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Abstract Temperature is the most significant factor controlling developmental tim-
ing of most temperate poikilotherms. In the face of climate change, a crucial question
is how will poikilothermic organisms evolve when faced with changing thermal envi-
ronments? In this paper, we integrate models for developmental timing and quantita-
tive genetics. A simple model for determining developmental milestones (emergence
times, egg hatch) is introduced, and the general quantitative genetic recursion for the
mean value of developmental parameters presented. Evolutionary steps proportional
to the difference between current median parameters and parameters currently se-
lected for depend on the fitness, which is assumed to depend on emergence density.
Asymptotic states of the joint model are determined, which turn out to be neutrally
stable (marginal) fixed points in the developmental model by itself, and an associated
stable emergence distribution is also described. An asymptotic convergence analysis
is presented for idealized circumstances, indicating basic stability criteria. Numerical
studies show that the stability analysis is quite conservative, with basins of attrac-
tion to the asymptotic states that are much larger than expected. It is shown that
frequency-dependent selection drives oscillatory dynamics and that the asymptotic
states balance the asymmetry of the emergence distribution and the fitness function.
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1 Introduction

Contemporary populations face historically unprecedented rates of environmental al-
teration, including habitat changes, species introductions, and global climate change
(Chesson and Huntly 1997) that may substantially affect global diversity as well as
distribution and abundance of natural resources. Thomas et al. (2004) predict, purely
on ecological considerations, that 15–37% of species in their study areas face extinc-
tion as a direct consequence of global warming. Climate change will have particular
impact on poikilotherms, since temperature drives life history events (phenology) in
these organisms. Insects, and especially eruptive insects, may become the primary
agents of large-scale ecological change in an era of climate warming (Logan et al.
2003).

Long-term persistence of populations in changing environments depends on their
ability to disperse to suitable environments, respond via phenotypic plasticity, or
adapt (Holt 1990). The rate and trajectory of adaptation is limited by the genetic
architecture of traits under selection. Recent focus on understanding limits of adapta-
tion in changing environments has resulted from empirical and conceptual advances.
First, there is growing recognition that evolution and adaptation occur over eco-
logically relevant time scales (Thompson 1998; Hendry et al. 2000; Reznick and
Ghalambor 2001). Second there is increasing emphasis on incorporating evolution-
ary parameters into demographic models. Combined approaches are useful in mod-
elling extinction probabilities in changing environments (Lynch and Lande 1993;
Gomulkiewicz and Holt 1995) and in theoretical treatments of evolution of species
interactions (Johnson and Agrawal 2003). The basic idea is to treat a parameter in
a deterministic demographic model as a heritable trait which can change from gen-
eration to generation in response to selective pressure. A fitness function (per capita
growth rate for individuals with the particular trait) must be determined, and the se-
lective pressure on the trait can then be determined from the distribution of trait values
and the fitness function. While these studies have been illuminating, and underscore
the importance of including evolutionary perspectives in quantitative understandings
of species abundance and dispersion, the link between adaptation and warming is
weak because the evolving traits have no direct connection to climate variables.

In this paper, we will outline how a well-established model for insect phenology
can be connected with a quantitative genetic approach to the evolution of phenologi-
cal traits. The traits under selection control the rates of development in demographic
models for life cycle timing in insects (see Powell and Logan 2005 for a review). Tem-
perature has a direct and explicit role, controlling the timing of life history events in-
cluding oviposition, egg hatch, pupation, and emergence of adults, allowing climatic
variables to be tied directly to the number of (surviving) offspring produced per adult
(i.e. fitness). Variability in developmental rate is represented by a distribution of pa-
rameters across the population within a generation. Since differing traits produce dif-
fering emergence times and, therefore, differing fitness values, the mean trait value
changes from generation to generation according to a quantitative genetic recursion.
Evolution of phenology under the proximal influence of temperature occurs at a rate
depending on the heritability of the trait and the variance of its distribution according
to the univariate breeder’s equation. As fitness relies on synchronised emergence of
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individuals, selection in this model takes the form of frequency-dependent selection,
and thus the fitness landscape in the model evolves. This is in contrast to frequency-
independent selection where the fitness landscape remains unchanged.

We also characterize the attracting states of the model. The temporal dynamics of
phenology by itself are organized by fixed points of a circle map of emergence dates
on a cyclic domain of seasonal days, as will be reviewed in the first section below.
The evolution of median phenological parameters change the location of this fixed
point from generation to generation for most of the population, ultimately leading
to a state which would be only marginally stable in the context of the phenological
model alone. Asymptotic dynamics are examined using steepest descents, and results
confirmed and explored numerically.

2 Modelling Phenology and the Evolution of Heritable Parameters

We begin by briefly reviewing phenology models, so that the influence of rate para-
meters (the traits under evolution) on life cycle timing (the phenotype under selection)
can be understood.

2.1 Developmental Timing with Direct Temperature Control

Deterministic models of the relationship between environmental variables, particu-
larly temperature, and developmental timing (phenology) are based on the notion of
relating the rate of progress through a life stage to empirical rate functions. For organ-
isms under direct temperature control (that is, lacking diapause or other physiological
timing mechanisms (Danks 1987)), this results in a particularly simple mathematical
approach. Let aj (t) denote the fraction of development toward completion which has
occurred in life stage j by time t . Then

daj

dt
= Rj

(
T (t)

)
, (1)

where Rj is the rate of development for stage j , which depends on environmental
temperature T (t). Developmental milestones are those times, tj , at which one life
stage terminates and another begins, generally associated with observable develop-
mental events (the hatching or laying of eggs, or larval molts). Thus, (1) has initial
condition aj (tj−1) = 0, indicating that an organism begins life stage j immediately
on termination of the previous stage.

Equation (1) can be solved by integrating

aj (t) =
∫ t

tj−1

Rj

(
T (τ)

)
dτ. (2)

Given one developmental milestone, tj−1, the next milestone, tj , is determined im-
plicitly,

1 = aj (tj ) =
∫ tj

tj−1

Rj

(
T (τ)

)
dτ. (3)
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While the original equation is simple, in most cases tj is a nonlinear function of tj−1,
filtered through the nonlinear dependence of developmental rate on temperature and
the complicated dependence of temperature on time.

Suppose an insect completes its life cycle in N stages, beginning with eggs in
stage 1 and terminating with egg-laying (oviposition) in stage N . Let tn0 denote the
oviposition date in generation n. Given temperatures and rates for a particular organ-
ism, the timing of life-history events can be calculated using (3), giving a sequence
of dates tn0 , t1, . . . , tN−1, tN = tn+1

0 . Since tN denotes the end of one generation and
the beginning of another, and is a deterministic function, G, of tn0 , we can write

tn+1
0 = G

(
tn0

)
. (4)

The G-function encapsulates the deterministic relationship between environmental
temperatures and developmental timing.

As discussed by Powell and Logan (2005), the stable fixed points and attracting
orbits of G, modulo one or more years, organize the distribution of emergence and
oviposition for a population. Assuming that all individuals have the same rate curves
and parameters, it can be shown that emergence dates for the entire population will
be attracted to an orbit of oviposition dates on the periodic cycle of Julian days from
1 to 365. The voltinism of a population is the number of generations completed (on
average) in a year, and is equivalent to the winding number of the G-function map
for a given, periodic temperature signal.

Of particular interest for temperate insects are univoltine (one generation per year)
fixed points, for which the life cycle is locked to the seasonal temperature cycle. This
amounts to the intersection of the graph of G(t) and the line t + 365 (see Fig. 1). The
attracting orbit, in this case, is simply one or more stable fixed points, which synchro-
nize the population (thus improving chances of finding mates, lowering per-capita
predation) as well as time critical life stages (so that, for example, cold-hardened or
drought-resistant stages emerge at appropriate times of year, or are timed to occur
during the presence of resources). The advantage of having an integral number of
life stages per year is so great that many insects have evolved specific physiological
mechanisms, in particular diapause (Zaslavski 1996) to maintain integral voltinism.
However, diapause generally limits an organism to geographic regions where the sig-
nals controlling its inception and breaking are seasonally appropriate. Accordingly,
many organisms do not exhibit diapause, and are therefore said to be under direct
temperature control (Danks 1987). In the case of direct temperature control, seasonal
variation of temperatures and nonlinear dependence of developmental rates on tem-
peratures is sufficient to establish integral voltinism (see Jenkins et al. 2001; Powell
et al. 2000).

The purpose of this paper is to use the quantitative genetic formalism for the evo-
lutionary response of phenotype to determine the evolutionary stability of direct tem-
perature control as a timing mechanism. We will treat specific rate curve parameters
as quantitative traits, filter the fitness of individuals through emergence days pre-
dicted by the G-function, and use this to predict shifts in the parameters controlling
the developmental rate curves. This establishes a mechanism with which to determine
how (and if) populations can adapt to climate change or novel thermal environments.
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Fig. 1 Illustration of the phenology model, ti+1 = G(ti , r), for 3 values of r . As r increases, the G

function shifts down the vertical axis. For sufficiently large r, the characteristic shape of the G function
changes, the vertical jump discontinuity switches location (compare r = 0.0073 and r = 0.0077). The
solid curve r = rL

0 = 0.0065, gives a G function with a marginal fixed point located early in the year,
the lower marginal fixed point. The dash-dot curve, r = 0.0073, gives a G function with two stable fixed
points. The dotted curve r = rU

0 = 0.0077, gives a G function with a marginal fixed point located late in
the year, the upper marginal fixed point

While the evolutionary model we outline works for any G-function, the specific case
considered in detail here will be the two-stage, four parameter phenology model

R1
(
T (t)

) =
{

0, T < θ1,

ρ1(T − θ1), T ≥ θ1,
and R2

(
T (t)

) =
{

0, T < θ2,

r, T ≥ θ2,
(5)

introduced by Powell et al. (2000) and discussed in detail in Powell and Logan (2005).
This basic model has the features often observed in insect phenology, including dif-
fering developmental thresholds for different life stages (θ1 and θ2), linear devel-
opmental dependence on temperature above some threshold in some stages (as in a
‘degree-day’ model) and constant developmental rate above threshold in other stages
(as in ‘feeding’ stages, where development is eating to gain weight before emerging).
In the presence of simple, periodic temperatures,

T (t) = T0 − T1 cos

(
2πt

365

)
, (6)

(with yearly mean temperature T0, seasonal change of T1 −T0 from January 1 (day 1)
to June 29 (day 365/2)) the model can exhibit univoltine fixed points in nontrivial
open sets of all four parameters (Powell and Logan 2005).
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2.2 The Evolution of Developmental Rate Using Quantitative Genetics

Understanding the evolution of developmental rate is crucial to examining the effects
of temperature increases synonymous with global warming and climate change. We
employ quantitative genetics (Lande 1976) to study the evolution of a quantitative
trait, r , the rate parameter in (5). Later we discuss numerical evidence that our results
continue to hold for the remaining rate curve parameters, θ1, θ2, and ρ1.

The population is assumed to have discrete nonoverlapping generations. We in-
crement the model yearly, on January 1, when temperatures are low enough that de-
velopment is arrested in all life stages. The mean developmental rate in year n + 1,
r̄n+1, is calculated using the Univariate Breeder’s Equation (UBE) (Lande 1976)

�r̄ = r̄n+1 − r̄n = (

Mean r after selection
before reproduction

︷ ︸︸ ︷
r̄selection −

Mean r before selection
and reproduction

︷︸︸︷
r̄n )︸ ︷︷ ︸

Selective force in generation n

h2.︸︷︷︸
Realised

heritability

(7)

The background assumption is that r is normally distributed in the population accord-
ing to

p(r) = 1√
2πσ 2

exp

(−(r − r̄)2

2σ 2

)
.

The mean, r̄ , is subject to evolution while the variance, σ 2, is fixed. The heritability
parameter, h2, is the ratio of genetic to total phenotype variances, and measures the
fraction of phenotype variability which can be passed from one generation to the next.
Rearranging (7) gives the following recursion relation for r̄n,

r̄n+1 = r̄n + h2(r̄selection − r̄n). (8)

The mean after selection, r̄selection, is weighted by the fitness, Wn(r), or per capita
growth rate of individuals with rate parameter r ,

r̄selection = 1

Wn

∫

r∈R

rWn(r)p(r) dr, (9)

where Wn = ∫
r∈R

Wn(r)p(r) dr . The fitness of each r describes the strength and
direction of selection.

Fitness depends on the number of individuals completing development to emerge
as adults at the same time, t , as this determines the number of offspring produced. We
assume that only individuals emerging at the same time can mate, mating is random,
and oviposition occurs at the time of mating. A more realistic assumption is that indi-
viduals mate over several days; however, if the mean value for r prior to reproduction
is the same on each of these days then these two mating strategies are equivalent in
terms of phenotype evolution. Figure 2 illustrates that broadly the mean is the same
on each day and only those emerging on day 125 have a mean r that is high, but the
mode phenotype is in line with the rest of the population. Additionally, the UBE as-
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Fig. 2 Plot of the distribution of r upon emergence as adults (An(t)), but prior to reproduction on days
t = 125, 150, 175, 200, 225, and 250 in year 84. The mean developmental rate of each day is similar
indicating that it is a reasonable assumption to say that r following reproduction will be distributed in the
same way on each day. The model parameters used are as given in the main text and Fig. 6 illustrates the
emergence distribution corresponding to this year

sumes that reproduction results in the quantitative trait r being normally distributed
in the population, with mean r̄n+1. When the trait is controlled by several loci, each
of which having a relatively small effect, such an assumption is valid (Slatkin 1980).
Taylor’s (1981) study of developmental rate curves for 54 insect species provides
further support for the normality assumption.

We specify a fecundity function which depends linearly on the density of emerging
adults, reflecting the increased likelihood of finding mates and successfully produc-
ing brood. Adults emerging at a given time, t , may have a range of phenotypes and
oviposition dates. To specify fitness for a particular phenotype requires determin-
ing what fraction of individuals with phenotype r , starting as eggs this year, emerge
next year, and successfully produce brood according to a fecundity function. First,
the dependence of emergence time on both phenotype and starting time (i.e. the G

function) must be inverted. Secondly, holding rate (r) fixed, fecundities must be inte-
grated across all days of emergence to determine total offspring produced by individ-
uals sharing the same parameter. Divided by the total number of individuals with that
parameter gives the fitness (surviving offspring/parent) for the subpopulation with
parameter r . This fitness then drives the UBE.

To calculate the date of developmental completion, we use the two life-stage phe-
nology model described in Sect. 2.1. An egg oviposited on day t ′ of year n, with de-
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velopmental rate r , will complete development on day G(t ′, r). Thus, an adult with
rate r emerging on day t will develop from an egg laid on day G−1(t, r). Semivol-
tine (taking 2 years to develop) or bivoltine (two generations per year) individuals are
removed from the population under the assumption that they have an inappropriate
seasonality. For example, mortality is high for semivoltine individuals because they
must survive two winters, while bivoltine individuals are likely to emerge late in the
year when conditions for offspring survival are unfavourable.

We denote the distribution of eggs in year n by En(t
′), where t ′ is the date in

year n. The emergence of adults in the next year, with density An+1(t), depends on
En(t

′) and the (t ′, r) pairs that give emergence on day t = G(t ′, r). Assuming 100%
developmental survivorship and noting that t ′ = G−1(t, r) and dt ′ = dt/Gt(t, r),
there are En[G−1(t, r)] dt

Gt (t,r)
p(r) dr adults emerging on day t of year n + 1 with

developmental rate r . We now drop the prime for convenience. We can now calculate
the total density of adults emerging on day t of year n + 1, denoted by An+1(t), as
follows:

An+1(t) =
∫ ∞

−∞
En

[
G−1(t, r)

] p(r) dr

Gt (t, r)︸ ︷︷ ︸
Density of adults of type r

emerging on day t

. (10)

We illustrate the mapping of an initial egg distribution, En, to the adult distribution
in Fig. 3.

To calculate fitness, Wn(r), or per capita growth rate of individuals with develop-
mental rate r , we define λn+1(t, r), the density of eggs produced on day t of year
n + 1 by parents with rate parameter r , and write

λn+1(t, r) =

Total density of eggs
laid on day t of year n + 1

︷ ︸︸ ︷
f

(
An+1(t)

)

Proportion of emergers on day
t which developed at rate r
︷ ︸︸ ︷
En

[
G−1(t, r)

] p(r)
Gt (t,r)

An+1(t)
. (11)

Here, f is a functional response describing reproductive success of the adults. Ex-
amples of f include a type I response, reflecting a linear increase of reproductive
potential with density (as in increased chances of finding a mate). A type III response
models an Allee effect, whereby populations must exceed a threshold density be-
fore successful reproduction is possible (as when high densities may be necessary to
overcome a hosts defenses). For simplicity, we will use a type I response,

f
(
An+1(t)

) = kAn+1(t), (12)

where k is the average number of surviving offspring produced per adult female. The
fitness, Wn(r), can then be found by integrating λn+1(t, r) over t , and dividing by the
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number of parents (eggs oviposited in year n with developmental rate parameter r);

Wn(r) =

Total density of eggs produced in year
n + 1 laid by parents with rate parameter r

︷ ︸︸ ︷∫ ∞
0 λn+1(t, r) dt

∫ ∞
0 En(t)p(r) dt

︸ ︷︷ ︸
Total number of eggs laid in year n that developed with rate
parameter r to become the parents of eggs laid in year n + 1

. (13)

While complicated, this formalism provides all the ingredients necessary to evaluate
r̄selection in the UBE, and thus calculate how evolution of the trait changes the median
parameter, r̄n, from generation to generation.

The distribution of individuals must also change from year to year, since both
differing dates and differing rates translate into differing fecundities. To complete the
model, we define a map describing the change in egg density from year to year, given
by

En+1(t) = f
(
An+1(t)

) = kAn+1(t) = k

∫ ∞

−∞
En

[
G−1(t, r)

] p(r) dr

Gt (t, r)
. (14)

The complete model is given by (8) and (14) and consists of the quantitative genetics
recursion for the mean developmental parameter (r̄n) and the egg distribution (En(t)),
respectively. In Sect. 3, we characterize the attracting states of this recursion.

3 Analytic Results

3.1 Determining Fixed Points

We begin with an analytic characterisation of the asymptotic parameter value r0, the
attracting state of (8). Developmental rates are distributed normally as

p(r) = 1√
2πσ 2

e
− (r−r̄)2

2σ2 . (15)

If r is a true rate, that is, the inverse of development time, then noting dr = −t−2 dt

gives a distribution of emergence events,

t−2p
(
t−1) = 1

t2
√

2πσ 2
e
− (t−1−r̄)2

2σ2 = 1

t2
√

2πσ 2
e
− (t−t∗)2

2t2 t∗2σ2 . (16)

Here, we take t∗ = r̄−1 as the peak time of emergence. The shape of this distribution,
and its consequences for the emergence of a life stage, are discussed in Gilbert et al.
(2004).

The quantitative genetic recursion for the median rate can only converge if the
emergence distribution (En(t)) also converges. A fixed point analysis therefore re-
quires that we account for the shape of the emergence profile, En(t). We make the
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ansatz that only one parameter, r , evolves, since r is inversely proportional to de-
velopmental time above the second threshold, θ2. Extension to the evolution of other
parameters requires only including the explicit dependence of rate on the parameter
under consideration (and temperature). We further assume that there is no variation in
other developmental parameters and, therefore, think of the distribution of emergence
for the entire developmental map as being approximated by

En(t) = N

t2
√

2πσ 2
e
− (t−t∗n )2

2t2 t∗n 2
σ2

. (17)

Here, N is the total number of adults emerging, and we take t∗n to be located at
the stable univoltine fixed point of the G-function, calculated for the current median
parameter, r̄n. This fixed point varies from generation to generation as r̄n evolves, but
to simplify notation we will simply take t∗ = t∗n .

Now we substitute these forms into the genetic recursion relation (8) and deter-
mine the parameter values corresponding to fixed points. In the case of a type I func-
tional response, f (An+1(t)) = kAn+1(t) and the fitness becomes

Wn(r) =
∫ 365

0 En[G−1(t, r)] k
Gt

dt
∫ 365

0 En(t) dt
. (18)

Noting that the combination of G−1 and 1/Gt in the integrand amounts to a change
of variables, and taking the integral to 365 as an approximation to ∞, we may write
the average fitness as

W̄n = k (19)

and thus

r̄selection = 1

k

∫ ∞

0
k

∫ ∞

−∞
rp(r)En

[
G−1(t, r)

] 1

NGt

dr

︸ ︷︷ ︸
♠(t)

dt. (20)

The ♠(t) term will be evaluated using steepest descents, noting that t∗(r) is a function
of r and using a linear approximation for G−1,

G−1(t, r) ≈ t∗ + (t − t∗)
G∗

t

,

since G−1(t∗, r) = t∗ and the slope of the inverse is G−1
t (t∗, r) = 1/G∗

t . The ap-
proximation is valid provided the G-function has relatively shallow curvature, an
assumption discussed below. We write

♠(t) =
∫ ∞

−∞
res(t,t∗,r,r̄)

Gt (t, r)t22πσ 2
dr, (21)

with

s = − 1

2σ 2

[
(r − r̄)2 + (t − t∗)2

t∗2[t + (G∗
t − 1)t∗]2

]
. (22)
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To find the stationary point, we look for r such that

0 = ∂s

∂r

= −(r − r̄)[(G∗
t − 1)t∗ + t]3t∗3 − ∂t∗

∂r
[t3 + t2t∗(2G∗

t − 3) − 3t t∗2(G∗
t − 1) + t∗3(G∗

t − 1)]
σ 2t∗3[t + (G∗

t − 1)t∗]3
.

(23)

In principle, this defines a stationary point, r = r̂ , so that the integral in (20) can be
evaluated asymptotically. The stationary point defined by (23) is

r̂ = r̄ + ∂t∗

∂r

t3 + t2t∗(2G∗
t − 3) − 3t t∗2(G∗

t − 1) + t∗3(G∗
t − 1)

t∗3[(G∗
t − 1)t∗ + t]3

. (24)

The asymptotic form of (21) is then given by

♠(t) ∼
√

2π

−srr (t, t∗, r̂, r̄)
r̂es(t,t∗,r̂,r̄)

Gt (t, r̂)t22πσ 2
. (25)

We note that, since the combination of G−1 and ∂t (G
−1) = 1/Gt amounts to a

change of variables in time in (20) and
∫

En(t) dt = N , at leading order the r̄selection
generated by steepest descents is precisely the stationary point, that is, r̄selection = r̂ .
Thus, the first requirement for a fixed point becomes r̄ = r̂ , so that the evolutionary
dynamics are stationary in the UBE (8). Consequently, dt∗

dr
= 0 to satisfy (24).

The asymptotic form of ♠(t) in (25), is the predicted emergence distribution over
days of the year, which must be in direct proportion to the emergence ansatz, (17), in
order for the shape of the distribution to be stationary. This amounts to requiring

s
(
t, t∗(r̂), r̂, r̄

) = − (t − t∗)2

2σ 2t∗2t2
. (26)

Evaluating s at the stationary point gives

s = − (t − t∗)2

2σ 2t∗2[t + (G∗
t − 1)t∗]2

. (27)

Comparing expressions (26) and (27) it is apparent that

G∗
t = 1

to ensure that the shape of the emergence distribution is stationary. This means that
the slope of the G function at the asymptotic fixed point for the evolutionary dynam-
ics is only marginally stable with respect to purely phenological dynamics.

3.2 Stability Analysis

Given that a necessary condition for existence of an equilibrium distribution is tan-
gential intersection (and, therefore, marginal stability of the dynamics of emergence
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time when parameters are fixed and σ = 0), it is important to ask if such a distribu-
tion can be stable in the context of evolutionary dynamics. We give a stability analysis
in this section under idealized circumstances to illustrate the basic stability require-
ments and highlight some of the technical difficulties. We will assume that the mar-
ginal fixed point is located at a saddle-node bifurcation for fixed points in emergence
time, where r is the bifurcation parameter, that these are the only two fixed points for
G and that the time separation between the bifurcating stable/unstable points is large
relative to the duration of the emergence distribution (i.e. σ t0 � 1). Additionally, we
will idealize the situation so that there is no loss of individuals who fail to complete
development in a year (or complete before the beginning of a new year). These sim-
plifications mean that the stability analysis given here will not correspond precisely
to observations in the numerical case studies later in this paper, but will only indicate
basic trends. The numerical case studies require loss of nonunivoltine individuals
(which tends to stabilize the distribution) as well as use of the two-stage phenology
model above (which can have more than two fixed points in some parameter regimes).

Let r0 be the parameter at which the G function has a marginal, tangential fixed
point and t0 the location of that fixed point in Julian days. We seek to determine how
r̄n will evolve when it is ‘close’ to its asymptotic state, r0. Stability analysis of the
distributional recursion for En(t) and r̄n is an infinite dimensional problem. However,
the smaller the breadth, σ , of the distribution of parameters the closer the dynamics
become to a simple recursion in the median rate, with parameters in the recursion
determined by steepest descents evaluations of the integrals in (20) as the variables
are perturbed from their equilibrium values.

We first introduce an approximation to the shape of G and use it to deter-
mine appropriate scales for the stability analysis. Using the marginality condition
(G(t0, r0) = t0 and Gt(t0, r0) = 1), near the equilibrium state and a Taylor expan-
sion,

G(t ′, r) � t0 − γ 2t2
0 (r − r0) + (t ′ − t0) + α2 1

t0
(t ′ − t0)

2, (28)

where

γ 2 = − 1

t2
0

∂G

∂r
(t0, r0), α2 = t0

1

2

∂2G

∂t2
(t0, r0) (29)

and α and γ are dimensionless. Equation (28) can be solved explicitly for G−1,

t ′ = G−1(t, r) = t0
2α2 − 1

2α2
+ t0

α

[
t

t0
+ 1

4α2
− 1 + t0γ

2(r − r0)

] 1
2

. (30)

Solving t∗(r) = G(t∗(r), r) gives

t∗ = t0 ± γ

α
t

3
2

0

√
r − r0. (31)

Of these two the negative root corresponds to the stable, univoltine emergence date.
The root dependence of t∗(r) on r − r0 suggests the proper scaling to use for

the stability analysis. We define the order parameter, ε = σ t0 (so that the emergence



Evolution Stabilises the Synchronising Dynamics

distribution will be narrow) and introduce rescaled variables for r near r0 and small
perturbations, δn, of the current mean phenotype, where

r̄n − r0 = ε2 1

t0
δ̄2
n and r − r0 = ε2 1

t0
δ2.

Thus,

t∗(r) = t0

(
1 − εδ

γ

α

)
.

The variable t is also involved through the distribution En(t) and the integration (20)
which determines r̄selection in each generation; we can choose a simple scaling for
time,

t = t0(1 + ετ),

and proceed to determining the asymptotic behaviour of ♠(t) in these scaled variables
using the method of steepest descents.

The first step will be to determine the location of the critical point of (22) in δ. Let
the critical point, δ̂, be expanded in an asymptotic series

δ̂ = δ̂0 + ε2δ̂1 + · · · .

The derivative of the exponent, (22), becomes

∂s

∂r
= 1

ε2

[
s0(δ̂0, τ ) + ε2s1(δ̂0, δ̂1, δ̄n, τ ) + O

(
ε4)].

This generates a system of equations

s0 = − γ t0

2δ̂0α2

(
γ δ̂0 + ατ

) = 0, (32)

giving δ̂0 = − α
γ
τ , and

s1
(
δ̂0, δ̂1, δ̄n, τ

) = t0

2τα3

(
2τα3δ̄2

n − 2τ 3 α5

γ 2
+ γ 3δ̂1

)
= 0. (33)

We note that odd powers of epsilon in the asymptotic expansions vanish and so do
not appear above.

Solving (33) gives

δ̂1 = 2τ
α3

γ 3

(
α2

γ 2
τ 2 − δ̄2

n

)
.

An asymptotic expansion for the stationary point, r̂ , is

r̂ = r0 + ε2 1

t0
δ̂2 = r0 + ε2 α2τ 2

γ 2t0

[
−1 − 2ε2 α2

γ 2

(
δ̄2
n − α2

γ 2
τ 2

)
+ · · ·

]2

. (34)
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The second derivative at the stationary point is

srr = − t2
0 γ 4

4α4τ 2ε4

(
1 − 4ετ

(
1 + α2) + O

(
ε2)).

Then the steepest descents theorem gives (after some symbolic manipulation of (25))

♠(t) ∼ eq(τ,δ̄n) r0|τ |α2

t0γ 2

√
2

π

[
1 − ε2 α2

γ 4

(
5α2τ 2 − 3γ 2δ̄2

n − γ 2τ 2

r0t0

)
+ O

(
ε4)

]
, (35)

where the exponent at the critical point, q(τ, δ̄n), is

q(τ, δ̄n) = − ε2

2γ 4

[(
α2τ 2 − γ 2δ̄2

n

)2 − 4α4τ 2 ε2

γ 4

(
α2τ 2 − γ 2δ̄2

n

)2 + O
(
ε4)

]
. (36)

To determine r̄selection, we still have another integration to accomplish,

r̄selection =
∫ ∞

0
♠(t) dt ∼ εt0

∫ ∞

−∞
♠(τ ) dτ,

where the latter approximation is facilitated by τ = − 1
ε

∼ −∞ when t = 0 for the
lower limit. We evaluate this integral asymptotically using a second application of
steepest descents, in the variable τ . It is easy to see that

∂q

∂τ
(τ̂ , δ̄n) = 0 when τ̂ = −γ

α
δ̄n

for the first two terms in (36). Moreover, q(τ̂ , δ̄n) = 0 + O(ε6), which will greatly
simplify further evaluation. Expanding the second derivative at the stationary point
gives

q̂ττ (τ̂ ) = −4ε2δ̄2
n

α2

γ 2

(
1 − 4ε2δ̄2

n

α2

γ 2

)
+ O

(
ε6).

Then steepest descents gives

r̄selection ∼ εt0

( √
2π

√−q̂ττ

♠(τ )

)∣∣∣∣

τ=τ̂=− γ
α
δ̄n

= r0 +ε2δ̄2
n

(
4r0

α2

γ 2
− 1

t0

)
+O

(
ε4). (37)

Now we can return to the UBE, (7), to determine how r̄selection influences the evolu-
tionary dynamics near r0.

r0 + ε2 1

t0
δ̄2
n+1 = r̄n+1 = r̄n + h2[r̄selection − r̄n]

= r0 + ε2 1

t0
δ̄2
n + h2

[
r0 + ε2δ̄2

n

(
4r0

α2

γ 2
− 1

t0

)
− r0 − ε2 1

t0
δ̄2
n

]

+ O
(
ε4). (38)
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Simplifying,

δ̄2
n+1 =

[
1 + 2h2

(
2r0t0

α2

γ 2
− 1

)]
δ̄2
n + O

(
ε2). (39)

For stability, the term multiplying h2 must be negative, but larger than −1/h2, or

− 1

h2
< 2r0t0

α2

γ 2
− 1 < 0.

Adding one to both sides gives

1 − 1

h2
< 2r0t0

α2

γ 2
< 1.

Since the heritability, h2, is always smaller than one while r0, t0 > 0, the leftmost
inequality is always satisfied. The stability requirement becomes

r0t0
α2

γ 2
<

1

2
. (40)

The parameter α2 relates to the curvature of the G function at t0, and so (40) suggests
that the equilibrium distribution will be stable if the G function has sufficiently small
curvature at its marginal fixed point. Alternatively, since the distance between the
stable and unstable fixed points scales with γ /α, we may expect that the equilibrium
distribution will be stable in situations where the fixed points are sufficiently broadly
separated.

4 Numerical Results

In this section, we verify the analytical results by solving the model numerically and
offer some additional insight into these results. Solving (8) and (14) requires the cal-
culation of G−1(t, r), which cannot be done analytically because G has horizontal
and vertical discontinuities (see Fig. 3). The discontinuities in G arise because cold
temperatures can arrest development for some life-stages while allowing it to con-
tinue for others. The variables r and t are discretized into steps of size �r and �t,

respectively, typically �t =1 day giving rise to 365/�t + 1 difference equations to
be solved for each year n. In practice, we run simulations for much finer discreti-
sations to ensure that the numerical scheme approximates the integral terms in the
model with high accuracy. We developed a numerical scheme that overcomes the dif-
ficulties of dealing with discontinuities in G while also being computationally fast.
The algorithm is presented in Fig. 3.

Numerical results were obtained using this algorithm with the initial distribution
of eggs given by E0(t) = 50 exp(−(200 − t)2/(2(502)) and parameter values: ρ1 =
0.0055, θ1 = 9, θ2 = 11, T0 = 10, T1 = 10, k = 2, σ = 0.0005, h2 = 0.2, �r =
0.0001, �t = 1/20 day unless otherwise stated. The parameters are taken from the
model system studied by Powell et al. (2000).
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Algorithm: Calculating the number of adult emergers.

We wish to calculate En[G−1(t ′, r)]�t/Gt (t, r), the number of adults emerging on
day t ′ of year n + 1. Let j index the discretisation of t and i index the discretisation
of r .

Step 1 Calculate the cumulative distribution of En(t), cum(En(t)) = ∫ t

0 En(s) ds,
the total number of eggs laid between day 0 and t. Store cum(En(t)) in entry
(i,G(t, ri)) of the matrix (M). The ith row of the matrix M contains the total num-
ber of adults that have emerged by day G(t, ri) assuming that all the eggs, En(t),
have developed at rate ri .

Step 2 Find the total number of adults emerging on each day rather than the cumula-
tive number by taking the difference between consecutive nonzero column elements
of M storing the output in the matrix M ′.

Step 3 The column index of M ′ is given by the integers j = G(t, r) ∈ (1,∞), where
j refers to day j�t of year n. The model assumes 100% mortality for individuals
developing either too slowly or too rapidly thus we must truncate the matrix M ′,
keeping only those that emerge in year n + 1. Columns 365/�t + 1 through to
730/�t correspond to those that emerge in year n+1, we remove all other columns.
The truncated matrix contains En[G−1(t, ri)] �t

Gt (t,ri )
in entry (i, t).

Step 4 Finally, take into account the fact that only part of the population develop at
rate ri by multiplying row i of M ′ by p(ri). Summing over a column t’ of this new
matrix gives the adult emergence distribution An+1(t

′).
Fig. 3 Algorithm: Calculating the number of adult emergers
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4.1 Results

Consistent with the analysis of Sect. 3, the numerical results show that the quantitative
genetics model slowly converges to an evolutionary fixed point (r0 and E∞(t)) (see
Fig. 4a, 4b). Figure 1 shows that the underlying phenology model, ti+1 = G(ti, r0),
has a non-generic univoltine fixed point at t0. As predicted by the theory, the intersec-
tion of the G-function with the fixed point line is tangential as opposed to transverse;
we thus refer to t0 and the corresponding value of r0 as a marginal fixed point. The
emergence distribution, E∞(t), resembles a log-normal distribution with mode lo-
cated at t = t0 as illustrated in Fig. 4b.

A further comparison of the analytical and numerical results is done by explicitly
calculating the fixed point of the UBE and finding the corresponding stability con-
dition for the 2-stage phenology model (see Appendix for the analytical derivation).
Figure 5a illustrates that the analytical approximation to the fixed point is in good
agreement with the numerics over a range of parameters. We see that under a fixed
mean yearly temperature, increases in the seasonal fluctuation in yearly temperature

Fig. 4 Using a discretisation of �t = 1/20 day and �r = 0.0001, (8) and (14) were iterated for n = 1000
years allowing model convergence. (a) Plot of r̄n against year n. r̄n slowly converges to rL

0 = 0.00657.

(b) Plot of the initial and final emergence distribution. The distribution is skewed to the left and tL0 indicates

the location of the mode of E∞(t), and is the fixed point of ti+1 = G(ti , r
L
0 ). The discontinuities in E∞(t)

are due to the jump discontinuities in G. (c) Plot of the mode and mean of En(t) as a function of n. The
initial value for the mean of r is given by r̄0 = 0.0073, all other parameters are given in the text



C.A. Cobbold, J.A. Powell

Fig. 5 (a) Plot of the numerical value and analytical approximation for rL
0 as a function of seasonal yearly

temperature swing. Large temperature swings lead to slower mean developmental rate. (b) Numerical and
analytical stability boundaries partitioning the T0–T1 parameter-space. The dark region indicates unstable
dynamics predicted by the numerics and the light region corresponds to stable dynamics. The line indicates
the stability boundary predicted by the analysis. High mean temperature and large temperature swings sta-
bilise the evolutionary dynamics. All parameter values are given in the main text. A very fine discretisation
of t and r was chosen to ensure that the numerical solution gave a very close approximation to the integral
terms in the model, which ensures the numerical boundaries reflect the ‘true’ model solution
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lead to a reduction in r0. Large seasonal fluctuations favour slower development. In
Fig. 5b, we see that large season swings and high mean temperatures also stabilise
the evolutionary fixed point.

The two-stage phenology model can have more than two fixed points in some
parameter regimes, so we examined the three fixed point case numerically. There are,
in fact, two values of r that give rise to marginal fixed points in the parameter regime
we have studied, rL

0 (discussed above) and rU
0 . Figure 1 illustrates the phenology

model for these two values; rU
0 produces the upper (late year) marginal fixed point

and rL
0 produces the lower (early year) marginal fixed point. An upper marginal fixed

point exists because the G-function changes shape for large r . Increasing r above rL
0

creates a second stable fixed point (dash-dot line in Fig. 1) when r = rc . A further
increase in r changes the timing of the vertical jump discontinuity in G. The vertical
jump in G moves to earlier in the year, now occurring before the first horizontal jump
discontinuity. This destroys the first stable fixed point and allows the second stable
fixed point to become marginal.

Since ti+1 = G(ti, r) can exhibit a marginal fixed point for two values of r , the
question then arises to which value does the genetic model converge? The answer to
this question depends on σ , the standard deviation of r . For sufficiently large σ, the
model converges to the lower marginal fixed point, rL

0 . When σ is small convergence
is to the upper marginal fixed point, rU

0 . We now discuss the factors determining
convergence to these two marginal fixed points.

4.2 Explaining Marginality and the Emergence Distribution

We begin by discussing the conditions for the convergence to the lower marginal fixed
point, rL

0 . Provided rL
0 < r < rc , fixed points, t∗, of ti+1 = G(ti, r) exist and satisfy

t∗ < tL0 and are clustered close to tL0 . However, for r < rL
0 , the phenology model

ceases to have fixed points and the life-cycle becomes asynchronous, development
is slow and emergence occurs after tL0 . Consequently, a heavy-tailed distribution of
emergence times (E∞(t)) is observed in the model. The asynchronous emergence of
slow developers produces the fat tail, while the cluster of fixed points around tL0 gives
rise to the mode of the distribution.

The convergence of r̄n and En(t) is driven by selection and to understand the
process we consider r̄n such that rL

0 < r̄n < rc. The corresponding emergence distrib-
ution, En+1(t), has a mean to the right of the mode (see Fig. 4c). Since the attracting
fixed points are clustered around the mode, t∗, the mass of the emergence distribution
which lies to the right of this is attracted to these fixed points, thus the mean emer-
gence time decreases. However, since r is normally distributed in each sub-population
(on each day), 50% of the population to the left of the mode will have developmental
rates slower than the mean and are attracted toward later emergence. The overall ef-
fect of these two processes is a shift in the mode of the emergence distribution to the
right, later emergence. Since fitness is defined by per capita growth rate the slower
developers become fitter, thus selection acts to reduce r̄n. The tail of the emergence
distribution also becomes fatter as a result of the increased number of asynchronous
emergers (individuals with r < rL

0 ) that are created. Figures 6c and d illustrate the
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Fig. 6 (a) and (b) Plots of ti+1 = G(ti , r̄n), where n = 85 and n = 105, respectively. A fixed point of
G is indicated by the intersection of G with the 45◦ line. The vertical line in each plot indicates the
mode emergence time for the population, and corresponds to the stable fixed point of ti+1 = G(ti , r̄n) if
a fixed point exists. (c) and (d) Plots of the emergence distribution, En(t), where n = 85 and n = 105,

respectively. The distribution is skewed to the left and most individuals emerge after the mode. Thus,
fitness of slower developing individuals is increased until as in (d) ti+1 = G(ti , r̄n) no longer has fixed
points. The tail of the emergence distribution is caused by slow developers with an asynchronous life cycle,
the lack of an attracting fixed point then reduces the fitness of the slower developers and selection acts to
increase r̄n. The model parameters are as indicated in the text and r̄0 = 0.007

changes in the emergence distribution and a and b illustrate the G-function for the
corresponding value of r̄n, showing the direction of selection.

The strength of the selection we observe is determined by r̄selection which is an
average of r , weighted by p(r; r̄n)Wn(r). As described above, the per capita growth
rate, Wn(r), is largest for small r (Fig. 7c) and provided Wn(r) is large enough that it
outweighs the small probability that r < r̄n, selection indeed acts to decrease r̄selection,

and hence decrease r̄n+1 (see Fig. 7a and c). In each consecutive generation, r̄n will
continue to decrease in this way until r̄n < rL

0 . Once r̄n < rL
0 , the slow developers that

previously drove selection are now asynchronous emergers taking more than a year
to develop. Without an attracting fixed point, asynchronous emergers rapidly attain a
broad distribution of emergence dates thereby lowering the per-capita growth rate of
slow developers. Only the subpopulation of fast developers with r > rL

0 , and which
have an attracting fixed point, show an increase in per capita growth rate, and hence
selection acts to now increase r̄n (see Fig. 7b and d).
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Fig. 7 (a) and (b) Plots of G(t, r̄n), where n = 85 and n = 105, respectively. Selection acts on r̄n such that
G moves in the direction of the arrow, • denotes a stable fixed point of G. (c) and (d) Plots of the ‘fitness’
function, Wn(r), against r (dotted line). Wn(r) is skewed to the left in (c) and to the right in (d), reflecting
the increased fitness of slow and fast developers, respectively. The solid curve is p(r; r̄n)Wn(r)0.01, the
mean of this distribution is r̄selection. The vertical solid line is located at r̄selection, while the dashed vertical
line is located at r̄n. The arrows indicate the direction of selection. The model parameters are as indicated
in the text and r̄0 = 0.007

This is the portion of the numerical experiment which mimics the analytic sta-
bility analysis. If the curvature of G (∼ α2) is sufficiently small, there is no over-
compensation and convergence occurs without oscillation. However, if α2 is larger,
it is possible for r̄selection to overshoot r0, at which point selection acts to decrease
r̄n once more. Over time, these oscillations in r̄n about rL

0 become smaller in ampli-
tude. The oscillatory convergence of r̄n to rL

0 is in part a consequence of an intrinsic
time lag in the discrete time model. For large n, the emergence distribution, En(t),
stabilises and approaches an equilibrium distribution and the selective force acting at
each generation declines, thus changes in r̄n become smaller and r̄n converges to rL

0 .
The type of selection the population undergoes is key to fully understanding the

evolutionary processes in this model. Under density- and frequency-independent se-
lection, fitness does not change as a function of generation and so the mean trait r̄n
would converge to a fitness maximum (Gomulkiewicz and Holt 1995). In contrast,
selection in (8) and (14) is frequency- and density-dependent, resulting in r̄n con-
verging to a fitness minimum of Wn(r) (Fig. 8). Lande (1976) shows how frequency-
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Fig. 8 Plot of the asymptotic ‘fitness’ function Wn(r) at n = 1000 as a function of r . Convergence of r̄n
to rL

0 has occurred by n = 500. rL
0 is the location of the fitness minimum for the 3 values of σ considered.

Fitness of r �= rL
0 decreases as a function of σ . When σ is small few individuals in the population have

r �= rL
0 since r is normally distributed in the population the individuals with r �= rL

0 require an increased

fitness to maintain rL
0 as a stable evolutionary fixed point

dependent effects on fitness that do not cancel each other out can produce a mal-
adaptive equilibrium, a mean trait that is not at the fitness maximum. In our case,
asymmetry in the emergence distribution selects for some phenotypes (synchronous
emergers) over others (asynchronous emergers). So frequency-dependent selection
affects traits either side of the mean in different ways. By differentiating the expres-
sion for mean fitness (W̄ ) with respect to r̄n, Lande (1976) showed that the change in
the average phenotype given by (7) can be reexpressed as follows:

�r̄n = h2σ 2

W̄

(
∂W̄

∂r̄n
−

∫
p(r)

∂W

∂r̄n
dr

)
.

The first term arises when selection is frequency-independent the second term comes
from the frequency-dependent component of selection. Since Wn(r) is not symmet-
rical about r̄n we find that the second term is nonzero, and hence selection takes
us away from a fitness maximum leading to maladaptation. The clustering of fixed
points in the phenology model drives the maladaptation and gives rise to the nonsym-
metrical fitness function. In our case, maladaptation manifests itself in the form of
asynchrony in the emergence dates for a portion of the population.

An argument analogous to the one above which explains convergence to rL
0 can be

used to explain convergence to the upper marginal fixed point, rU
0 , that occurs when

the standard deviation in r is small. If the standard deviation in r is large enough,
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then r̄n converges to rL
0 instead. In the next section, we explain in more detail how σ

determines the evolutionary end points of the model.

4.3 Convergence Under Small and Large Genetic Variance

The way in which genetic variance determines the evolutionary end points of the
genetic model can be understood by considering the global stability of the phenology
model. In Fig. 1, we saw that for certain values of r the phenology model has two
stable fixed points. The unstable fixed point separating them is located close to the
upper stable fixed point. Therefore, the upper stable fixed point has a small basin of
attraction. Increasing r reduces the size of this basin of attraction by bringing the
upper stable fixed point closer to the unstable fixed point, eventually annihilating
both points. In contrast, decreasing r prolongs development, G(ti, r) increases and
the location of the vertical jump discontinuity changes, and the second stable fixed
point is lost. Therefore, the upper stable fixed point exists for only a very narrow
range of r (e.g. r ∈ (0.0073,0.0078) = (rc, r

U
0 )) as illustrated in Fig. 1.

The small basin of attraction for rU
0 limits convergence to this fixed point. The

quantitative genetics model assumes a normal distribution for r consequently r̄n con-
verges to rU

0 provided this distribution lies largely inside the basin of attraction for
rU

0 . In fact, this is only possible for a limited range of σ (σ < 0.0004). Following this
argument, we expect that large variance in r will always lead to convergence to rL

0 as
a significant portion of the population are attracted to fixed points close to tL0 . What is
not clear is why small variance always leads to convergence to rU

0 and is not depen-
dent on the initial conditions. To address this question, we examine the percentage
mortality per year under small and large σ (results not shown). For large σ , popula-
tion loss is negligible and convergence is always to rL

0 . In fact, most of the population
loss that occurs is due slow developers, individuals emerging in year n+ 2. For small
σ , the years when r̄n is small are associated with high population loss and depending
on parameters, such as h2, this mortality can either lead to population extinction or
a reduction in the per capita growth rate for small r such that selection then acts to
increase r̄n toward rU

0 .
In summary, convergence to the upper marginal fixed point is, in the case of small

variance, driven by population loss. As validation, we extended the model framework
to allow the possibility of semivoltinism, a 2-year development time, thus prevent-
ing the mortality of slow developers. As expected, in the semivoltine model small σ

yields convergence to rL
0 or rU

0 depending on initial conditions and population loss
becomes negligible (results not shown).

4.4 Stability Boundaries and Extinction Risk

In Sect. 4.3, we found that σ determined the evolutionary end point of the quantitative
genetics model. In Fig. 9, we plot the σ–h2 parameter space showing the stability
boundaries separating the evolutionary end points. The heritability, h2, is the ratio
of genetic (σ 2) to total phenotype variance (σ 2

e + σ 2), and measures the fraction of
the phenotype variability which can be passed from one generation to the next; σ 2

e

is the environmental component of the variance. Both h2 and σ play important roles
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Fig. 9 Numerical stability boundaries partitioning the h2–σ parameter-space. The region “extinction”
indicates a high risk of population extinction as defined by Gomulkiewicz and Holt (1995), populations
dropping below Nc = 10 were considered to be at risk from demographic extinction. The regions, rL

0
and rU

0 correspond to convergence to the lower and upper marginal fixed point, respectively. Finally, “cy-
cles” denotes regions where r̄n asymptotes to a stable cycle. Increasing environmental variance increases
stability. The parameters are given in the main text

in determining the strength of selection which in turn determines convergence of the
model.

In Fig. 9, σ–h2 parameter space is separated into 4 regions: convergence to rL
0 ,

convergence to rU
0 , cycles in r̄n, and ‘high risk of extinction’. We use the definition

of ‘high risk of extinction’ defined by Gomulkiewicz et al. (1995), below a threshold
population size Nc, populations are considered highly vulnerable to extinction, an
extinction risk associated with demographic stochasticity. A suggested value of Nc

is in the range 10–100, based on theoretical studies (MacArthur and Wilson 1967;
Lande 1993). For the purposes of this study, we chose Nc = 10.

The region where cycles in r̄n are observed is a result of the population loss dis-
cussed in Sect. 4.3. We see that when r̄n drops below rL

0 the population mortality in
the following year peaks. The large drop in fitness for small r leads to a large increase
in r̄n such that r̄n > rc . Then population mortality caused by fast developers emerg-
ing in year n takes over and drives r̄n below rc . This is highlighted by an extreme
skewness in the emergence distribution.

Fixing h2 and increasing σ 2 increases stability of the fixed point of the UBE
(Fig. 9). Thus, increases in genetic and environmental variance are stabilising. If in-
stead we fix σ 2 and allow h2 to increase, we find that stability is lost. Thus, decreasing
the environmental variance alone is destabilising.
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5 Discussion

There are many models in the literature describing developmental rate curves for
insect development (see Roy et al. 2002 for a review). Such models are important
components for predicting among other things the synchrony between predator and
prey (Logan 2008). Our work has used a quantitative genetics approach to study the
evolution of the developmental rate curves that govern phenology. Developmental
rate has been shown to be a phenotype that is under genetic selection in a number of
insect systems (Taylor 1981). Quantitative genetics is used to evolve the mean phe-
notype, developmental rate, and the distribution of emergence times. The framework
we introduce is very flexible, any choice of phenology model can easily be intro-
duced through choosing an appropriate G-function. Similarly, measured or changing
temperature profiles can also be introduced via the same function.

The outcome of the genetic model is convergence to a mean developmental rate
corresponding to a marginal fixed point; by this we mean that the mean phenotype
corresponds to a marginally stable fixed point of the phenology model. The asymp-
totic mean phenotype gives rise to synchronised adult emergence with a generation
time of one year (univoltinism). However, given that the trait r is normally distributed
in the population not all of the population is univoltine. In fact, only the half with a
developmental rate greater than the mean will be univoltine and the remainder of the
population have a phenotype for which the corresponding phenology model has no
such fixed point and this subpopulation has an asynchronous life cycle. The corre-
sponding equilibrium distribution of emergence dates is strongly skewed because the
univoltine fixed points focus the asymptotic emergence distribution about the mode
(the fixed point of ti+1 = G(rL

0 , ti)), and the asynchronous subpopulation gives the
fat tails of the distribution. The tails in the emergence distribution could be impor-
tant for a population in a changing environment in which the evolutionary fixed point
rL

0 will change with the environment (e.g. yearly temperature). Individuals emerging
later in the year could also provide a buffer against rare catastrophic events that could
otherwise extinguish a population if the emergence dates were too tightly grouped.

Although we have focussed on the evolution of the developmental rate of an in-
sect feeding stage, evolution of other rate curve parameters such as ρ1 and the de-
velopmental thresholds, θ1 and θ2, can easily be studied in the framework we have
presented. Numerical results show that evolution of these parameters also give rise
to the same evolutionary end point, a marginal fixed point. The thresholds, θ1 and
θ2 are tightly coupled to the yearly temperature fluctuations so evolution in these pa-
rameters readily leads to a switching in the location of the jump discontinuities in
the phenology model and evolutionary cycles in the phenotype become more com-
mon (see Sect. 4.4). The presence of stable cycles in r̄n are driven by population loss
and once semivoltinism is accounted for the loss driving the oscillations is removed,
so the oscillations decrease in amplitude. Hypotheses have connected such fluctuat-
ing selection to rapid evolution, thus oscillations in phenotype may be an observable
phenomenon (Thompson 1998).

Preliminary work indicates that the predicted evolutionary end point for develop-
mental rates is unchanged by a changing temperature environment. The evolutionary
dynamics are able to track the moving location of the marginal fixed point of the
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G-function. The synchronising force provided by the fixed points in the phenol-
ogy model is key to the frequency-dependent selection which drives evolution to
the marginal fixed point. The study by Powell and Logan (2005) examined a phe-
nology model using historic temperature profiles and a fully parameterised 8-stage
life-cycle model for the mountain pine beetle and they found the basic properties of
the G-function that drive evolution in our model continue to hold. Specifically the
G-function has a stable-unstable pair of fixed points with small curvature around
these fixed points. So this is strong evidence to expect the marginal fixed point to
be the evolutionary end point in more biologically realistic models of insect devel-
opment than the caricature studied here. The effect of changing temperature profiles
and other phenology models is the subject of future work.

While it is difficult to experimentally estimate the evolutionary rates that the model
predicts, as they rely on knowing the heritability of the trait, h2, the model does
suggest slow adaptation and rapid synchronisation in the two life-stage model (see
Appendix). For the mountain pine beetle system, Bentz et al. (2001) have found evi-
dence for strong local selection for median developmental time among geographically
separated populations. Slower development was found in southern populations, where
temperatures are warmer, and faster development was seen in northern populations.
This is consistent with our model predictions whereby selection acts to maintain uni-
voltism in each temperature environment.

The quantitative genetics approach we have used to study evolution of phenol-
ogy is robust to many of the model assumptions and can be easily generalised to
include alternative phenology models and more complicated reproduction and se-
lection functions. Moreover, it is possible to attain analytical results which further
our understanding. Synchronisation of emergence is a key factor driving selection,
however, evolution to a marginal fixed point and corresponding skewed distribution
allows asynchronous emergers to persist in the population. Empirical results have
shown reproductive asynchrony increases in a population when environments are un-
predictable; asynchrony is a risk-spreading strategy and can be advantageous at high
population densities (Calabrese and Fagan 2004). At low population densities, asyn-
chrony may be detrimental, but by evolving to a marginal fixed point adaptation to
changes in temperature regimes becomes possible. Increases in mean yearly temper-
ature have the effect of accelerating development allowing previously asynchronous
emergers to attain a univoltine life-cycle. A trait distribution with a mean correspond-
ing to a marginal fixed point is then well adapted to cope with warming environments.

There are a number of examples of shifts in phenology induced by climate change,
for instance, hatch date in insects and spawning date in frogs and toads (Visser 2008).
An understanding of the evolution of phenology can offer important insights into
the process of adaptation. Visser (2008) argues that phenotypic plasticity will not be
adaptive under climate change and microevolution is necessary for adaptation. There
is growing evidence that evolution is occurring on ecological timescales for a number
of insect species (Skelly et al. 2007), Yamanaka and coworkers found that the web-
worm, Hyphantria cunea Drury, had undergone evolution in life history traits that
relate to phenology over a period of just 30 years (Yamanaka et al. 2008). Mechanis-
tic understanding of these processes will become increasingly important as extreme
environmental changes become more common.
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Appendix: Fixed Points and Stability for the Two-Stage Model

Returning to the two-stage model, we determine the location of the parameters which
generate the marginally stable univoltine fixed points selected by the evolutionary
dynamics. We will assume that thresholds are selected so that the quiescent devel-
opmental period occurs (i.e. temperatures dipping below developmental thresholds)
during the second-life stage, but that the first life stage completes development while
temperatures are above its threshold, θ1. We make these assumptions because, firstly,
in terms of the evolutionary dynamics this is the steady state with the largest basin of
attraction, and secondly, this turns out to be the steady state with emergence occur-
ring at an appropriate season, that is, ‘summer.’ The other possible steady states can
be calculated using similar methods.

Let tn0 denote the median time of initial oviposition in year n . Then the median
time of egg-hatching, t1, satisfies

1 =
∫ t1

tn0

ρ1

[
T0 − T1 cos

(
2πt

365

)
− θ1

]
dt

= ρ1

[
(T0 − θ1)

(
t1 − tn0

) − T1
365

2π

(
sin

(
2πt1

365

)
− sin

(
2πtn0

365

))]
. (A.1)

The emergence time for stage 2 satisfies a much simpler relation,

1 = r[t2 − t1 − �2], (A.2)

where �2 is the amount of time spent with temperatures below threshold,

1

2
�2 = 365

2π
cos−1

(
T0 − θ2

T1

)
. (A.3)

This gives an expression for t2 in terms of t1,

t2 = 1

r
+ t1 + 365

π
cos−1

(
T0 − θ2

T1

)
. (A.4)

Equation (A.1) defines an implicit function, t1(t
n
0 ), and using (A.4) we can, in princi-

ple, define the G function

G
(
tn0

) = t2
[
t1

(
tn0

)]
. (A.5)

The condition for marginality is that

1 = dG

dtn0
= dt2

dt1

dt1

dtn0
, (A.6)
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and since dt2
dt1

= 1 from (A.4), we have

dt1

dtn0
= 1. (A.7)

The derivative of t1(t
n
0 ) can be found implicitly from (A.1), which gives

0 = dt1

dtn0
ρ1

[
T0 − T1 cos

(
2πt1

365

)
− θ1

]
− ρ1

[
T0 − T1 cos

(
2πtn0

365

)
− θ1

]
. (A.8)

Thus,

dt1

dtn0
= T0 − T1 cos

( 2πtn0
365

) − θ1

T0 − T1 cos
( 2πt1

365

) − θ1
. (A.9)

Requiring dt1
dtn0

= 1 gives

cos

(
2πtn0

365

)
= cos

(
2πt1

365

)
. (A.10)

Since only one quiescent period is possible per life stage in a year (given the simple
sinusoidal temperature cycle), this gives

t1 = 365 − tn0 . (A.11)

Finally, for the solution to be univoltine, we require

t2 = 365 + tn0 . (A.12)

Taken together, (A.1), (A.4), (A.11), (A.12) determine tn0 , t1, t2 and the equilibrium
state for the parameter under evolution, r .

To determine an explicit expression for t0 and r0 (the marginal oviposition date
and marginal parameter value, respectively, in this case tn0 and r at equilibrium), we

note that (A.11) defines sin(
2πtn0
365 ) = − sin( 2πt1

365 ). Then (A.1) defines t0 implicitly;

1

ρ1
= (T0 − θ1)(365 − 2t0) + T1

365

π
sin

(
2πt0

365

)
. (A.13)

The marginal value for r , (the fixed point r0), can then be calculated from (A.4),

1

r0
= 2t0 − 365

π
cos−1

(
T0 − θ2

T1

)
. (A.14)

Now we are in a position to calculate the additional parameters required for the
stability analysis above. Referring to the quadratic approximation (28), we note

α2 = 1

2
t0Gtt (t0, r0) and γ 2 = − 1

(t0)2

∂

∂r
G(t0, r0).
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For α2,

α2 = 1

2
t0Gtt (t0, r0) = 1

2
t0

[
d2t2

d(t1)2

(
dt1

dtn0

)2

+ dt2

dt1

d2t1

d(tn0 )2

]
,

and using dt1
dtn0

= 1 and d2t2
d(t1)

2 = 0 from (A.4), we find

α2 = 1

2
t0

{
T1

2π
365 sin

( 2πtn0
365

)[
T0 − T1 cos

( 2πt1
365

) − θ1
]

[
T0 − T1 cos

( 2πtn0
365

) − θ1
]2

−
T1

dt1
dtn0

2π
365 sin

( 2πt1
365

)[
T0 − T1 cos

( 2πtn0
365

) − θ1
]

[
T0 − T1 cos

( 2πtn0
365

) − θ1
]2

}
.

Using (A.11) and dt1
dtn0

= 1, this simplifies to

α2 = 2t0πT1

365

sin
( 2πt0

365

)

T0 − T1 cos
( 2πt0

365

) − θ1
. (A.15)

The situation is much simpler for γ 2. Since G depends on the evolution parameter,
r , only in the last stage, we can write

∂G

∂r
= − 1

r2
.

Consequently,

γ 2 = 1

r2
0 (t0)2

. (A.16)

In the particular case of T0 = 10, T1 = 10, θ1 = 9, θ2 = 11, and ρ1 = 0.0055 this
gives r0 = 0.00648, γ = 0.886, α = 0.626, and t0 = 174.21, in excellent agreement
with the numerical solution. Letting σ = 5 × 10−4 gives ε = 0.0871 in the stability
analysis.
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