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Abstract

Geckos (Gekko gecko) have evolved elaborate adhesive structures which allow them to move along vertical walls and

ceilings against their body weight. There is strong evidence that the adhesion ability of geckos is due to the van der

Waals interaction between a contacting surface and hundreds of thousands of keratinous hairs or setae on the gecko�s
foot; each seta is 30–130 lm long and contains hundreds of 200–500 nm projections or spatulae. While contact mechan-
ics suggests that the refinement of structure size results in greater adhesive strength, some important questions remain

unsolved: What is the significance of nanometer length scale for adhesion? What is the optimum adhesive strength of a

structure? How can a structure optimized for attachment simultaneously allow easy detachment, as reversible adhesion

is crucial for the animal�s movement? In this paper, we show that the nanometer range of the spatula size of geckos may
have evolved to optimize the adhesive strength and maximum tolerance of imperfect adhesion (for robustness). Our

analysis also indicates that the asymmetrical structure of the gecko�s seta structure may have been designed to simul-
taneously allow robust attachment and easy detachment.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Geckos (Gekko gecko) and many insects possess

extraordinary ability to move on vertical surfaces

and ceilings. To these professional climbers, it is
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not difficult to wander, race, sprint and even fight

on a smooth ceiling; rapid switches between

attachment and detachment seem simple, easy

and effective. Comparative studies of hundreds of

insects and other animal species revealed that bio-
logical attachment systems basically converge to

two principal designs: a ‘‘hairy’’ system consisting

of finely structured protruding hairs with size

ranging from a few hundred nanometers to a few

microns, dependent upon the animal species, and

a ‘‘smooth’’ system with relatively smooth surface

covering a fine tissue microstructure (Scherge and
ed.
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Gorb, 2001; Niederegger et al., 2002; Gorb et al.,

2000). Both systems are able to adapt to the profile

of a contacting surface. Geckos, beetles, flies and

spiders have adopted the hairy design. Experi-

ments using freezing-substitution techniques and
scanning electron microscopy have revealed many

details of the ultrastructure of biological attach-

ment pads. A gecko is found to have hundreds

of thousands of keratinous hairs or setae on its

foot; each seta is 30–130 lm long and contains

hundreds of protruding submicron structures

called spatulae (Fig. 1). Possible mechanisms of

biological attachment include mechanical surface
interlocking, fluid secretion (capillarity and viscos-

ity) and molecular adhesion (van der Waals inter-

action). It is only recently that the development of

MEMS techniques has allowed the adhesive force

of geckos to be accurately measured at the level

of a single seta (Autumn et al., 2000), with evi-

dence that the dominant adhesion mechanism of

geckos is the van der Waals interaction (Autumn
et al., 2002).

If we consider the animal hairy systems, the

density of setae strongly increases with the body

weight of the animal, and geckos have the highest

hair density among all animal species that have

been studied (Scherge and Gorb, 2001). Various
Fig. 1. The hierarchical adhesive structures of Gekko gecko. A toe o

contains hundreds of spatulae. (a) and (b): scanning electron microgra

the finest terminal branches of seta. ST: seta; SP: spatula; BR: branc
mechanical models have been developed to model

specific hairy attachment systems, for instance the

fiber arrays structure (Persson, 2003; Hui et al.,

2002). In particular, the Johnson–Kendall–Ro-

berts (JKR) model (Johnson et al., 1971) of con-
tact mechanics has been used to show that

splitting of a single contact into multiple smaller

contacts always results in enhanced adhesion

strength (Arzt et al., 2002, 2003; Autumn et al.,

2002), thus providing a theoretical basis for under-

standing the hairy attachment system. One of the

puzzling predictions of the JKR type model is that

the spatula structure of geckos can be split ad
infinitum to support arbitrarily large body

weights. This is clearly impossible as the adhesion

strength cannot exceed the theoretical strength of

van der Waals interaction.
2. The JKR type contact mechanics model

To understand the apparent paradox caused by

the JKR type model, consider a cylindrical spatula

with a hemispherical tip with diameter 2R in con-

tact with a smooth surface, as shown in Fig. 2a.

The profile of the hemispherical tip can be de-

scribed by a function z ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
, where z
f gecko contains hundreds of thousands of setae and each seta

phs of rows of setae at different magnifications and (c): spatulae,

h.



Fig. 2. Predictions of JKR type contact mechanics models for the adhesion strength of an elastic cylinder with a hemispherical tip on a

rigid substrate: (a) geometry of a hemispherical tip and its parabolic approximation; (b) classical models of contact mechanics (JKR,

MD, DMT) have adopted the parabolic approximation of the tip geometry and make incorrect predictions at very small sizes. The

exact solutions for a hemispherical tip are labeled as ‘‘hemispherical undeformable’’ if elastic deformation of the tip is neglected and as

‘‘hemispherical deformable’’ if elastic deformation is taken into account. Unlike the JKR type models, the exact solutions show

saturation at the theoretical strength of van der Waals interaction at very small sizes.
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measures the height and r the planar radius of a

point on the tip. The JKR model, as well as the

Maugis–Dugdale (MD) model (Maugis, 1992)

and the Derjaguin–Muller–Toporov (DMT)

model (Derjaguin et al., 1975), are all based on
the parabolic approximation z= r2/2R (dashed line

in Fig. 2a) of the local geometry of the contacting

body. Under the parabolic approximation, the

JKR, MD and DMT models all predict unlimited

increase in adhesive strength as the size of the con-

tacting object is reduced (i.e., decreasing R), as

shown in Fig. 2b. However, if the exact profile

z ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
, instead of the approximation

z¼ r2/2R, is used for the spatula tip, the adhesion

strength will be capped by the theoretical strength

of the van der Waals interaction r0. This can be
most simply shown by the following calculations:
First, consider a DMT type model in which the

deformation of contacting objects is neglected

and assume a simple Dugdale type interaction

law (Dugdale, 1960) where the force is equal to

r0 within a critical interacting distance Dc/r0 and
zero beyond this distance, Dc being the van der
Waals interaction energy. The pull-off force, Pc,

could be calculated as following (Bradley, 1932):

Pc ¼
Z R

0

2prrdr: ð1Þ

The relation between the surface separation h and

radius r is given by

h ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
: ð2Þ

Therefore

ðR� hÞdh ¼ rdr 06 h6
Dc
r0

� �
: ð3Þ

Substituting Eq. (3) into Eq. (1) and using the

Dugdale interaction law, we immediately obtain

Pc

pR2r0
¼ 2g � g2 g < 1;

1 gP 1;

�
ð4Þ

where g=Dc/(Rr0). This result is plotted in Fig. 2b
as the curve labeled ‘‘hemispherical undeforma-

ble’’. In contrast to the JKR model, there is clearly

a saturation of adhesion strength below a critical
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size. When the radius of the spatula is smaller than

D c/r0, the contact achieves its maximum strength,
which is equal to the theoretical strength of the van

der Waals interaction r0 (see Fig. 2b). The critical
size for strength saturation Dc/r0 is the effective
range of the van der Waals interaction, which is

typically on the order of a few atomic spacings.

It is interesting to note that the classical models

of JKR, DMT and MD in contact mechanics are

unable to capture the process of strength

saturation.

If elastic deformation is considered in the anal-

ysis of adhesive contact, an explicit expression for
the pull-off force cannot be obtained. We have

developed a numerical procedure to treat the case

of a deformable hemispherical tip similar to the

previous studies (Greenwood, 1997; Johnson and

Greenwood, 1997), but with an important differ-

ence in that the hemispherical geometry is now

exactly taken into account. Assuming a Len-

nard–Jones type interaction law between an elastic
spatula and a rigid substrate (Greenwood, 1997),

the pull-off force is calculated and plotted in Fig.

2b as the curve labeled ‘‘hemispherical deforma-

ble’’. It is seen that the pull-off force indeed asymp-

totically approaches the theoretical strength of the

van der Waals interaction as the spatula size

decreases.

The calculations with a hemispherical model of
a spatula tip have confirmed that the maximum

adhesive strength is the theoretical strength of

the van der Waals interaction. However, for the

hemispherical tip, the adhesive strength does not

reach the maximum strength until the tip size falls

below a few atomic spacings. This suggests that a

hemispherical tip is a relatively poor design for

adhesion. Indeed, broad studies of biological
attachment devices (Scherge and Gorb, 2001) re-

vealed that the spherical shape of contact elements

is a very rare case in nature. Biological spherical

contacts usually consist of an extremely compliant

material (Spolenak et al., 2004).

What is the best shape of the spatula tip for

optimizing adhesive strength? Here we only discuss

the simplest case of a cylindrical spatula in fric-
tionless contact with a rigid substrate, resembling

a soft biological tissue in contact with a hard mate-

rial. In this case, the best shape is simply a flat
punch because there is no stress concentration

for a flat punch in contact with a smooth rigid sub-

strate if there are no defects over the contacting re-

gion; under such conditions the adhesive strength

would be identical to the theoretical strength of
the van der Waals interaction. In other words, a

flat-ended spatula adhering to a flat rigid substrate

would have the theoretical adhesion strength

regardless of the size of contact. The only problem

with such a design is that the strength would be

highly sensitive to the existence of defects in the

contact region. Slight variations in geometrical

irregularities, impurities, contaminants, surface
roughness, trapped air bubbles, and/or slightly

skewed contact angles form crack-like defects

and reduce the actual contact area, inducing stress

concentration along the edge of the contact region

and causing adhesion failure as the crack-like flaws

spread.
3. Selection of nanometer size for robust adhesion

The most terminal structure of a gecko�s attach-
ment mechanism consists of the spatula (Fig. 1c)

of a few hundred nanometers in diameter. Here

we model the spatula as an elastic cylinder. Why

is the spatula size in the nanometer range? To

understand this, we model the spatula as an elastic
cylinder with a flat tip. The radius of the cylinder is

R. Imperfect contact between the spatula and sub-

strate is assumed such that the radius of the actual

contact area is a=aR, 0<a<1, as shown in Fig.
3a; the outer rim aR< r<R represents flaws or re-
gions of poor adhesion. The adhesive strength of

such an adhesive joint can be calculated by treat-

ing the contact problem as a circumferentially
cracked cylinder, in which case the stress field near

the edge of the contact area has a square-root sin-

gularity with stress intensity factor (Tada et al.,

2000)

KI ¼
P

pa2
ffiffiffiffiffiffi
pa

p
F 1ðaÞ; ð5Þ

where F1(a) varies in a narrow range between 0.4
and 0.5 for 0 6 a 6 0.8 (a=1 corresponds to per-
fect, defect-free contact). Substitute Eq. (5) into

the Griffith condition
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Fig. 3. Adhesion of a flat-ended cylinder to a rigid substrate. The actual contact area is assumed to be smaller than the total area of the

punch due to imperfections along the outer rim of the punch. This contact model is elastically equivalent to a cracked cylinder. (a)

Geometry of a flat punch partially adhering to a substrate. (b) Variations of the apparent adhesion strength for different actual contact

areas according to Griffith criterion and theoretical strength. The JKR prediction of a hemispherical tip is plotted as a dashed line for

comparison. The plot shows that a flat punch induces much larger adhesive forces in comparison with a hemispherical tip, and that the

adhesion strength reaches the theoretical strength of van der Waals interaction at a critical contact size.
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K2I
2E� ¼ Dc; ð6Þ

where the factor 2 is due to the rigid substrate. The

apparent adhesive strength normalized by the the-
oretical strength, r̂c ¼ Pc=r0pR2, is obtained as

r̂c ¼ ba2w; ð7Þ
where

w ¼
ffiffiffiffiffiffiffiffiffiffiffi
DcE�

Rr20

s
; ð8Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=paF 21

q
; E� ¼ E=ð1� m2Þ; ð9Þ

E and m being the Young�s modulus and Poisson�s
ratio, respectively. The adhesive strength is a linear

function of the dimensionless variable w with slope
ba2. The maximum adhesion strength is achieved

when the pull-off force reaches Pc=r0pa
2, or

r̂c ¼ a2, in which case the traction within the con-
tact area uniformly reaches the theoretical strength

r0. This saturation in strength occurs at a critical
size of the contact area
Rcr ¼ b2
DcE�

r20
: ð10Þ

Fig. 3b plots the apparent adhesive strength for

a=0.7, 0.8 and 0.9, together with the case of flaw-
less contact (a=1). The corresponding result of a
hemispherical tip based on the JKR model is plot-
ted as a dashed line for comparison. Clearly, the

flat-ended spatula achieves the maximum adhesion

strength much more ‘‘quickly’’ than the hemi-

spherical configuration.

The critical contact size for saturation of

adhesion strength can be estimated as follows.

Assume the actual contact area is about 50%

of the total area available for contact, corre-
sponding to a@0.7. The parameters for the

van der Waals interaction and the Young�s
modulus of the spatula (keratin) are selected as

follows:

r0 ¼ 20 MPa; Dc ¼ 0:01 J=m2;

Dc
r0

ffi 0:5 nm; E� ¼ 2 GPa: ð11Þ
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This gives the critical size for strength saturation

as

Rcr ffi 225 nm: ð12Þ
Interestingly, the radius of the gecko�s spatula is
typically around 100–250 nm. The above analysis

suggests that the nanometer size of the spatula

structure of geckos may have evolved to achieve

optimization of adhesive strength in tolerance of

possible contact flaws.

Below the critical size Rcr, it can be expected

that the adhesion traction within the contact re-
gion is maintained uniformly at the theoretical

strength, indicating that the stress concentration

near the edge of the contact area should vanish

for sufficiently small contact. To illustrate this

point, we have analyzed in some detail the elastic

punch model with a=0.7 using a cohesive surface
model developed by Tvergaard and Hutchinson

(1996) implemented in a finite element code (Klein
et al., 2001). 2 Other cohesive models (Barenblatt,

1959; Willis, 1967; Rose et al., 1981; Xu and Nee-

dleman, 1994; Rahulkumar et al., 2000) could in

principle also be used to model molecular adhe-

sion. The Tvergaard–Hutchinson model is selected

because it preserves the van der Waals energy

regardless of the peeling orientation. Other cohe-

sive models with various considerations of tension
versus shear dominated separation do not neces-

sarily preserve the interaction energy. The compu-

tational results of the pull-off force plotted in

Fig. 4a clearly indicate saturation in the adhe-

sion strength as the critical contact size is

approached.

Fig. 4b shows the traction distribution within

the contact region at the critical pull-off force for
four different spatula sizes, corresponding to the

four data points in Fig. 4a. It is observed that

the traction becomes more uniform with decreas-

ing structure size. Below the critical size, the

stress concentration near the edge of the con-

tact area completely vanishes and the adhesive

structure maintains a state of uniform contact
2 The computation is performed based on the code devel-

oped by Dr. Patrick Klein of Sandia National Laboratory

(http://tahoe.ca.sandia.gov).
force despite of the crack-like flaw around the

outer edge.

The selection of nanometer size for robust

design of materials has already been discussed in

our previous study (Gao et al., 2003; Gao and
Yao, 2004) of fracture strength optimization in

the nanocomposite structure of biological materi-

als. The present study of adhesion strength in bio-

logical attachment structures again highlights the

prevalence of flaw-tolerant design in biology.
4. Anti-bunching condition of the spatula structure

The van der Waals interaction may cause clus-

tering or bundling of adjacent spatulae due to their

relatively large aspect ratios. Stability of spatulae

against bundling is a necessary condition for their

viability as an adhesion structure. Recent study

(Geim et al., 2003) has demonstrated that bunch-

ing leads to reduction of adhesive strength in the
microfabricated artificial gecko structure made of

polyimide micro-hairs. To gain some insight into

this issue, we model the spatula as a cantilever

beam with square cross section. The configura-

tion of a pair of adjacent spatulae in the free-

standing state is shown in Fig. 5a, and that

in the state of clustering is shown in Fig. 5b.

Stability against bunching is interpreted as that
the bundled state of Fig. 5b should be unstable

and will spontaneously detach if formed. This

problem can be treated as a crack problem with

detachment condition (Hui et al., 2002; Tada

et al., 2000)
E� P
8cl4

3D2t3
; ð13Þ

where c is the surface energy per unit area of each
surface and the geometrical parameters l, D, t are
shown in Fig. 5a. A different condition of bunch-

ing instability has been derived by Persson (2003)

who compared the energy of fibers bent over a cur-

vature to that of straight fibers. In contrast, there

is no need to consider a bent fiber structure in

our analysis. As a rough estimate we may choose

(e.g., Autumn et al., 2000, 2002)

http://tahoe.ca.sandia.gov


Fig. 4. Numerical results of the Tvergaard–Hutchinson model for the adhesion of a flat-ended cylinder partially adhering to a rigid

substrate. The real contact area is assumed to be 50% of the total area of the punch (a=0.7). (a) The normalized pull-off force shows
saturation at a critical size, in good agreement with the simple analysis from Griffith criterion. (b) The traction distribution within the

contact area becomes more uniform as the size is reduced. Below the critical size, the traction becomes uniform and equal to the

theoretical strength of van der Waals interaction. An arbitrary scale has been used here to plot the traction distribution.
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D ¼ 0:6 lm; t ¼ 0:2 lm;

l ¼ 2 lm; c ¼ 0:01 J=m2: ð14Þ

The stability condition (13) suggests a minimum

Young�s modulus of 0.15 GPa. Biological materi-
als such as keratin have Young�s modulus on the
order of a few GPa and thus meet the stability con-

dition. For a hemispherical tip, the critical size to

achieve theoretical strength is on the order of

t=1 nm. At this length scale, the stability condi-
tion requires a minimum Young�s modulus on
the order of 105 GPa, which is impossible to meet.

The advantage of the flat punch design of the spat-

ula over the hemispherical design is thus two-fold.

The flat punch design not only allows the system

to maximize adhesive strength more efficiently,
but it is also required from the point of view of
structural stability.
5. Hierarchical design for reversible adhesion: the

asymmetrical structure of a seta

A unique feature of biological attachment sys-

tems is that the adhesion must be easily overcome
to allow rapid switches between attachment and

detachment during the animal�s motion. It seems
that geckos achieve such reversibility via a unique

design of their seta structure, which is one hierar-

chy above the spatula structure. A seta contains

hundreds of spatulae and has characteristic sizes

on the order of tens of microns. While spatulae



Fig. 5. Stability of two adjacent elastic protrusions (spatulae) against self-bundling. Configurations of two (a) free standing and (b)

self-bundled protrusions. The stability of the structure is defined such that the bundled configuration would spontaneously separate

into the free standing configuration.
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provide adhesion strength, hundreds of thousands

of setae act together to provide the total attach-

ment force to support the gecko�s body weight.
At the level of a single seta, spatulae could be

modeled as a cohesive layer over the tip surface

of the seta. We have constructed a finite element
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Fig. 6. Analysis of the pull-off force of a single seta as a function of
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This allows for the possibility of fast switch between attachment and
model of a single seta, as shown in Fig. 6. A layer

of a cohesive element is inserted between the con-

tacting surface at the tip of the seta and the rigid

substrate. The cohesive energy of the adhesive layer

(spatula) includes not only the van der Waals en-

ergy but also the elasticity of the spatula. This en-
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ergy is estimated to be around 0.4 J/m2, about an

order of magnitude higher than the van der Waals

energy (Dc=0.01–0.05 J/m2). Material properties
of setae are selected as E=1 GPa, m=0.3. A pulling
force at an angle h with respect to the contact sur-
face is exerted at the other end of the seta to simu-

late the muscular action of the animal.

The computational results (Fig. 6) show that

there exist two mechanisms of adhesive failure,

detachment from or sliding with respect to the sub-

strate, dependent upon the pulling angle h. For h
smaller than 30�, sliding occurs before detachment,
whereas for h larger than 30�, detachment becomes
the dominant mechanism of adhesion failure.

Maximum attachment force is achieved when force

is exerted at around a 30� angle. Interestingly,
both the parallel and perpendicular components

of the detachment force reach their maximum at

the 30� orientation. These force components play
a crucial role when a gecko moves along vertical

walls or ceilings. The analysis suggests that the
gecko would apply muscular force to pull at a

30� angle in order to maximize the adhesive force
when strong attachment is desired. The pull-off

force at 90� (the peeling mode) is an order of mag-
nitude smaller than the maximum attachment

force at 30�, suggesting that the gecko would use
peeling for detachment. This is consistent with
Fig. 7. Snapshots of gecko attachment and detachment from a glass c

and joint design allowing so-called digital hyperextension.
the observation of gecko motion (Russell, 1975).

Therefore, it appears that the asymmetrically

designed seta structure is particularly suitable for

rapid switching between attachment (30� pulling)
and detachment (90� peeling).
The reason that the adhesion force at the pull-

ing direction of 30� is much larger than that at
90� is due to the particular design of the seta which
allows the most vulnerable point of failure initia-

tion near the inner edge of contact to be ‘‘locked’’

(30�) and ‘‘unlocked’’ (90�). When the pulling

force is applied at 30�, there is a net moment in
the clockwise direction. This moment causes a
local compressive stress near the inner edge of con-

tact, effectively ‘‘locking’’ this site for crack initia-

tion. When the force is applied above 30� and
approaches the peeling mode, the resultant mo-

ment becomes counter-clockwise and helps

‘‘unlocking’’ the inner edge of contact as a crack

initiation site for easy detachment. This design

allows the gecko to switch between attachment
and detachment simply by controlling the action

of different muscles. In addition to skeletal muscles

common to most animal species, the gecko has

evolved special muscles and joint design allowing

so-called digital hyperextension, which is essential

for the peeling action required for detachment

(Russell, 1975), as shown in Fig. 7.
eiling. Peeling is used to achieve detachment via special muscles
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6. Summary and outlook

In this paper, we presented an example of how

nature designs hierarchical structures to achieve ro-

bust and reversible attachment in the adhesion struc-
tures of geckos. We have shown that the nanometer

size of the spatula, the most terminal adhesive struc-

ture of geckos, may have evolved to achieve maxi-

mum adhesion strength and at the same time

tolerate potential contact flaws. The tolerance of

flaws is the key to robust design and robustness is

the key to survival. A similar concept has been previ-

ously developed (Gao et al., 2003) for the nanocom-
posite structure of biological materials. Here we

have also shown that the limited range of materials

choice (keratinous proteins)makes it evenmore nec-

essary to evolve optimum structures to maximize

adhesion and at the same time ensure structural sta-

bility. On the higher level of hierarchy, the asymmet-

rical structural design of setae may have evolved to

achieve reversible adhesion allowing for easy and
quick switches between attachment and detachment

essential for locomotion. We hope that this study

would serve as a small example of how mechanics

can explain the principles of biological design.

In the 21st century, mechanics as a field will face

many new challenges, one of which will be to assist

materials scientists and engineers to develop novel

hierarchical materials by nanoscale engineering.
The development of nanotechnology promises to

eventually enable us to design materials using a

bottom-up approach, i.e., by constructing complex

functional material systems by tailor-designing

structures from atoms up. In this concerted venture

of far-reaching significance to humanity, mechan-

ics will have to revive itself and play a leadership

role in developing fundamental theories of nano-
materials engineering. Currently, we barely have

any theoretical basis on how to design a hierarchi-

cal material system to achieve a particular function.

Nature can play the role of teacher, at least in the

beginning stage, and mechanics will lead the way.
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