drive the newborn cell into

the ‘‘sizer’’ domain, where the Cdk-control system can wait

indefinitely at the stable G1 state until the cell grows large

enough to surpass the SNIPER bifurcation. Notice that cell-

size homeostasis is possible in the ‘‘oscillator’’ domain

because of the inverse relationship between oscillator period

and cell mass close to a SNIPER bifurcation.

Cell cycles that visit the ‘‘sizer’’ domain (top two curves in

Fig. 6) show ‘‘strong’’ size control, i.e., interdivision time is

strongly negatively correlated to birth size, and cell size at the

size-controlled transition point (G1 to S in Fig. 6) shows little or

no dependence on birth size (1,2). Cell cycles that live wholly in

the ‘‘oscillator’’ domain (bottom two curves in Fig. 6) show

‘‘weak’’ size control, i.e., interdivision time is weakly neg-

atively correlated to birth size and there is no clear ‘‘critical

size’’ for any cell cycle transition. Nonetheless, such cycles still

show balanced growth (interdivision time ¼ mass doubling

time) because the cell cycle trajectory settles on a size interval

for which the average oscillatory period is identical to the cell’s

mass doubling time. Balanced growth and division is a con-

sequence of the steep decline in limit cycle period with

increasing cell size past the SNIPER bifurcation.

As Fig. 6 demonstrates, for cells in the ‘‘oscillator’’

domain, our model predicts a positive correlation between

growth rate and average cell size (faster growing cells are

bigger). This correlation is a characteristic and advantageous

feature of yeast cells: rich media favor cell growth, poor

media favor cell division (50,71). Although it is satisfying to

see our model explain this correlation in an ‘‘unforced’’ way,

we note that our interpretation of the dependence of cell size

on growth rate is predicated on the assumption that one can

vary mass doubling time without changing any rate constants

in the Cdk-control system (i.e., without changing the location

FIGURE 5 One-parameter bifurcation dia-

grams of budding yeast cells. (A) Wild-type

(this article), (B) wild-type (Chen’s 2004 model

(15)), (C) cdh1D (kah1p ¼ kah1pp ¼ 0), (D) ckiD

(ksip ¼ ksipp ¼ 0), (E) cdc20D (ks20p ¼ ks20pp ¼
0), (F) cdc14D ([Cdc14]total ¼ 0). See Fig. 2 for

key to diagrams. (A, B, and D) The large-

amplitude, stable limit cycles arise from

SNIPER bifurcations; (C) they arise from a

subcritical Hopf bifurcation followed by a

cyclic fold bifurcation. Simulations are consis-

tent with observed phenotypes: cdh1D and ckiD
are viable; cdc20D and cdc14D are inviable

(blocked in late mitosis), with much higher

activity of cyclin B-dependent kinase in

cdc20D than in cdc14D.
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of the bifurcation points in Fig. 6). Unfortunately, this

assumption is probably incorrect because changes in growth

medium (sugar source, nitrogen source, etc.) likely induce

changes in gene expression that move the SNIPER bifurca-

tion points, with poorer growth medium favoring smaller

size for completion of the cell cycle (see, e.g., (49,50)). We

have yet to sort out all the complications of size regulation in

yeast cells. In the meantime, Fig. 6 provides a useful par-

adigm for understanding ‘‘strong’’ and ‘‘weak’’ size control

in eukaryotes.

Mutants of G1 phase regulation

In this section we present bifurcation diagrams for a few of

the most important and interesting mutants described in great

detail by numerical simulations in Chen et al. (15). We start

with mutants missing the components that stabilize the G1

phase of the cell cycle: either Cdh1 (an activator of CycB

degradation) (Fig. 5 C) or Sic1 (a cyclin B-dependent kinase

inhibitor) (Fig. 5 D). In both cases the mutant cells are viable

and apparently have a short G1 phase (72–74). On the

bifurcation diagrams, however, a stable G1 steady state

exists only at very small cell size. In both mutants, the cell

cycle trajectory is operating in the ‘‘oscillator’’ domain of

the size-homeostasis diagram, and consequently these mu-

tant cells are expected to exhibit ‘‘weak’’ size control. In

these cases, the G1 phase of the cell cycle is a transient state,

as described above, and the START transition (G1-to-S) is

governed by an oscillator not a sizer. Furthermore, if these

mutant cells are grown from spores (i.e., very small size

initially), they will execute START at a much smaller size than

they do under normal proliferating conditions.

Two-parameter bifurcation diagrams (genetic-physiology

planes) for both SIC1 and CDH1 are presented in the Sup-

plementary Material (Fig. S3). The two types of mutations

have quite a similar effect on cell physiology.

Mutants of mitotic exit regulation

Although both cdc20ts and cdc14ts mutants block mitotic exit,

cdc20ts arrests at the metaphase-anaphase transition (75),

whereas cdc14ts arrests in telophase (76,77). Hence, exit from

mitosis must be a two-stage process (30), with two different

stable-steady states in which the control system can halt. The

one-parameter bifurcation diagrams (Fig. 5, E and F) reveal

these two stable steady states. For cdc20ts the steady state

has very large CycB activity (;60 au), whereas the cdc14ts

mutant arrests in a state of much lower CycB activity (;2 au).

Also, in the second case a damped oscillation is seen on the

simulation curve. These effects all derive from the fact that

if Cdc20 is inoperable, then cyclin degradation is totally

inhibited, whereas if Cdc14 is not working, then Cdc20 can

destroy some CycB—not enough for mitotic exit, but enough

to create a stable steady state of lower CycB activity (30). The

corresponding two-parameter bifurcation diagrams of cdc20ts

and cdc14ts mutants (Supplementary Material, Fig. S3, C and

D) are also qualitatively similar.

Lethality that depends on growth rate

To bind effectively to Cdc20, proteins of the core APC need

to be phosphorylated (78). If these phosphorylation sites are

mutated to nonphosphorylable alanine residues (the mutant is

called APC-A), then Cdc20-mediated degradation of CycB is

compromised, although the APC-A cells are still viable. We

assume that APC-A has a constant activity that is 10% of the

maximum activity of the normally phosphorylated form of

APC in conjunction with Cdc20. Furthermore, we assume that

APC-A has full activity in conjunction with Cdh1, in accord

with the evidence (78). In simulations (Fig. 7 A), APC-A cells

are viable and large. Because these mutant cells are delayed in

exit from mitosis, the period of the limit cycle oscillations

beyond the SNIPER bifurcation is considerably longer than in

wild-type cells. Hence, they cycle in the ‘‘oscillator’’ regime

even at MDT . 150 min.

Double mutant cells, APC-A cdh1D, are lethal at fast

growth rates but partially viable at slow growth rates (30).

Our bifurcation diagram (Fig. 7 B) shows a truncated

oscillatory regime ending at a cyclic fold bifurcation at cell

FIGURE 6 Achieving balanced growth at different growth rates. (Upper
panel) Bifurcation diagram of the budding yeast network (same as Fig. 5 A).

(Lower panel) Period of the oscillatory solutions. Cell cycle trajectories at

different MDT (solid curves) are displayed at the corresponding period

(dashed lines). Background shading shows the ‘‘sizer’’ and ‘‘oscillator’’

regimes of cell cycle regulation. Slowly growing cells spend part of their cell

cycle in a stable G1-arrested state, until they grow large enough to surpass

the SNIPER bifurcation and enter S/G2/M; these cells exhibit ‘‘strong’’ size

control. Rapidly growing cells are large enough to stay always in the

oscillatory regime, maintaining balanced growth and division by finding an

average cell-cycle time ¼ MDT. These cells display ‘‘weak’’ size control.
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mass ¼ 3.6. Simulations show that at MDT ¼ 150 min cells

stay within the small oscillatory regime, but faster growing

cells (MDT ¼ 120 min) grow out of the oscillatory regime

and get stuck in mitosis. Mutations of APC core proteins also

show growth rate-dependent viability, e.g., apc10-22 is

viable in galactose (slow growth rate) but inviable in glucose

(fast growth rate) (79).

The same dependence of viability on growth conditions

was reported for CLB2dbD clb5D mutant cells (CycB

stablized, CycA absent) (30,80), and is illustrated in our

bifurcation diagram (Fig. 7 D). In addition to these mutants,

which are defective in cyclin degradation, Cross (30) found

that the double mutant clb2D cdh1D also shows growth rate-

dependent viability. In our model these cells are viable at

MDT ¼ 200 min, but lethal at MDT ¼ 120 min (Fig. 7 C).

All of these mutations interfere with the negative feedback

loop of CycB degradation. Weak negative feedback creates

long-period oscillations that are stable attractors only at

relatively small cell mass; at large mass the activity of CycB-

dependent kinase is so strong that the mutant cells arrest in

mitosis. Fast growing cells cannot find a period of oscillation

that balances their MDT, so they overgrow the oscillatory

region and get stuck in mitosis. These results suggest that

other mutants affecting the negative feedback loop should

be reinvestigated to see if viability depends on growth rate

(for example, APC-A sic1D and cdc20ts pds1D).

Cells that show this sensitivity to growth rate are also

likely to be sensitive to random noise in the control system.

Using a model similar to ours, Battogtokh and Tyson (34)

showed that, for control systems operating close to a bi-

furcation to the stable M-like steady state, cells might get

stuck in mitosis after a few cycles if a little noise is added to

the system. This effect would show up as partial viability of a

clone at intermediate growth rates.

Incorporation of the morphogenetic checkpoint

In modeling the budding yeast cell cycle so far, we have

assumed that the G2 module of Cdk phosphorylation

(module 5 in Fig. 1) plays no role during normal cell

proliferation (81), but recently this view was challenged by

Kellogg (82). In any event, all agree that the G2 module is

necessary for the ‘‘morphogenesis checkpoint’’ in budding

yeast, which arrests a cell in G2 if the cell is unable to pro-

duce a bud (81). It is a simple job to ‘‘turn on’’ module 5 in

our generic version of the budding yeast cell cycle and to re-

produce most of the results in Ciliberto et al. (83); see Sup-

plementary Material, Fig. S4.

Mammalian cells

Many groups have modeled various aspects of the molecular

machinery controlling mammalian cell cycles (22,26,84,85),

including us (41). In this article, we insert parameter values

from Novak and Tyson (41) into our generic model to simulate

a ‘‘generic mammalian cell’’ (Fig. 8). As expected the bifur-

cation diagram of the mammalian cell (Fig. 8 B) is very similar

to the budding yeast cell (there is no G2 module in either

model). This yeast-like proliferation is observed in mammalian

cells in early development and in malignant transformation,

when the cell’s main goal is rapid reproduction.

It has been recently discovered that mouse embryos

deleted of all forms of CycD (86), deleted of both forms of

CycE (87), or deleted of both Cdk4 and Cdk6 (88) can

develop until late stages of embryogenesis and die from causes

unrelated to the core cell cycle machinery. Mice lacking Cdk2

are viable (89), and mouse embryo fibroblast from any of these

mutants proliferate normally. Our model is expected to re-

produce these results. Indeed, simulation of CycE-deleted

FIGURE 7 One-parameter bifurcation dia-

grams of budding yeast mutants defective in

cyclin degradation. (A) APC-A ([APCP] ¼ 0.1

au, constant value), (B) APC-A cdh1D ([APCP] ¼
0.1 au, kah1p ¼ kah1pp ¼ 0), (C) clb2D cdh1D
(ksbp ¼ 0.0015 min�1, ksbpp ¼ 0.015 min�1,

kah1p ¼ kah1pp ¼ 0), (D) CLB2dbD clb5D (kdbpp

¼ 0.03 min�1, kdbppp ¼ ksap ¼ ksapp ¼ 0).

Notation as in Fig 2. (A, B, and D) The large-

amplitude, stable limit cycles arise from

SNIPER bifurcations; (C) they arise from a

subcritical Hopf bifurcation followed by a

cyclic fold bifurcation (inset). All these muta-

tions compromise one or more of the negative

feedback signals that promote exit from mito-

sis. The latter three show growth rate depen-

dence of viability: slowly growing cells are

viable, but rapidly growing cells become stuck

in M phase.
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cells show almost no defect in proliferation with a cell division

mass 1.2 times wild-type cells (Supplementary Material, Fig.

S5 C). The absence of CycD has a greater effect on the system,

creating cycles with a division mass 3.6 times wild-type (Fig.

8 C). If we eliminate both CycD and CycE, we find that cells

leave G1 phase at a mass equal to 5 times wild-type division

mass (Fig. 8 D), which might be lethal for cells. These results

are related to the corresponding experiments in budding yeast,

where cln3� (CycD) and cln1� cln2� (CycE) mutants are

viable but larger than wild-type (90), whereas the combined

mutation is lethal (91).

From Chow et al. (92) we know that, although phospho-

rylation of Cdk2 (in complexes with CycE or CycA) plays no

major role in unperturbed proliferation of HeLa cells,

phosphorylation of Cdk1/CycB by Wee1 plays a role in

normal cell cycling. These reactions (module 5 in Fig. 1) are

easily added to the model, as we did in the previous section on

budding yeast. For the parameter values chosen, the bifurca-

tion diagram (Fig. 8 F) exhibits stable G1 and G2 steady

states. The cell cycle trajectories in Fig. 8, E and F, are

computed for cells proliferating at MDT ¼ 24 h, that operate

in the ‘‘oscillator’’ region of the size homeostasis curve

(Fig. 6). More slowly proliferating cells (MDT ¼ 48 h) pause

in the stable G1 state until they grow large enough to surpass

the SNIPER bifurcation at cell mass ;1. At all growth rates,

there is a transient G2 state on the trajectory (the flattened re-

gions of the red and blue curves at [actCycB] ; 0.01–0.1).

With the G2-regulatory module in place, our model is now

set up for serious consideration of the major checkpoint con-

trols in mammalian cells: 1), restriction point control, by

which cyclin D and retinoblastoma protein regulate the

activity of transcription factor E; 2), the DNA-damage

checkpoint in G1, which upregulates the production of CKI;

3), the unreplicated-DNA checkpoint in G2, which activates

Wee1 and inhibits Cdc25; and 4), the chromosome mis-

alignment checkpoint in M phase, which silences Cdc20.

Building appropriate modules for these checkpoints and

wiring them into the generic cell cycle engine will be topics

for future publications and will provide a basis for modeling

the hallmarks of cancer (93).

FIGURE 8 Analysis of a mammalian cell

cycle model. Numerical simulations: (A) nor-

mal cell (without G2 module), (C) cycDD

(CycD0 ¼ 0), (D) cycDD cycED (CycD0 ¼ 0,

ksep ¼ ksepp ¼ 0), (E) normal cell (with G2

module). One-parameter bifurcation diagrams

for normal cell cycles without (B) and with (F)

the G2 module.
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DISCUSSION

We propose a protein interaction network for eukaryotic cell

cycle regulation that 1), includes most of the important

regulatory proteins found in all eukaryotes, and 2), can be

parameterized to yield accurate models of a variety of specific

organisms (budding yeast, fission yeast, frog eggs, and

mammalian cells). The model is built in modular fashion:

there are four synthesis-and-degradation modules (‘‘4, 8, 10,

13’’), three stoichiometric binding-and-inhibition modules

(‘‘6, 9, 12’’), three transcription factor modules (‘‘3, 7, 11’’),

and three modules with multiple activation-and-inhibition

steps (‘‘1, 2, 5’’). This modularity assists us to craft models for

specific organisms (where some modules are more important

than others) and to extend models with new modules em-

bodying the signaling pathways that impinge on the under-

lying cell cycle engine.

To describe the differences in regulatory networks in yeasts,

frog eggs, and mammalian cells, we subdivided the generic

wiring diagram (Fig. 1) into 13 small modules. From a different

point of view (36,37) we might lump some of these modules

into larger blocks: bistable switches and negative feedback

oscillators. One bistable switch creates a stable G1 state and

controls the transition from G1 to S phase. It is a redundant

switch, created by interactions between B-type cyclins and

their G1 antagonists: CKIs (stoichiometric inhibitors) and

APC/Cdh1 (proteolytic machinery). Either CKI or Cdh1 can be

knocked out genetically, and the switch may still be functional

to some extent. A second bistable switch creates a stable G2

state and controls the transitions from G2 to M phase. It is also a

redundant switch, created by double-negative feedback be-

tween Cdk/CycB and Wee1 and positive feedback between

Cdk/CycB and Cdc25. A negative feedback loop, set up by the

interactions among Cdk/CycB, APC/Cdc20, and Cdc14 phos-

phatase, controls exit from mitosis. A second negative feed-

back loop, between CycA and its transcription factor, plays a

crucial role in endoreplication. These regulatory loops are

responsible for the characteristic bifurcations that (as our

analysis shows) control cell cycle progression in normal cells

and misprogression in mutant cells.

The many different control loops in the ‘‘generic’’ model

can be mixed and matched to create explicit models of spe-

cific organisms and mutants. In this sense, there is no ‘‘ideal’’

or ‘‘simplest’’ model of the cell cycle. Each organism has its

own idiosyncratic properties of cell growth and division, de-

pending on which modules are in operation, which depends

ultimately on the genetic makeup of the organism. Lethal

mutations push the organism into a region of parameter space

where the control system is no longer viable.

FIGURE 9 Attractors and their bifurcations. (A–C) Examples of vector fields in a three-dimensional state space. Solid arrows, vector field; dashed arrows,

simulation results; solid circles, stable steady state; open circles, unstable steady state; dotted circle, stable limit cycle. (D) The transitions (bifurcations)

between the vector fields of panels A–C are represented on a one-parameter bifurcation diagram. Solid line, locus of stable steady states; dashed line, locus of

unstable steady states, black dots, maximum and minimum values of response variable on a periodic orbit; SN ¼ saddle-node, HB ¼ Hopf bifurcation. The

light gray curve indicates a simulation of the response of the control system for a slow increase in signal strength. At SN2, the system jumps from the OFF state

to the ON state, and at HB it leaves the steady state and begins to oscillate with increasing amplitude. Within the region of bistability, the control system can

persist in either the OFF state or the ON state, depending on how it was prepared (a phenomenon called ‘‘hysteresis’’).
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To deepen our understanding of the similarities and

differences in cell cycle regulation in different types of cells,

we analyzed our models of specific organisms and mutants

with bifurcation diagrams. To show how cell growth drives

transitions between cell cycle phases (G1/S/G2/M), we employ

one-parameter bifurcations diagrams, where stable steady

states correspond to available arrest states of the cell cycle (late

G1, late G2, metaphase) and saddle-node and SNIPER bifur-

cation points identify critical cell sizes for leaving an arrest

state and proceeding to the next phase of the cell cycle. In this

view, cell cycle ‘‘checkpoints’’ (also called ‘‘surveillance’’

mechanisms) (4,5) respond to potential problems in cell cycle

progression (DNA damage, delayed replication, spindle

defects) by stabilizing an arrest state, i.e., by putting off the

bifurcation to much larger size than normal (18,37,40,84,94).

The most important type of bifurcation, we believe, is a

‘‘SNIPER’’ bifurcation, by which a stable steady state (G1 or

G2) gives rise to a limit cycle solution that drives the cell into

mitosis and then back to G1 phase. At the SNIPER bifurcation,

the period of the limit cycle oscillations is initially infinite but

drops rapidly as the cell grows larger. SNIPER bifurcations are

robust properties of nonlinear control systems with both

positive and negative feedback. Not only are they commonly

observed in one-parameter bifurcation diagrams of the Cdk

network, but they persist over large ranges of parameter var-

iations, as is evident from our two-parameter bifurcation

diagrams. For example, in Figs. 3 B and 4 B, SNIPER

bifurcations are observed over the entire range of gene ex-

pression for wee1 and cdc13 in fission yeast. The same is true

for SIC1 gene expression in budding yeast (Supplementary

Material, Fig. S3 B), but not so for CDC20 and CDC14 genes

(Fig. S3, C and D). In the latter cases, the SNIPER bifurcation

is lost for low levels of expression of these essential (‘‘cdc’’)

genes, and the mutant cells become arrested in late mitotic

stages, as observed. Although SNIPER bifurcations are often

associated with robust cell cycling in our models, they are not

necessary for balanced growth and division, as is evident in our

simulation of cdh1D mutants of budding yeast (Fig. 5 C and

Supplementary Material, Fig. S3 A), where the stable oscilla-

tions can be traced back to a subcritical Hopf bifurcation.

The SNIPER bifurcation is very effective in achieving a

balance between progression through the cell cycle (interdivi-

sion time (IDT)) and overall cell growth (mass doubling time

(MDT)). Cell size homeostasis means that IDT¼MDT. In Fig.

6 we show that cell size homeostasis is a natural consequence of

the eukaryotic cell cycle regulatory system, and that it can be

achieved in two dramatically different ways: by a ‘‘sizer’’

mechanism (characteristic of slowly growing cells) and an

‘‘oscillator’’ mechanism (employed by rapidly growing cells).

In the sizer mechanism, slowly growing cells are ‘‘captured’’

by a stable steady state, either a G1-like steady state (as in

budding yeast) or a G2-like steady state (as in fission yeast).

FIGURE 10 An illustrative (hypothetical) two-parameter bifurcation diagram with one-parameter cuts (1–6). See Table 2 for the nomenclature of

codimension-one and codimension -two bifurcation points.
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To progress further in the cell cycle, these sizer-controlled

cells must grow large enough to surpass the critical size at the

SNIPER bifurcation. In the oscillator mechanism, rapidly

growing cells persist in the limit cycle regime (with cell mass

always greater than the critical size at the SNIPER bifurcation),

finding a specific combination of average size and average

limit-cycle period such that IDT ¼ MDT. In the oscillator

regime, cells are unable to arrest in G1 or G2 phase because

they are too large. To arrest, they must undergo one or more

divisions, without intervening mass doubling, so that they be-

come small enough to be caught by a stable steady state, or the

SNIPER bifurcation point must be shifted to a larger size (by a

surveillance mechanism), to arrest the cells in G1 or G2.

One-parameter bifurcations diagrams succinctly capture the

dependence of the cell cycle engine (Cdk/CycB activity) on cell

growth and division (cell mass changes). By superimposing cell

cycle trajectories on the one-parameter bifurcation diagram, we

have shown how SNIPER bifurcations orchestrate the balance

between cell growth and progression through the chromosome

replication cycle. In a two-parameter bifurcation diagram, we

suppress the display of Cdk/CycB activity (i.e., the state of the

engine) and use the second dimension to display a genetic

characteristic of the control system (i.e., the level of expression

of a gene, from zero, to normal, to overexpression). On the two-

parameter diagram we see how the orchestrating SNIPER

bifurcations change in response to mutations, and consequently

howthe phenotype of the organism (viability/inviability and cell

size) depends on its genotype. The two-parameter bifurcation

diagram can be used not only to obtain an overview of known

phenotypes but also to predict potentially unusual phenotypes

of cells with intermediate levels of gene expression.

Our model is freely available to interested users in three

forms. From the web site (69) one can download .ode and .set

files for use with the free software XPP-AUT. From an .ode file

one can easily generate FORTRAN or C11 subroutines, or

port the model to Matlab or Mathematica. Secondly, one can

download an SBML version of the model from the same web

site for use with any software that reads this standard format.

Thirdly, we have introduced the model and all the mutant

scenarios discussed in this article into JigCell, our problem-

solving environment for biological network modeling (95–97).

The parameter sets in the JigCell version of budding yeast and

fission yeast are slightly different from the parameter sets

presented in this article. The revised parameter values give

better fits to the phenotypic details of yeast mutants. JigCell is

especially suited to this sort of parameter twiddling to optimize

the fit of a model to experimental details.

APPENDIX: A DYNAMICAL PERSPECTIVE ON
MOLECULAR CELL BIOLOGY

A molecular regulatory network, such as Fig. 1, is a set of chemical and

physical processes taking place within a living cell. The temporal changes

driven by these processes can be described, at least in a first approximation,

by a set of ordinary differential equations derived according to the standard

principles of biophysical chemistry (36). Each differential equation

describes the rate of change of a single time-varying component of the

network (gene, protein, or metabolite—the state variables of the network) in

terms of fundamental processes like transcription, translation, degradation,

phosphorylation, dephosphorylation, binding, and dissociation. The rate

of each step is determined by the current values of the state variables and

by numerical values assigned to rate constants, binding constants, Michaelis

constants, etc. (collectively referred to as parameters).

Given specific values for the parameters and initial conditions (state

variables at time ¼ 0), the differential equations determine how the

regulatory network will evolve in time. The direction and speed of this

change can be represented by a vector field in a multidimensional state space

(Fig. 9 A). A numerical simulation moves through state space always

tangent to the vector field. Steady states are points in state space where the

vector field is zero. If the vector field close to a steady state points back

toward the steady state in all directions (Fig. 9 B), then the steady state is

(locally) stable; if the vector field points away from the steady state in any

direction (near the open circles in Fig. 9, A and C), the steady state is

unstable. If the vector field supports a closed loop (Fig. 9 C), then the system

oscillates on this periodic orbit, also called a limit cycle. The stability of a

limit cycle is defined analogously to steady states. Stable steady states and

stable limit cycles are called attractors of the dynamical system. To every

attractor is associated a domain of attraction, consisting of all points of state

space from which the system will go to that attractor.

As parameters of the system are changed, the number and stability of

steady states and periodic orbits may change, e.g., going from Fig. 9, A to B,

or from Fig. 9, B to C. Parameter values where such changes occur are called

bifurcation points (98,99). At a bifurcation point, the system can gain or lose

a stable attractor, or undergo an exchange of stabilities. In the case of the cell

cycle, we associate different cell cycle phases to different attractors of the

Cdk-regulatory system, and transitions between cell cycle phases to bifurca-

tions of the dynamical system (37).

To visualize bifurcations graphically, one plots on the ordinate a re-

presentative variable of the dynamical system, as an indicator of the system’s

state, and on the abscissa, a particular parameter whose changes can induce

the bifurcation (Fig. 9 D). It is fruitful to think of changes to the parameter as

a signal imposed on the control system, and the stable attractors (steady

states and oscillations) as the response of the network (100). For the cell

cycle control system, the clear choice of dynamic variable is the activity of

Cdk1/CycB (the activity of this complex is small in G1, modest in S/G2, and

large in M phase). As bifurcation parameter, we choose cell mass because

we consider growth to be the primary driving force for progression through

the cell cycle. For each fixed value of cell mass, we compute all steady-state

and oscillatory solutions (stable and unstable) of the Cdk-regulatory net-

work, and we plot these solutions on a one-parameter bifurcation diagram

(Fig. 9 D).

Following standard conventions, we plot steady-state solutions by lines:

solid for stable steady states and dashed for unstable. For limit cycles, we

plot two loci: one for the maximum and one for the minimum value of Cdk1/

CycB activity on the periodic solution, denoting stable limit cycles with

solid circles and unstable with open circles. A locus of steady states can fold

back on itself at a saddle-node (SN) bifurcation point (where a stable steady

state—a node—and an unstable steady state—a saddle—come together and

annihilate one another). Between the two SN bifurcation points in Fig. 9 D,

the control system is bistable (coexistence of two stable steady states, which

we might call OFF and ON). To the left and right of SN2 in Fig. 9 D, the state

space looks like Fig. 9, A and B, respectively. A locus of steady-state

solutions can also lose stability at a Hopf bifurcation (HB) point, from which

there arises a family of small amplitude, stable limit cycle solutions (Fig. 9

D). A Hopf bifurcation converts state space Fig. 9 B into Fig. 9 C. For

experimental verification of these dynamical properties of the cell cycle

control system in frog eggs, see recent articles by Sha et al. (94) and

Pomerening et al. (63,101).

Positive feedback is often associated with bistability of a control system.

For example, if X activates Y and Y activates X, then the system may persist

in a stable ‘‘OFF’’ state (X low and Y low) or in a stable ‘‘ON’’ state (X high
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TABLE 2 Definitions and examples of codimension-one and -two bifurcations

Codimension-one bifurcations

Full name Abbreviation From/to To/from 1D example

Saddle-node SN 3 steady states 1 steady state

Supercritical Hopf HBsup 1 stable steady state Unstable steady state 1 small amplitude, stable

limit cycle

Subcritical Hopf HBsub 1 unstable steady state Stable steady state 1 small amplitude, unstable

limit cycle

Cyclic-fold CF No oscillatory solutions 1 stable oscillation 1 1 unstable oscillation

Saddle-node infinite-period SNIPER 3 steady states Unstable steady state 1 large amplitude

oscillation

Saddle-loop SL Unstable steady state (saddle) Unstable steady state 1 large amplitude

oscillation

Codimension-two bifurcations

Full name Abbreviation From/to To/from 1D example 2D example

Saddle-node loop SNL SN 1 SL SNIPER

Degenerate Hopf dHB HBsup HBsub 1 CF

Takens-Bogdanov TB SN 1 HB 1 SL SN

CUSP CUSP Bistability (2 SN) Monostability
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and Y high). Similarly, if X inhibits Y and Y inhibits X (double-negative

feedback), the system may also persist in either of two stable steady states

(X high and Y low, or X low and Y high). Typically, bistability is observed

over a range of parameter values (kSN1 , k , kSN2). Negative feedback (X

activates Y, which activates Z, which inhibits X) may lead to sustained

oscillations of X, Y, and Z, for appropriate choices of reaction kinetics and

rate constants. These oscillations typically arise by a Hopf bifurcation, with a

stable steady state for k, kHB giving way to stable oscillations for k. kHB.

In Table 2 we provide a catalog of common codimension-one bifurca-

tions (bifurcations that can be located, in principle, by changing a single

parameter of the system). From a one-parameter bifurcation diagram,

properly interpreted, one can reconstruct the vector field (see lines A, B, and

C in Fig. 9 D), which is the mathematical equivalent of the molecular wiring

diagram. There are only a small number of common codimension-one

bifurcations (see Table 2); hence, there are only a few fundamental signal-

response relationships from which a cell must accomplish all the complex

signal processing it requires. Of special interest to this article is the SNIPER

bifurcation, which is a special type of SN bifurcation point: after annihilation

of the saddle and node, the remaining steady state is unstable and surrounded

by a stable limit cycle of large amplitude. At the SN bifurcation point, the

period of the limit cycle is infinite (SNIPER ¼ saddle-node infinite-period).

As the bifurcation parameter pulls away from the SNIPER point, the period

of the limit cycle decreases precipitously (see, e.g., Fig. 6).

To continue this process of abstraction, we go from a one-parameter

bifurcation diagram to a two-parameter bifurcation diagram (Fig. 10). As the

two parameters change simultaneously, we follow loci of codimension-one

bifurcation points in the two-parameter plane. For example, the one-

parameter diagram in Fig. 9 D corresponds to a value of the second

parameter at level 6 in Fig. 10. As the value of the second parameter

increases, we track SN1 and SN2 along fold lines in the two-parameter

plane. Between these two fold lines the control system is bistable. We also

track the HB point in the two-parameter diagram for increasing values of the

second parameter. We find that, at characteristic points in the two-parameter

plane, marked by heavy ‘‘dots’’ in Fig. 10, there is a change in some qual-

itative feature of the codimension-one bifurcations. Because two parameters

must be adjusted simultaneously to locate these ‘‘dots’’, they are called

codimension-two bifurcation points. In Fig. 10 (and Table 2) we illustrate

the three most common codimension-two bifurcations: degenerate Hopf

(dHB), saddle-node-loop (SNL), and Takens-Bagdanov (TB). From a two-

parameter bifurcation diagram, properly interpreted, one can reconstruct a

sequence of one-parameter bifurcation diagrams (see lines 1–6 in Fig. 10),

which are the qualitatively different signal-response characteristics of the

control system. There are only a small number of generic codimension-two

bifurcations; hence, there are limited ways by which one signal-response

curve can morph into another. These constraints place subtle restrictions on

the genetic basis of cell physiology.

In the one-parameter bifurcation diagram, we choose as the primary

bifurcation parameter some physiologically relevant quantity (the ‘‘signal’’)

that is inducing a change in behavior (the ‘‘response’’) of the molecular

regulatory system. In the two-parameter diagram, we propose to use the

second parameter as an indicator of a genetic characteristic of the cell (the

level of expression of a particular gene, above and below the wild-type

value) with bearing on the signal-response curve. In this format, the two-

parameter bifurcation diagram provides a highly condensed summary of the

dynamical links from a controlling gene to its physiological outcome (its

phenotypes). The two-parameter diagram captures the sequence of dynam-

ically distinct changes that must occur in carrying phenotype of a wild-type

cell to the observed phenotypes of deletion mutants (at one extreme) and

overexpression mutants (at the other extreme). In between, there may be

novel, physiologically distinct phenotypes that could not be anticipated by

intuition alone. Examples of this analysis are provided in Figs. 3 and 4, in the

Supplementary Material, and on our website.

For alternative explanations of bifurcation diagrams, one may consult the

appendix to Borisuk and Tyson (33) or the textbooks by Strogatz (99) or

Kaplan and Glass (102).
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