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Abstract Reaction–diffusion models for the dynamics of a biological population in a
fragmented landscape can incorporate detailed descriptions of movement and behavior,
but are difficult to analyze and hard to parameterize. Patch models, on the other hand,
are fairly easy to analyze and can be parameterized reasonably well, but miss many
details of the movement process within and between patches. We develop a framework
to scale up from a reaction–diffusion process to a patch model and, in particular, to
determine movement rates between patches based on behavioral rules for individuals.
Our approach is based on the mean occupancy time, the mean time that an individuals
spends in a certain area of the landscape before it exits that area or dies. We illustrate
our approach using several different landscape configurations. We demonstrate that
the resulting patch model most closely captures persistence conditions and steady state
densities as compared with the reaction–diffusion model.
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550 C. A. Cobbold, F. Lutscher

1 Introduction

The persistence of biological populations in a given landscape under certain circum-
stances is one of the foremost concerns in conservation biology. The likelihood of a
population to persist depends on the interplay between the life cycle of individuals,
i.e. how they grow, reproduce and die, and their dispersal ability, i.e. how they utilize
spatially distributed resources. Natural and human disturbances of landscapes have
led to increased rates of habitat fragmentation and degradation. Consequently, many
species encounter a landscape consisting of patches of variable quality and separated
by more or less suitable ‘matrix’ habitat. Various modeling approaches are used to help
gain insight into population persistence in such landscapes and to inform management
options, such a reserve design.

Reaction–diffusion equations (RDEs) in the broadest sense (e.g. including advec-
tion and taxis), are the ‘workhorse’ in spatial ecology (Othmer et al. 1997; Cantrell and
Cosner 2003). In these equations, the evolution of a continuous density of individuals
is tracked over time. Individual mechanisms and processes are incorporated at a fine
scale; movement is modeled as a random walk. The simplest and original question of
population persistence is the ‘critical patch size problem’ that dates back to (Skellam
1951; Kierstead and Slobodkin 1953), where it was treated as an eigenvalue problem
of a reaction–diffusion equation.

The versatility of reaction–diffusion equations comes at a price. Analyzing such
equations with spatially variable coefficient functions is hard, and sometimes even
numerical simulations of solutions can be demanding. In addition, data requirements
to fit spatially varying coefficient functions are very high.

Landscape ecologists frequently view landscapes as collections of patches of dif-
ferent habitat quality. Each patch is essentially homogeneous within but significantly
different from its surroundings. Accordingly, models for populations that live in a
patchy landscape typically track the dynamics within a patch as an ordinary differen-
tial equation and link patches via emigration and immigration by first-order gain and
loss terms. Such patch models, sometimes referred to as discrete-diffusion models,
are frequently studied in the literature. Two-patch models are particularly attractive
since their behavior can be displayed as a phase-plane portrait, but even multi-patch
models are still much easier to analyze and parameterize than corresponding reaction–
diffusion models. Our overarching goal here is to translate reaction–diffusion models
into patch models in the ‘best’ possible way.

Several questions emerge immediately. Since patch models necessarily aggregate
information, how close are their predictions to those of corresponding reaction–
diffusion models with more details (Cantrell et al. 2012)? Or: how do the physical
dimensions of a corridor and the diffusion rate there determine the discrete diffusion
rate between two patches linked by the corridor (Wakano et al. 2011)? Or, more gener-
ally, given a reaction–diffusion equation in a patchy landscape, how does one define a
patch model that most closely reflects the reaction–diffusion model? In particular, how
does one scale up from individual random walks in a patchy landscape to a migration
rate between two patches? The goal of this work is to develop a formalism that answers
these questions and provides an algorithmic (computational) procedure to derive patch
models.
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From reaction–diffusion equations to patch models 551

The key ingredient in our modeling framework is the so-called mean occupancy
time. This quantity gives the average time that an individual following a random walk
spends inside a certain region before it either crosses the boundary of the region or dies.
Our work is inspired by related recent progress for integrodifference equations. These
discrete-time analogues to reaction–diffusion equations can be related to discrete-
time patch model via the ‘average dispersal success’ approximation (Van Kirk and
Lewis 1997; Lutscher and Lewis 2004; Fagan and Lutscher 2006). This technique uses
spatial averaging and Taylor series approximation to find an approximate persistence
condition, and suggests point- or area-release experiments to parameterize the models.
Here, we use spatial averaging and occupancy times to obtain ODE approximations
to RDE models. We answer the question of how these two modeling approaches are
connected.

In the following section, we present our formalism using the original critical patch
size problem as an example where all calculations can be carried out explicitly. Then
we present the general formulation of the theory in Sect. 3. We illustrate the scope of
our approach, using several well-known models in spatial ecology (Sect. 4). We give
the detailed derivations in Sect. 5 and close with a discussion.

2 Motivating example

We present the crucial ideas in a heuristic way, using a particular version of the KISS
model as the most basic example, named after Kierstead and Slobodkin (1953) and
Skellam (1951). We assume that a population of individuals resides and moves in the
one-dimensional habitat of length L . We choose the domain to be Ω = [−l, l] with
l = L/2, so that we can use symmetry around x = 0 later. We assume that individuals
reproduce with per capita rate b, and move randomly with diffusion coefficient D.

We assume that the boundary of the habitat is hostile and that the per capita death rate
is much smaller than the loss rate of individuals through the boundary of the habitat,
so that we ignore death for the moment. Then the equation for the population density
u(x, t) reads

∂u

∂t
= D

∂2u

∂x2 + f (u), x ∈ Ω, u(±l, t) = 0, (1)

with birth function f (u) = bu. The critical patch size for this model is Lc = π

√
D
b .

A population inhabiting a patch of size less than Lc will go extinct (Skellam 1951;
Kot 2001).

If we simply average (1) over the patch, then the resulting equation for ū =
1
L

∫
Ω

u(t, x)dx is not closed since the derivative of u at the boundary appears. We
seek an approximation for ū that satisfies a simple equation for the population density
on the patch. These “patch dynamics” for this model should be particularly simple
since there is only one patch and only emigration but no immigration. Hence, the cor-
responding patch model for the average population density on the patch, U (t), should
have the form
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552 C. A. Cobbold, F. Lutscher

U̇ = −MU + f (U ). (2)

Here M > 0 is the rate at which individuals leave the patch. Accordingly, 1/M is
the mean residence time in the patch before reaching the hostile boundary. We now
connect M to the movement model underlying (1).

We define the mean first passage time T (x) as the mean time that it takes an
individual to reach the boundary of Ω from location x, when moving randomly with
diffusion coefficient D (Redner 2001). Then T is the solution of the boundary value
problem (McKenzie et al. 2009)

DT ′′(x) = −1, x ∈ Ω, T (±l) = 0. (3)

The solution has to be symmetric with respect to x �→ −x; it is given by T (x) =
L2

8D − x2

2D . The spatially averaged mean first passage time is then

T = 1

L

l∫

−l

T (x)dx = L2

12D
. (4)

We assume here that starting location, x , is distributed uniformly across the domain.
This is a reasonable null hypothesis and is consistent with the fact that the steady state
distribution for the population is almost uniform in the interior of the domain. Hence,
the natural candidate for the patch emigration rate is M = 1/T .

The population persistence threshold for (2) is b − M > 0; given the dependence
of M on L and D, this condition now translates into a critical patch size of

T > T c = 1/b, or L > L̂c = √
12

√
D

b
. (5)

Since
√

12 ≈ 3.464 > π, critical patch size L̂c predicted by the patch approximation
exceeds the critical size Lc from the spatially explicit KISS model by about 10 %. The
persistence condition in terms of residence time (T b > 1) is the natural condition that
an individual needs to stay in the domain long enough to replace itself before leaving
the domain.

Since a constant per capita birth rate is an unrealistic assumption at higher popula-
tion densities, we next consider a birth or fecundity function f (u) > 0 that saturates
at high density, for example

f (u) = bu

1 + αu
(6)

with maximum birth rate b. Parameter α determines how fast the birth rate declines
with density. Then model (1) has a unique positive steady state, given by

Du∗
xx + f (u∗) = 0, (7)
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From reaction–diffusion equations to patch models 553

provided L > Lc = π

√
D
b . The corresponding patch approximation has the steady

state equation

U∗ = T f (U∗). (8)

We will show in the next section, that U∗ is a reasonable approximation to the spatial
average ū∗ of u∗(x).

The mean first passage time, T (x), is smaller near the boundary of the habitat than
in the center. We use this information to obtain a heuristic approximation to the steady
state profile u∗(x). In Eq. (1), we replace Duxx with (−1/T (x))u, indicating that the
loss rate from the center of the domain is smaller than near the perimeter. (We have
temporarily ignored the fact that T is zero at the boundary.) Formally solving for a
steady state gives u∗(x) = T (x) f (u∗). Together with the result that u∗(x) is close to
its spatial average U∗, we obtain the approximation

u∗(x) ≈ T (x) f (U∗). (9)

We will make all these heuristic arguments more rigorous in subsequent sections.
In the final step, we drop the assumption that the death rate of individuals is small

compared to loss through movement across the boundary. The simplest way to include
a death rate into the equation would be to think of the function f as net reproduction
- birth minus death, - for example f (u) = bu/(1 + αu) − mu. It turns out that there
are at least three problems with this approach.

1. The approximation (9) of the spatial profile of the steady state is not particularly
close (see Figs. 3, 4).

2. The approach requires that individuals eventually leave the area of consideration
since otherwise the mean residence time approaches infinity. Hence the approach
does not generalize to no-flux conditions or habitats consisting of multiple patches,
surrounded by insurmountable boundaries.

3. The approach violates basic bookkeeping rules. An individual can only die at the
location where it currently resides and not anywhere else. Including death into
the function f would mean that in the patch approximation, individuals die where
they are on average rather than where they are actually.

To remedy the situation we include mortality as a Poisson process with intensity
m into the movement operator. Instead of the mean first passage time, we define the
mean occupancy time as the mean time that an individual is alive within the habitat,
i.e. the mean time before it leaves or dies. For an individual moving randomly with
diffusive rate D and mortality m, the occupancy time for starting location x ∈ Ω is
given by the equation (Ovaskainen and Cornell 2003)

DT ′′(x) − mT (x) = −1, x ∈ Ω, T (±l) = 0, (10)
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554 C. A. Cobbold, F. Lutscher

where we assumed hostile boundaries again. The solution has to be symmetric with
respect to x �→ −x; it is given by

T (x) = 1

m

[
1 − cosh

(
l

√
m

D

)−1

cosh

(
x

√
m

D

)]
(11)

with mean occupancy time

T = 1

m

[
1 − 1

l

√
D

m
tanh

(
l

√
m

D

)]
. (12)

We call the resulting approximations (2, 9) with M = 1/T and T (x), T as in (11,12)
the mean occupancy time approximation of (1), or MOT approximation for short. The
critical patch size L̂c is now given by b = M = 1/T , which is the unique positive
solution of the transcendental equation

L

2

√
m

D
= b

b − m
tanh

(
L

2

√
m

D

)
. (13)

We illustrate several aspects of all of the above heuristic approximations in several
plots for a somewhat more general model in Sect. 4.1. But first, we present the general
theoretical concept and derivations.

3 General theory

In general, a reaction–diffusion equation for the density u(x, t) of a single species at
time t at location x in some spatial domain Ω ⊂ R

n can be written as

∂u

∂t
= M[u](x) + F(u, x), u(x, t) = u0(x). (14)

We denote M as the operator describing individual movement and mortality, where
movement is modeled as the negative divergence of the population flux J that may
depend on population density, its gradient and explicitly on spatial location. Local
fecundity is given by F(u, x), where explicit dependence on spatial location can
reflect habitat heterogeneity. At the boundary ∂Ω of the spatial domain, the boundary
condition relates population flux to density as α(x) · J = u(x, t) on ∂Ω × (0,∞).

Landscape ecology typically considers a habitat as an assemblage of patches that
are assumed homogeneous within but different from their respective surroundings.
In the simplest case, there is a single good patch located in less favorable matrix
habitat; more generally, there can be any finite number of patches Ω j , j = 1 . . . n.
The population density in patch j, denoted by U j , changes due to migration between
patches (M), and growth within each patch (F = (F1, . . . , Fn)′) according to

U̇ = MU + F(U). (15)
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From reaction–diffusion equations to patch models 555

Here, U = (U1, . . . , Un)′ denotes the column vector of population densities and
d
dt = ˙ denotes the time derivative. The diagonal elements of matrix M = (mi j )

are negative and describe emigration from a patch, whereas the (non-negative) off-
diagonal elements give the rates of migration from one patch to another. In the case
of a single patch in a hostile landscape, there is no immigration. Typically, mortality
is included in the function F, but it can easily be placed into matrix M as additional
diagonal entries.

In the following, we derive a formalism by which we can relate individual movement
behavior and growth functions in the spatially explicit equation (14) to the movement
rates and growth functions in the spatially implicit equation (15). In other words, we
answer the main question at the heart of this work:

Question Given M and F in a patchy landscape, how can we define M and F in such
a way that (15) most closely captures (14)?

The crucial link between the two equations are spatially averaged occupancy times
derived from the movement operator M. We show that with this formalism, the spa-
tially implicit equation approximates to first order the spatial averages of the spatially
explicit equation at steady state, and it approximates the population persistence con-
ditions to the same degree. Furthermore, in the case of a single patch, we derive an
approximation to the spatial profile of the steady state of (14) based on occupancy
times.

The mean occupancy time (MOT) is the spatially averaged expected time that an
individual is located within a certain patch and alive. When there is no mortality, this
quantity is better known as the average mean first passage time (MFPT). It can be
obtained in several different ways: (i) from experimental data directly (Schultz and
Crone 2001), (ii) from first passage probabilities (Redner 2001), (iii) from the adjoint
of the movement operator (Ovaskainen and Cornell 2003; Ovaskainen 2008), and (iv)
from an explicit random walk derivation (McKenzie et al. 2009). We will use (ii) to
derive the approximations and (iii) for calculations in examples. We provide a brief
description of these two approaches.

We denote G as the Green’s function of the operator M. Furthermore, we denote
S(y, t) as the probability that an individual starting at location y ∈ Ω is still in the
domain and alive at time t. Using the Green’s function, we can express S(y, t) as

S(y, t) =
∫

Ω

G(x, y, t) dx.

Similarly, the first passage probability, F(y, t) is the probability that an individual
starts at y and dies or reaches the boundary for the first time at time t. This quantity
can be written as

t∫

0

F(y, τ )dτ = 1 − S(y, t).
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556 C. A. Cobbold, F. Lutscher

Thus, the occupancy time for an individual starting at location y is given by

T (y) =
∞∫

0

t F(y, t) dt = −
∞∫

0

t
∂S

∂t
dt =

∞∫

0

∫

Ω

G(x, y, t) dx dt. (16)

As a necessary condition, we require limt→∞ S(y, t) = 0, i.e., individuals will even-
tually die or exit the domain with probability 1. In particular, if there is no mortality,
then the boundary has to be “leaky”.

Explicit calculations use the adjoint operator of M, as first presented and explained
in detail by Ovaskainen and Cornell (2003) and later applied in Ovaskainen (2008).
The occupancy time density

B(x, y) =
∞∫

0

G(x, y, t)dt. (17)

satisfies the equation MB = −δ, the delta-distribution. The mean time that an indi-
vidual originally located at y is alive and in Ω is given by the integral of B over Ω .
Using the definition of T as well as the relationship MB = −δ, we find

∫

Ω

B(x, y)dx = T (y) = −
∫

Ω

T (x)MB(·, y)dx = −
∫

Ω

B(x, y)M∗T dx. (18)

Here M∗ denotes the adjoint of M. Therefore, T satisfies the equation

M∗T = −1, x ∈ Ω. (19)

When the total habitat is subdivided into n distinct patches Ω j , j = 1, . . . , n whose
union is all of Ω, i.e. Ω = ∪̇ jΩ j , then we will also need the occupancy time in
each patch Ωi , denoted by TΩi . Similar to the above, this quantity is obtained as the
solution of (Ovaskainen and Cornell (2003))

M∗TΩi = −1, x ∈ Ωi , M∗TΩi = 0, x �∈ Ωi . (20)

With this notation, we have TΩ = T .

3.1 The case of a single patch

We consider Eq. (14) on a bounded connected patch Ω. We define the MOT patch
model as

U̇ = − 1

T
U + F(U ), (21)
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From reaction–diffusion equations to patch models 557

with F as in (14) and T the spatial average of T (x) from (19). Then the following
approximations hold to lowest order (see Sect. 5).

1. The spatial average of a steady state of (14) is approximated by a steady state of
(21).

2. If movement is isotropic then the steady state of (14) is approximated by u∗(x) ≈
F(ū∗)T (x).

3. If F(u) = ru is linear, then the dominant eigenvalue of (21) is a good approxima-
tion of the dominant eigenvalue of (14).

As a consequence of the above, the persistence condition for the spatially implicit
equation is a good approximation of the persistence condition of the spatially explicit
equation; and the same holds true for the stability condition for a positive steady state.

In Sect. 4 we will illustrate how to calculate the occupancy time approximation and
how well this approximation works with a number of different examples.

3.2 The case of multiple patches

When the domain is not homogeneous, we consider a subdivision into n distinct patches
Ω j , j = 1, . . . , n that make up all of Ω, i.e. Ω = ∪̇ jΩ j . Since each patch is assumed
homogeneous, we set the population dynamics on each patch as Fi (u) = F(u, x) for
x ∈ Ωi . Then the MOT approximation of (14) is

U̇ = −T −1U + F(U), (22)

where matrix T = (Ti j ) = −M−1 has entries

Ti j = |Ω j |
|Ωi |

1

|Ω j |
∫

Ω j

TΩi (y)dy. (23)

Hence, Ti j is the occupancy time in Ωi , spatially averaged over the starting patch Ω j ,

multiplied by the fraction of the respective patch areas. This fraction is the conversion
factor from densities in Ω j into densities in Ωi . The notation |Ω j | stands for the
measure of the set Ω j ; i.e. the length for an interval and the area for a two-dimensional
domain.

In Sect. 5.3 we show that

1. the patch averages of a steady state of the spatially explicit Eq. (14) are approxi-
mated by a steady state of (22); and

2. the dominant eigenvalue of (22) when F is linear is a good approximation of the
dominant eigenvalue of (14).

In the following section, we illustrate our approach, using a number of well-established
models in spatial ecology.
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558 C. A. Cobbold, F. Lutscher

4 Examples and results

We demonstrate the scope of our approach by revisiting some classical models in
spatial ecology and comparing our approximation results to the analytically available
results. We focus mostly on the conservation issue of population persistence as a
function of habitat size and other parameters describing individual movement. We
assume that population growth does not exhibit an Allee effect and define population
persistence as the ability of the population to invade new habitat and grow at low
density.

4.1 Single patch with movement behavior at the boundary

Hostile boundary conditions, as in the introductory example, may apply to a plant
species with wind borne seeds on an island surrounded by ocean. Many animals,
however, perceive habitat boundaries and modify their movement behavior so that they
only leave a good patch with probability p and stay with probability 1−p. Van Kirk and
Lewis (1999) showed that this situation can be modeled by a diffusion equation with
mixed boundary conditions. We adopt the boundary condition of Van Kirk and Lewis
(1999), but depending on the assumptions made about how the individual encounters
the boundary alternative conditions can be constructed (see for example Cantrell and
Cosner 2007; Singer et al. 2008). Our model reads

ut = Duxx + bu

1 + αu
− mu, x ∈ (−l, l) (24)

ux (−l, t) = χu(l, t), ux (l, t) = −χu(l, t), (25)

where r = b − m is the net intrinsic growth rate and χ = p
1−p

√
r
D .

The resulting critical domain size is (Ludwig et al. 1979)

Lc = 2

√
D

r
arctan

(
p

1 − p

)
. (26)

The occupancy time satisfies the equation in (10) with boundary conditions in (25),
namely

T (x) = 1

m

[
1 −
[

cosh

(
l

√
m

D

)
+ 1

χ

√
m

D
sinh

(
l

√
m

D

)]−1

cosh

(√
m

D
x

)]
, (27)

and

T = 1

m

[
1 − 1

l

√
D

m
tanh

(
l

√
m

D

)(
1 + 1

χ

√
m

D
tanh

(
l

√
m

D

))−1
]

. (28)
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From reaction–diffusion equations to patch models 559

The corresponding critical patch size is given by the unique positive solution of bT = 1
or

L

2

√
m

D

[
1 + 1

χ

√
m

D
tanh

(
L

2

√
m

D

)]
= b

r
tanh

(
L

2

√
m

D

)
. (29)

In the limit of hostile boundary conditions (p → 1) we recover the expressions for
Lc and L̂c from Sect. 2.

Finally, we consider the MOT approximation (9) to the steady state of the PDE
model (24) and (25). The explicit expression of u∗ is given by

u∗(x) =
(

bT − 1

αT

)
T (x), (30)

where T and T (x) are from (28) and (27).
In two spatial dimensions, the MOT approach works the same way, but the cal-

culations become more difficult. In the simplest case, the domain is a disc of radius
R. Assuming a hostile boundary condition, the KISS model (1) has critical radius

Rc = β1

√
D

b−m (e.g. Kot 2001, p. 288), where β1 is the first zero of the zero-order
Bessel function of the first kind, J0.

The mean occupancy time equation on a disc of radius R with hostile boundary is
radially symmetric and can be written in polar coordinates as

D

(
T ′′ + 1

ρ
T ′
)

− mT = −1, 0 ≤ ρ ≤ R, T (R) = 0, ρ2 = x2 + y2. (31)

The solution is given explicitly by a Bessel function with complex argument as

T (ρ) = 1

m

⎛
⎝1 −

J0

(
i
√

m
D ρ
)

J0

(
i
√

m
D R
)
⎞
⎠ . (32)

However, there is no closed form explicit expression for T in this case. On a rectangular
domain, the equation for T can be solved in terms of Fourier series, so that, again,
numerical tools are required to evaluate the resulting expressions; see Appendix B.

4.2 Partitioning the net growth rate

In Sect. 2, we argued that one should not simply use the net growth function in the
patch approximation, but rather split net growth into births and deaths. This issue
arises in many other situations as well. In stochastic models, for example, births
and deaths need to be treated differently. A simple linear Markov pure-birth process
has zero probability of extinction, whereas a birth–death process with the same net
growth rate has a positive extinction probability (Kot 2001). In structured models,
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560 C. A. Cobbold, F. Lutscher

basic bookkeeping rules require that individuals are removed only from their current
state (e.g. age, location, velocity) whereas offspring maybe placed into a different state
from the parent.

In general, there are many ways to split a net growth function in the RDE into
reproduction and death. When we compare the results of the RDE model with those
of the corresponding MOT approximation, we have to choose how we partition the
growth function in the RDE into the birth and death terms for the MOT approximation.
Ideally, in empirical examples, the two processes can be measured separately so that
no ambiguity exists. In our theoretical study, we can investigate this question in more
detail by comparing different ways of partitioning net growth into births and deaths.

We begin with the linear model and the resulting critical patch size. The RDE model
has the single parameter r = b − m. The MOT approximation depends on m and b
separately. We begin by investigating how the relative difference between Lc and L̂c

depends on m, given that b − m = r is constant. In other words: how much does
it matter whether we include deaths into the movement or the population dynamics
term?

To that end, we write the mortality as m = m1 + (m − m1), where m1 denotes the
portion that will be applied to calculate T (x) and T , and m − m1 the portion that will
be included into the population dynamics. We denote T (m) as the expression in (28).
Then the critical domain size of the MOT approximation is given by the root, L̂c, of the
equation T (m1)(b−(m−m1)) = 1. We ask how L̂c depends on m1. Specifically, when
m1 = m, we have the MOT approximation as calculated previously; when m1 = 0,
we have the MFPT approximation from Sect. 2.

For this comparison, we note that the MFPT with mixed boundary conditions from
(25) is given by

T (x) = 1

2D

(
−x2 + x L + L

χ

)
, T = L2

12D

(
1 + 6

Lχ

)
. (33)

and the critical patch size for the MFPT approximation is given explicitly by

L̂c = − 3

χ
+
√

9

χ2 + 12D

r
. (34)

When m1 > 0, the critical patch size (29) for the MOT approximation cannot be given
explicitly.

In Fig. 1, we plot Lc and L̂c for different values of m1 as a function of p (recall

χ = p
1−p

√
r
D ). For small values of p, the approximation is particularly accurate, but

even for p ≈ 1/2 the relative difference is well below 5 %. We observe that for the
chosen parameter values the MFPT approximation (m1 = 0) is closer than its MOT
counterpart (m1 > 0).

We can look at the critical patch size condition T (m1)(b − (m − m1)) = 1 as
a function of m1. Clearly, T (m) is a decreasing function. The slope of the function
T (m1)(r + m1) is given by
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Fig. 1 The relative difference of the critical patch sizes (L̂c −Lc)/L̂c increases as the probability of leaving
the patch increases. Lc is as in (26) whereas L̂c results from the implicit equation (29). The non-spatial
approximation overestimates the spatially explicit value. The maximum relative difference is around 10 %
when net growth consists of only births (m1 = 0). When net growth is composed of births and deaths the
maximum relative difference can increase to around 33 %. Parameters are D = r = 1

d

dm1
T (m1)(r + m1) = T

′
(m1)(r + m1) + T (m1). (35)

The first term is negative, since occupancy time decreases with death rate; the second
is positive. Hence, when r is small the slope is positive, at least for small m1; when
r is large the slope is negative, at least for large m1. In the first case, the function
is increasing, in the second it is decreasing. Numerically, we found that the function
T (m1)(r + m1) can, in rare cases, have a local extremum for some intermediate value
0 < m1 < r, but most often is monotone in that interval. Since the MFPT approxi-
mation (already) overestimates Lc for the RDE, the MOT approximation exaggerates
this overestimation when the function T (m1)(r + m1) is decreasing.

Next, we consider the spatial profile of the steady state. The explicit expression for
its profile follows from (8) and (9), as

u∗(x) = T (b − (m − m1)) − 1

T α(T (m − m1) + 1)
T (x) (36)

with T (x) given by (27) for m1 > 0 and by (33) in the MFPT case.
Figure 2a demonstrates that the approximation is very close to the RDE result for

relatively small domains and a wide range of p values. The shape of the steady profile
changes as the partitioning of net growth rate between birth and death is changed.
This effect is best seen on large domains (Fig. 2b). On a large domain the steady state
profile approaches the value of the spatially homogeneous non-trivial steady state
everywhere in the domain except in a region close to the boundary. With net growth
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Fig. 2 The steady state profile u∗(x) of (24) (solid line) is well described by the MOT approximation from
Eq. (30) with m1 = m (dashed line). a On a small domain the approximation loses accuracy as p increases
and the boundary conditions approach those of a completely hostile boundary. b Fixing the net growth
rate r = b − m, increased mortality reduces the size of the region affected by loss through the boundary.
Parameters: D = 1, maximum population density scaled to 1
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Fig. 3 The steady state profile u∗(x) of Eqs. (24, 25) (solid line) is well described by the MFPT approx-
imation (36) with m1 = 0 (dashed line) on a small domain (a). On a large domain, MFPT is unable to
accurately capture the shape of the steady state profile. Parameters: D = 1, maximum population density
scaled to 1

(b − m) fixed, increasing m reduces the size of this boundary region. To understand
this observation, we consider the eigenvalue ((m − b)m/b) corresponding to spatially
homogeneous steady state. The magnitude of the eigenvalue increases with the ratio
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Fig. 4 Comparing the MOT with m1 = m (a) and MFPT (b) approximations of the steady state profile
(36) to the numerical solution of the RDE (24, 25). We calculate the relative error in average and maximum
difference as well as total population density between the RDE and the approximations. MOT has a relative
error of less than 10 %. For large domains, MFPT has large error, unable to capture the shape of the profile.
However, both approximations come within 5 % of the total number of individuals in the patch, and both
consistently underestimate the value. Parameters: D = 1, maximum population density scaled to 1

m/b, thus as m increases the spatially homogeneous steady state is reached more
rapidly, and movement at the boundary will have only a localised effect.

The corresponding plots for the MFPT approximation in Fig. 3 reveal that the
difference between the two approaches is small on small domains, but essential on
larger domains. It is clear from the quadratic expression for T (x) in (33) that T (0)

will grow as L grows whereas the steady state of the RDE and T (0) from (11) remain
bounded. In particular, the MFPT approximation cannot capture the plateau that forms
at the carrying capacity at the center of the domain.

When considering other metrics for the comparison between the steady state of the
RDE and the two approximations, we see that the number of individuals in a patch is
predicted fairly accurately by both approximations. But when we look at the maximum
and average relative difference between the approximations and the actual steady state
profile across the patch, then MOT does much better than MFPT (Fig. 4).

4.3 Single patch with a non-hostile exterior

The assumption of hostile exterior rarely applies to terrestrial landscapes. In fact, sev-
eral studies showed the importance of even low-quality ‘matrix’ around and between
high quality patches (Ludwig et al. 1979; Artiles et al. 2008). Following the approach
by Ludwig et al. (1979), we include the exterior of the patch into the boundary con-
ditions and thereby reduce the problem to the same kind as in the previous section.

123

Author's personal copy



564 C. A. Cobbold, F. Lutscher

The linearized model for the dynamics of a population at low density on the focal
patch and the exterior is

∂u

∂t
= D1

∂2u

∂x2 + (b1 − m1)u, x ∈ (−l, l),

∂u

∂t
= D2

∂2u

∂x2 − m2u, x �∈ [−l, l],
(37)

where D1(D2) is the diffusion coefficient inside (outside) the focal patch, b1 is the
maximum birth rate inside the focal patch, and m1 (m2) is the death rate inside (outside)
the focal patch. The limit m2 → ∞ corresponds to hostile surroundings.

Individuals who leave the focal patch enter the surroundings and vice versa. Math-
ematically, the population flux should be continuous at the interfaces x = ±l (Ludwig
et al. 1979). Population density will typically be discontinuous across an interface if
movement behavior of individuals differs in the two adjacent habitat types; depending
on movement assumptions, Ovaskainen and Cornell (2003) derived different possible
conditions, namely

(I)
√

D1u(−l+, t) = √D2u(−l−, t) and
√

D1u(l−, t) = √D2u(l+, t),

(II) D1u(−l+, t) = D2u(−l−, t) and D1u(l−, t) = D2u(l+, t).
(38)

Here, superscripts ± stand for the limits from the right and left, respectively. Con-
dition (I) results from the assumption that step sizes in the focal patch and surround-
ings differ but movement rates are identical. Condition (II) results from the opposite
assumption; step sizes are identical but movement rates differ between patch and sur-
roundings. For a detailed discussion of how these interface conditions affect population
dynamics in a variety of models, see Maciel and Lutscher (2013).

Following Ludwig et al. (1979), the persistence problem and the steady-state equa-
tions for (37) are equivalent to considering the equation on the focal patch alone, but
with mixed boundary conditions

ux (−l, t) = χu(−l, t), ux (l, t) = −χu(l, t), (39)

where the two interface matching conditions translate into

(I) χ = √m2/D1 or (II) χ = √m2/D2 (40)

Since the problem formulation is now the same as in the previous section, the MOT
and critical patch size are given by (27) and (29), respectively.

Critical patch size increases as the quality of the patch exterior decreases. The
occupancy time approximation is able to capture the distinction between the critical
patch sizes obtained under the two types of interface matching conditions (Fig. 5) and
is within 10 % of Lc. As in Sect. 4.3, the MOT approximation performs best when
m1 = 0. When

√
m2/D2 is small, individuals move rapidly in the exterior and so have

an increased probability of returning to the focal patch. This is equivalent to small p in
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Fig. 5 Critical patch size increases with the inverse of the movement rate in the patch exterior. In
a, D1 = D2, so that the difference in boundary conditions (40) disappears. In b, D1 = 0.1, D2 = 1,

and the results for the different boundary conditions differ. In all cases L̂c (dashed lines) is within 10 %
of Lc (solid lines). Lc is as in (26) and L̂c is implicitly given by (29) with χ as in (40). Fixed parameters
are m1 = 0 and r1 = b1 = 1. Darker lines are for interface conditions (I), lighter grey is for interface
conditions (II)

Fig. 1. In this scenario, the occupancy time approximation with m1 �= 0 also performs
well.

4.4 Multiple patches: core and buffer

For our first example of a two-patch model, we consider a variant of the classical
KISS model, first studied by Cantrell and Cosner (1999). Specifically, we divide the
reserve into a ‘core habitat’ of size 2L1, where conditions are optimal, surrounded by
a ‘buffer zone’ of width L2, where conditions are less favorable but still better than
hostile. In the limiting case L2 → ∞, we retrieve the situation from the previous
section. At the outer boundary of the buffer zone, we impose hostile conditions; at the
interface between the core and the buffer, we assume that individuals turn towards the
core with probability p and towards the buffer with probability (1 − p). The interface
conditions are then a combination of the conditions in the previous two sections: the
flux is continuous at the interface but the density has a discontinuity that depends on
movement rates (as in (38)) and core habitat preference (as in (25)); see Appendix A for
details. Cantrell and Cosner (1999) implemented habitat preference as discontinuous
flux conditions at the interface; see Maciel and Lutscher (2013) for a discussion of
these two different approaches.

To find the matrix T for the patch approximation, we calculate the average time
that an individual, originally located in the core habitat, spends in the core and buffer,
respectively, and the same for initial location in the buffer zone and obtain
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Fig. 6 Increasing the size of the core or buffer increases average populations growth rate, (a) and (b)
respectively. The MOT approximation (dashed line) is virtually indistinguishable from the analytical solu-
tion of the RDE (solid line). Black lines correspond to interface conditions (I), grey lines correspond to
(II); see Appendix A for details. In (c) critical patch size is plotted as a function of preference for the core.
When r2 > 0, we have chosen m2 = 0 and b2 = r2. When r2 < 0, then m2 = −r2 and b2 = 0. In all plots
m1 = 0 and b1 = r1 and D1 = r1 = L1 = L2 = 1, r2 = 0.5, and D2 = 1.5, unless indicated otherwise

T =

⎡
⎢⎢⎣

L2
1

3D1
+ L1k√

m2 D2
tanh
(

L2

√
m2
D2

)
k

m2

(
1 −
[
cosh
(

L2

√
m2
D2

)]−1
)

L1
L2m2

(
1 −
[
cosh
(

L2

√
m2
D2

)]−1
)

1
m2

(
1 − 1

L2

√
D2
m2

tanh
(

L2

√
m2
D2

))

⎤
⎥⎥⎦, (41)

detailed calculations are given in Appendix A. The determinant of this matrix is pos-
itive, the matrix M = −T −1 has negative diagonal entries and positive off-diagonal
entries.

In this example, we demonstrate that the MOT approximation not only estimates
the persistence conditions, but the principal eigenvalue of the RDE (Fig. 6). Increasing
the size of the buffer increases the average population growth rate, but as Cantrell and
Cosner (1999) noted there is a strict limit to this beneficial effect. Specifically, the
dominant eigenvalue remains bounded away from unity even for very large buffer
zones, whereas λ = 1 would be the dominant eigenvalue for a large core patch.
Finally, increasing the preference for the core ensures that even a very poor quality
buffer (r2 < 0) is beneficial (Fig. 6c).

4.5 Periodic landscape with two patch types

For a final example, we consider a periodic landscape of two patch types, alternating
between favourable (of size L1) and unfavourable (of size L2) habitat as first studied
by Shigesada et al. (1986). Within one period [−L2, L1], we have the same linearized
equations as with the core and buffer example (Sect. 4.4), namely
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ut = Di uxx − mi u + bi u, x ∈ Ωi (42)

with ri = bi − mi , Ω1 = [0, L1] and Ω2 = [−L2, 0]. The net growth rates satisfy
r2 < 0 < r1. Periodicity allows us to reduce the problem to the domain [−L2/2, L1/2]
with with no-flux conditions

ux (L1/2, t) = 0, ux (−L2/2, t) = 0. (43)

The interface conditions at x = 0 are the same as the core and buffer examples: the
flux of individuals is continuous at the interface, the density need not be; see (72).

To calculate the persistence conditions, we study the dominant eigenvalue of the
matrix

− T −1 +
[

b1 0
0 b2

]
= 1

det(T )

[
b1 det(T ) − T11 T12

T21 b2 det(T ) − T22

]
, (44)

see Eqs. (22) and (23). The persistence boundary is given by the dominant eigenvalue
of (44) being zero, i.e. the determinant of this matrix being zero. If we assume that
the population experiences no death in favorable patches (m1 = 0) and no growth in
unfavorable patches (b2 = 0), then this determinant has the particularly simple form

1 − b1T11

det(T )
. (45)

In particular, the persistence condition is b1T11 = 1. The MOT T11 can be calculated
in the same way as for the previous example in Appendix A. Then one arrives at the
explicit characterization of the persistence boundary as

(
1 − L2

1r1

12D1

)
2
√

D2m2

L1kr1
=
[

tanh

(√
m2

D2

L2

2

)]−1

. (46)

We note that since we are considering an infinite landscape, it is essential to include
some mortality term into the movement operator to ensure that the MOT remains finite.

The persistence condition given by (46) is indistinguishable from that given by
the full RDE (Fig. 7). The maximum size of the unfavourable patch that a species
can tolerate increases as r2 approaches zero (Fig. 7a). Similarly, the minimum size of
the favourable patch that a species requires increases as the size of the unfavourable
patch increases (Fig. 7b), and both types of interface condition predict the same trend.
Maciel and Lutscher (2013) found that maximum unfavorable patch size increases
with diffusivity D2, and the interface conditions determined if this occurred in either
a decelerating or accelerating fashion. The MOT approximation also successfully
captures this distinction (Fig. 7c). The approximation performs well because we are
estimating the spatially averaged eigenvalue of the RDE model, so this extra layer of
averaging improves the approximation of the persistence condition by averaging out
any errors in our approximation at the individual patch level. Moreover, the periodic

123

Author's personal copy



568 C. A. Cobbold, F. Lutscher

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

D
2

L
2

−2 −1.5 −1 −0.5 0
0

5

10

r
2

L
2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

L
2

L
1

λ<0

(a) λ<0

λ<0
λ>0

(c)

(b)

λ>0

λ>0

Fig. 7 In a periodic habitat, reducing the quality of or movement rate in unfavourable patches requires
a reduction in the patch size to ensure persistence; see a and c. Larger favorable patches are needed
for persistence as unfavorable patch size increases (b). The MOT approximation (46) (dashed line) is
indistinguishable from the analytical solution of the RDE (42, 43) (solid line). The black lines correspond
to interface conditions (I) and the grey line corresponds to (II). In all plots m1 = 0, b1 = r1 m2 =
−r2, b2 = 0 and D1 = r1 = L1 = 1, r2 = −0.5, and D2 = 0.5, unless indicated otherwise

habitat ensures there is no loss through dispersal, further enhancing the accuracy of
the MOT approximation (compare to Fig. 1).

5 Derivation of the approximation results

In this section, we provide details of the formal calculations behind our approxima-
tions.

5.1 Single-patch approximation: steady state

The Green’s function for M is defined by the equations

∂G

∂t
= M(G, x), in Ω × (0,∞), where Ω ⊂ R

n

G(x, 0) = δ(x − y), in Ω (47)

α(x) · J = G(x, t) on ∂Ω × (0,∞).

Since we assumed that individuals either leave the domain or die eventually, the dom-
inant eigenvalue of M is negative, and the Green’s function decays exponentially to
zero.
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Using the Green’s function, we can write the solution of the nonlinear reaction–
diffusion model (14) in integral form as

u(x, t) =
∫

Ω

G(x, y, t)u0(y) dy +
t∫

0

∫

Ω

G(x, y, t − s)F(u(y, s), y) dyds. (48)

Since the steady state u∗(x) is independent of time, we may take the limit for large
times

u∗(x) = lim
t→∞

⎡
⎣
∫

Ω

G(x, y, t)u0(y)dy +
t∫

0

∫

Ω

G(x, y, t − s)F(u∗(y))dyds

⎤
⎦ . (49)

By the properties of the Green’s function, the first term on the right hand side will
vanish. Taylor expanding F(u∗(x)) about the spatial average, ū∗, of u∗(x) gives

u∗(x) =
∫

Ω

∞∫

0

G(x, y, s)
[
F(ū∗) + F ′(ū∗)(u∗(y) − ū∗) + h.o.t.

]
dyds. (50)

Now, we assume that |u∗(x) − ū∗| is small. Then we are left with the approximation

u∗(x) ≈ F(ū∗)
∞∫

0

∫

Ω

G(x, y, s) dy ds (51)

If the movement operator is self-adjoint then the corresponding Green’s function is
symmetric, i.e. G(x, y, s) = G(y, x, s). In this case, by (16), we have

u∗(x) ≈ F(ū∗)T (x), (52)

and we have an approximation to the steady state profile of (14). Whether or not G is
symmetric, we can average Eq. (51) and get

ū∗ ≈ F(ū∗) 1

|Ω|
∞∫

0

∫

Ω

∫

Ω

G(x, y, s)dxdyds = F(ū∗)T̄ . (53)

5.2 Single-patch approximation: eigenvalue

The dominant eigenvalue −λ and corresponding positive eigenfunction φ of M in
(47) satisfy the equation

φ(x)e−λt =
∫

Ω

G(x, y, t)φ(y) dy. (54)
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Now, we write φ(x) = φ̄ + φ(x) − φ̄, where φ̄ is the spatial average of φ over Ω.

Integrating Eq. (54) over the domain, we obtain

φ̄e−λt = φ̄

|Ω|
∫

Ω

∫

Ω

G(x, y, t) dy dx + 1

|Ω|
∫

Ω

∫

Ω

G(x, y, t)(φ(y) − φ̄) dy dx.

(55)

Assuming that |φ(y)−φ̄| is small, integrating both sides with respect to t and applying
the definition of T̄ in (16), we obtain the desired approximation for the eigenvalue of
the operator M as

1

λ
≈ 1

|Ω|
∞∫

0

∫

Ω

∫

Ω

G(x, y, t) dx dy dt = 1

|Ω|
∫

Ω

T (y)dy = T̄ . (56)

Matkowsky and Schuss (1977) obtained the same relationship under the alternative
assumption that the diffusion coefficient in the movement operator M(u, x) = ∇ ·
(D(x)∇u)) is small.

The approximation of the dominant eigenvalue leads to a population persistence
condition in the case where the per capita fecundity function is a non-increasing func-
tion so that the population does not exhibit an Allee effect. Then the persistence condi-
tion for the reaction–diffusion equation (14) is obtained when the dominant eigenvalue
of the linearized equation

∂u

∂t
= M(u, x) + ∂F

∂u (0, x)u (57)

is zero. Since the patch is assumed homogeneous, we have F(u, x) = F(u). Hence,
with ∂F

∂u (0) = r, we find that the dominant eigenvalue of (57) is given by −λ +
r ≈ −1/T̄ + r, which is exactly the linearization of the MOT approximation (21) at
zero.

Stability of a positive steady state in the spatially explicit equation is determined
by the dominant eigenvalue μ of the operator M + ∂uF(u∗), i.e.

μφ(x) = M(φ, x) + ∂F
∂u

(u∗(x), x)φ(x). (58)

Assuming, again, that the patch is homogeneous within, and using the steady state
approximation above, we write

∂F
∂u

(u∗(x)) = ∂F
∂u

(ū∗) + ∂2F
∂u2 (ū∗)(u∗(x) − ū∗) + h.o.t. (59)
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Keeping only the first term, we have an eigenvalue problem of the same form as (57),
so that the stability boundary is given when

0 = μ = −λ + F ′(ū∗) ≈ −1/T̄ + F ′(ū∗) = 0, (60)

which is the stability boundary for the MFPT approximation (21).

5.3 Multi-patch approximation

The derivation of the spatially implicit approximation in the multi-patch case is very
similar to the steady state derivation in the single-patch case, the difference being that
we average on each individual patch rather than over the entire domain. The spatially
implicit model (15) and its steady state equation read

U̇ = MU + F(U), U∗ = −M−1F(U). (61)

The steady state solution for the spatially explicit equation satisfies

u∗(x) =
∞∫

0

∫

Ω

G(x, y, s)F(u∗(y))dyds. (62)

Now we take averages over each of the patches that make up the habitat, i.e.

ū∗
j = 1

|Ω j |
∫

Ω j

u∗(x)dx, (63)

and use Taylor expansion on each patch to arrive at

u∗(x) =
∑

j

∞∫

0

∫

Ω j

G(x, y, s)
[
F j (ū

∗
j ) + F ′

j (ū
∗
j )(u

∗(x) − ū∗
j ) + h.o.t

]
dyds.

(64)

Averaging this equation over patch i and assuming that |u∗(x)− ū∗
j | is small, we obtain

ū∗
i = 1

|Ωi |
∑

j

∞∫

0

∫

Ωi

∫

Ω j

G(x, y, s)dydxds F j (ū
∗
j ). (65)

We can conveniently write this equality in matrix-vector notation as

u∗ = T F(u∗), u∗ = (ū∗
1, . . . , ū∗

n)′ (66)
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where F(u) = (F1(u1), . . . ,Fn(un))′ and matrix T = (Ti j ) has the entries

Ti j =|Ω j |
|Ωi |

1

|Ω j |
∫

Ω j

∫

Ωi

∞∫

0

G(x, y, s) dsdxdy

=|Ω j |
|Ωi |

1

|Ω j |
∫

Ω j

∫

Ωi

B(x, y) dxdy

=|Ω j |
|Ωi |

1

|Ω j |
∫

Ω j

TΩi (y) dy.

(67)

Hence, we choose −M−1 = T , so that the steady state equation for the spatial averages
of the spatially explicit model is to lowest order the same as for the patch model

U̇ = −T −1U + F(U). (68)

Combining the argument for eigenvalue approximation in the single-patch case with
the patch-averaging idea above shows that the dominant eigenvalue of the movement
operator approximately satisfies the equation

1

λ
 = T , (69)

so that the persistence condition of the spatially explicit equation and the patch equation
are approximately the same.

6 Discussion

Habitat fragmentation and its impact on population persistence is of key concern to
landscape ecologists and conservationists. Diffusion models have been extensively
used by theoreticians to determine critical thresholds for extinction (Cantrell and
Cosner 2003). This mechanistic framework provides a powerful tool for integrating
complex descriptions of individual movement behavior into a model of a temporally
changing population distribution; see Turchin (1998) and references therein.

To study persistence in a heterogeneous landscape over a large spatial scale, the
habitat is often modelled as a system of coupled patches, giving rise to ordinary
differential equation models. This approach circumvents the problems of analyzing,
parameterizing and simulating highly complex RDE models at this scale. Cantrell
et al. (2012) discuss and compare the two different approaches in a simple landscape
consisting of five patches. The immigration and emigration rates of these patch models
are first-order decay processes, often determined by phenomenological arguments,
for example in the metapopulation literature (Hanski and Ovaskainen 2000). More
recently, such rates have been approximated using the eigenvalue of the corresponding
RDE model (Strohm and Tyson 2012; Vasilyeva and Lutscher 2012), see also page
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130 in Cantrell and Cosner (2003), or by simple approximations of the flux at patch
boundaries (Wakano et al. 2011; Weins et al. 1993; Cantrell et al. 2012).

Our approach is to derive immigration and emigration rates from occupancy times
for the movement equations. It turns out that the dominant eigenvalues of the resulting
patch models approximate those of the RDE, thereby retaining as much information
about the complex movement and landscape heterogeneity as possible. The advantage
of this approach is that transfer rates between patches include information about the
habitat crossed in between patches as well as properties of the patches themselves,
relating to shape, size and boundaries. The impact of these patch characteristics are
not visible in the one-dimensional setting but do appear in two dimensions since the
Greens function depends on these characteristics and the mean occupancy time is
obtained by integrating the Greens function over the patch, see Eq. (16). We illustrate
this dependence in Appendix B where we demonstrate that mean occupancy time
depends nonlinearly on the dimensions of a rectangular domain of fixed area. Com-
puting MOT for more complex domains of two or more spatial dimensions requires
numerically solving a system of elliptic PDEs to find MOT. However, this computation
needs to be carried out only once to obtain the movement rates between patches for the
corresponding ODE system. Therefore, our approach could still be computationally
simpler than solving the reaction–diffusion equation on a large complex heteroge-
neous domain as McKenzie et al. (2009) found in their application of MFPT to study
functional responses.

In the case of a single patch we demonstrated that the rate of leaving is the inverse of
the spatially averaged mean occupancy time for this patch. Mean occupancy time is the
expected time an individual is in the patch and alive. It can be measured directly using
mark recapture techniques (Frair et al. 2005) or can be derived from a mechanistic
description of movement that is typically used in the derivation of the correspond-
ing RDE models (Ovaskainen and Cornell 2003; McKenzie 2006). Mean occupancy
time satisfies an elliptic equation involving the adjoint of the movement operator as
discussed in Sect. 3, and it is this relationship to the corresponding PDE model that
ensures the eigenvalues of the patch model correspond to those of the RDE.

Our approach is the continuous-time analogue of the average dispersal success
approximation, used to approximate integrodifference equation models of discrete
time continuous space processes by discrete time patch models (Van Kirk and Lewis
1997; Lutscher and Lewis 2004). Average dispersal success is the spatially averaged
probability of starting in the patch and staying there, which is related to the mean
occupancy time, essentially the average time spent in the patch. Both these quantities
are spatial integrals of the Green’s functions of the associated movement operators.
Consequently, as with dispersal success approximations, we demonstrated that we can
also approximate the spatial distribution of the population within a patch. This is a
refinement on the residence index presented by Turchin (1998). The average dispersal
success approximation has already proved to be a useful practical tool for ecologists
(Cobbold et al. 2005), particularly in determining critical reserve sizes (Fagan and
Lutscher 2006). We hope that the mean occupancy time approximation will afford the
same benefits to continuous time problems.

Our MOT approximation relies on the assumption that |u∗(x)− ū∗| is small, mean-
ing that the steady state is close to the spatial average. A similar assumption is made

123

Author's personal copy



574 C. A. Cobbold, F. Lutscher

in the development of the average dispersal success approximation (Van Kirk and
Lewis 1997). For a large domain, density u∗(x) is indeed close to ū∗, as illustrated in
Fig. 2, and only in a very small region near the boundary does this assumption fail. For
smaller domains where the boundary region affects a larger portion of the domain an
argument analogous to that proposed by Van Kirk and Lewis (1997) applies. Near the
boundary, occupancy time density (17) is small as there is a high probability of exiting
the domain here, and this fact ensures the product

∫∞ G(x, y, s)(u∗(y) − ū∗) ds in
our approximation (50) is small even when |u∗(x) − ū∗| is not. In the centre of such
a domain |u∗(x) − ū∗| will be small as loss through the boundary is low and has a
small effect on the domain interior. As we saw in Fig. 2 our approximation begins to
fail when we apply mixed boundary conditions with a high probability, p, of leav-
ing the domain, which in turn leads to a larger effect of the boundary on the domain
interior and so our approximation underestimates the steady state distribution in this
case. Nonetheless our approximation works surprisingly well, even in cases where one
might expect it to fail.

We are unaware of previous applications of mean occupancy time in mathematical
biology, but mean first passage time has been used in mathematical ecology before to
study encounter rates between predator and prey (McKenzie 2006), and extensively
in chemistry and physics (Hanggi et al. 1990). In those cases, death during move-
ment is ignored. Mean first passage time has been used to approximate reaction rates
based on heuristic arguments. We believe our work is the first attempt to give this
relationship a more formal grounding. In all cases, however, there is the underlying
implicit assumption that occupancy times are exponentially distributed. While this is
not generally the case, the reaction rate approximation is very robust to the relaxation
of this assumption (Kolpas and Nisbet 2010).

The importance of including mortality in the movement operator, used to derive
mean occupancy time, was clearly demonstrated in Sect. 4. Accuracy of our approx-
imations is affected by whether individuals die in their current location. Why
this is so important is to some extent an open question although similar issues
arise in partitioning births and deaths in reaction–transport equations (Hadeler
2000) and in stochastic models of birth–death processes (Samia and Lutscher
2012).

In Sect. 4, we compared the persistence conditions derived from our patch models
to the analogous results for the RDE counterparts. Typically, the approximation is
within 10 % and in many cases indistinguishable from the analytic result of the RDE.
The power of this approximation is also highlighted by its flexibility to include effects
of the habitat in which the patches are located. The framework can be also readily
generalised to a stochastic framework. While studying stochastic RDEs is incredibly
demanding, investigating a spatially implicit reduction using MOT is feasible. In the
same spirit, Samia and Lutscher (2012) used the dominant eigenvalue of the movement
operator to obtain a spatially implicit formulation of a stochastic model for persistence
in a river.

As our approach is derived from a general movement operator it is flexible, allowing
us to include bias in movement at patch boundaries for example. Such bias is important
for issues of habitat preference. Habitat preference is is not classically included in patch
models although Hanski and Ovaskainen (2000) offer a framework for doing this in
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the context of metapopulations, but do not prescribe the relation between migration
rates and behaviour explicitly.

Beyond this initial development of our theory for mean occupancy time patch
models there are a number of future challenges. An important consideration is the
incorporation of non-linear death rates into our approach. While they can read-
ily be included as part of the net reproduction function f (u), it is not clear
that this is necessarily the correct approach given the importance of including
linear death rates with the movement operator. Non-linear death rates naturally
emerge in models of interacting populations, and this is then the major chal-
lenge to extending our theory to such systems. The eigenvalue approximations
by Strohm and Tyson (2012); Vasilyeva and Lutscher (2012) consider all death
terms as part of the net reproduction function with great success. The same is true
for the corresponding theory for integrodifference equations (Lutscher and Lewis
2004).

In addition to the ecological examples we have discussed in this work, the theory
is also readily applicable to other contexts where a spatially patchy environment nat-
urally arises. One such setting is to describe the distribution of proteins or chemicals
among cellular compartments (patches) within a cell. Diffusion models are perva-
sive throughout the mathematical biology literature, and increasing attention is being
placed on studying such models in a heterogeneous environment. Our framework
offers an approach to simplify this analysis while faithfully capturing the properties
of the complex RDE models they approximate.
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by the Carnegie Trust for the Universities of Scotland. Additional support came from a grant to FL by
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Sciences and Engineering Research Council of Canada.

Appendix A: Core and buffer habitat

We consider a core habitat, say a reserve, of length 2L1, with a buffer zone of length
L2 attached to the core on either side (Cantrell and Cosner 1999). Since the one-
dimensional model is symmetric with respect to the middle of the core habitat, we
use this symmetry to reduce the model to the core (Ω1 = [0, L1]) and the buffer
(Ω2 = [−L2, 0]). The linearized equations for the density of individuals in the core
and buffer are

ut = Di uxx − mi u + bi u, x ∈ Ωi (70)

with ri = bi − mi and r1 > r2. We have a hostile boundary at x = −L2 and, due to
symmetry, no-flux conditions at x = L1, i.e.

ux (L1, t) = 0, u(−L2, t) = 0. (71)

At the interface between core and buffer, we require the flux to be continuous,
but the density can be discontinuous if either there is movement preference by the
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individuals or if the diffusion rates differ between core and buffer (Ovaskainen and
Cornell 2003), i.e.

D1ux (0
+, t) = D2ux (0

−, t), u(0+, t) = ku(0−, t), (72)

where superscripts ± stand for right- and left-sided limits. Parameter k summarizes
bias and changes in movement. If individuals prefer the core habitat with probability

p, then either (I) k = p
√

D2
(1−p)

√
D1

or (II) k = pD2
(1−p)D1

, see (38).

We denote M as the operator defined by (70–72) with b1 = b2 = 0. To determine
the adjoint operator, we use the definition

L1∫

−L2

v(x)Mu(·)dx =
L1∫

−L2

u(x)M∗v(·)dx (73)

We find that M∗ is given by Divxx − miv for x ∈ Ωi with interface and boundary
conditions,

k D1vx (0
+, t) = D2vx (0

−, t), v(0+, t) = v(0−, t), (74)

vx (L1, t) = 0, v(−L2, t) = 0. (75)

Occupancy time in the core (TΩ1 ) and buffer (TΩ2 ) satisfy (20), which yields the
following ODEs

D1
d2TΩ1

dy2 − m1TΩ1 = −1, y ∈ Ω1; D2
d2TΩ1

dy2 − m2TΩ1 = 0, y ∈ Ω2; (76)

D1
d2TΩ2

dy2 − m1TΩ2 = 0, y ∈ Ω1; D2
d2TΩ2

dy2 − m2TΩ2 = −1, y ∈ Ω2. (77)

Setting m1 = 0, and using the boundary condition at x = L1, we obtain

TΩ1(y) = 1

D1

(
− y2

2
+ L1 y + C

)
, y ∈ Ω1. (78)

A convenient representation of the solution on Ω2 that takes the boundary at x = −L2
into account, is

TΩ1(y) = A sinh

(√
m2

D2
(y + L2)

)
, y ∈ Ω2. (79)

The interface condition for TΩ1 gives

C = D1 A sinh

(√
m2

D2
L2

)
, (80)
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whereas the condition on T ′
Ω1

gives

A = kL1√
D2m2 cosh

(√
m2
D2

L2

) . (81)

The calculations for TΩ2 are similar.
The definitions in (23) now give the elements of the matrix T . Finally, the average

population growth rate is given by the eigenvalues of the matrix

[
b1 0
0 b2

]
− T −1. (82)

Appendix B: MFPT of a rectangle

We consider the rectangular domain Ω = [0, a] × [0, b] and the diffusion equation

∂u

∂t
= D

(
∂2u

∂x2 + ∂2u

∂y2

)
, (x, y) ∈ Ω (83)

with hostile boundary conditions u = 0 for x ∈ {0, a} and y ∈ {0, b}.
The dominant eigenvalue can be calculated by standard separation of variables as

λ = −π2 D
a2 + b2

a2b2 . (84)
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Fig. 8 Plot of MOT equation (89) for a rectangular domain with hostile boundary conditions. The area
is fixed to 1, while the dimensions of the domain are varied, so illustrate how shape can effect MOT. The
parameter D = 1
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When we keep the area of the rectangle constant, we set b = 1/a. In that case, the
dominant eigenvalue is maximal when a = 1.

The MFPT is given by the equation

D

(
∂2T

∂x2 + ∂2T

∂y2

)
= −1 on Ω. (85)

The ansatz

T (x, y) =
∑
m,n

Bm,n sin
(mπx

a

)
sin
(nπx

b

)
(86)

leads to the condition

∑
m,n

B̂m,n sin
(mπx

a

)
sin
(nπx

b

)
= 1, B̂m,n = Dπ2 Bm,n

(
m2

a2 + n2

b2

)
. (87)

The coefficients must satisfy B̂m,n = 16/(nmπ2) when n and m are odd and B̂m,n = 0
otherwise. Accordingly, we obtain

T (x, y) =
∑

m,n odd

16

nm Dπ2

(
m2

a2 + n2

b2

)−1

sin
(mπx

a

)
sin
(nπx

b

)
. (88)

After integrating, we find

T =
∑

m,n odd

16

nm Dπ2

a2b2

a2n2 + b2m2 . (89)

We evaluate this expression numerically with b = 1/a and plot the result as a function
of a ∈ [0, 1] in Fig. 8.

References

Artiles W, Carvalho PGS, Kraenkel RA (2008) Patch-size and isolation effects in the Fisher-Kolmogorov
equation. J Math Biol 57:521–535

Cantrell R, Cosner C (1999) Diffusion models for population dynamics incorporating individual behavior
at boundaries: applications to refuge design. Theor Popul Biol 55:189–207

Cantrell R, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Mathematical and computa-
tional biology. Wiley

Cantrell R, Cosner C (2007) Density dependent behaviour at habitat boundaries and the allee effect. Bull
Math Biol 69(7):2339–2360

Cantrell R, Cosner C, Fagan W (2012) The implications of model formulation when transitioning from
spatial to landscape ecology. Math Biosci Eng 9(1):27–60

Cobbold C, Lewis M, Lutscher F (2005) How parasitism affects critical patch size in a host-parasitoid
system: application to Forest Tent Caterpillar. Theor Popul Biol 67(2):109–125

123

Author's personal copy



From reaction–diffusion equations to patch models 579

Fagan W, Lutscher F (2006) The average dispersal success approximation: a bridge linking home range
size, natal dispersal, and metapopulation dynamics to critical patch size and reserve design. Ecol Appl
16(2):820–828

Frair J, Merrill E, Visscher D, Fortin D, Beyer H, Morales J (2005) Scales of movement by elk (Cervus
elaphus) in response to heterogeneity in forage resources and predation risk. Landsc Ecol 20:273–287

Hadeler K (2000) Reaction transport equations in biological modeling. Math Comput Model 31:75–81
Hanggi P, Talkner P, Borkovec M (1990) Reaction rate theory: fifty years after Kramers. Rev Modern Phys

62(2):251–342
Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–

758
Kierstead H, Slobodkin LB (1953) The size of water masses containing plankton blooms. J Mar Res

12:141–147
Kolpas A, Nisbet R (2010) Effects of demographic stochasiticity on population persistence in advective

media. Bull Math Biol 72(5):1254–1270
Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge
Ludwig D, Aronson DG, Weinberger HF (1979) Spatial patterning of the spruce budworm. J Math Biol

8:217–258
Lutscher F, Lewis MA (2004) Spatially-explicit matrix models. A mathematical analysis of stage-structured

integrodifference equations. J Math Biol 48:293–324
Maciel G, Lutscher F (2013) How individual response to habitat edges affects population persistence and

spatial spread (Submitted)
Matkowsky B, Schuss Z (1977) The exit problem for randomly perturbed dynamical systems. SIAM Appl

Math 33(2):365–382
McKenzie H (2006) Linear features impact predator-prey encounters: analysis with first passage time.

Master’s thesis, University of Alberta
McKenzie H, Lewis M, Merrill E (2009) First passage time analysis of animal movement and insights into

the functional response. Bull Math Biol 71(1):107–129
Othmer H, Adler F, Lewis M, Dallon J (1997) Mathematical modeling in biology: case studies in ecology,

physiology and cell biology. Prentice Hall
Ovaskainen O (2008) Analytical and numerical tools for diffusion-based movement models. Theor Popul

Biol 73:198–211
Ovaskainen O, Cornell S (2003) Biased movement at a boundary and conditional occupancy times for

diffusion processes. J Appl Prob 40(3):557–580
Redner S (2001) A guide to first-passage processes. Cambridge University Press, Cambridge
Samia Y, Lutscher F (2012) Persistence probabilities for stream populations. Bull Math Biol 74(7):1629–

1650
Schultz C, Crone E (2001) Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82(7):1879–1892
Shigesada N, Kawasaki K, Teramoto E (1986) Traveling periodic waves in heterogeneous environments.

Theor Popul Biol 30:143–160
Singer A, Schuss Z, Osipov A, Holcman D (2008) Partially reflected diffusion. SIAM J Appl Math

28(3):844–868
Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218
Strohm S, Tyson R (2012) The effect of habitat fragmentation on cyclic population dynamics: a reduction

to ordinary differential equations. Theor Ecol. doi:10.1007/s12080-011-0141-1
Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution of

plants and animals. Sinauer, Sunderland
Van Kirk RW, Lewis MA (1997) Integrodifference models for persistence in fragmented habitats. Bull Math

Biol 59(1):107–137
Van Kirk RW, Lewis MA (1999) Edge permeability and population persistence in isolated habitat patches.

Nat Resour Model 12:37–64
Vasilyeva O, Lutscher F (2012) Competition of three species in an advective environment. Nonlinear Anal:

Real World Appl 13(4):1730–1748
Wakano J, Ikeda K, Miki T, Mimura M (2011) Effective dispersal rate is a function of habitat size and

corridor shape: mechanistic formulation of a two-patch compartment model for spatially continuous
systems. Oikos 120(11):1712–1720

Weins J, Stenseth N, Van Horne B, Ims R (1993) Ecological mechanisms and landscape ecology. Oikos
66:369–380

123

Author's personal copy

http://dx.doi.org/10.1007/s12080-011-0141-1

	Mean occupancy time: linking mechanistic movement models, population dynamics and landscape ecology to population persistence
	Abstract
	1 Introduction
	2 Motivating example
	3 General theory
	3.1 The case of a single patch
	3.2 The case of multiple patches

	4 Examples and results
	4.1 Single patch with movement behavior at the boundary
	4.2 Partitioning the net growth rate
	4.3 Single patch with a non-hostile exterior
	4.4 Multiple patches: core and buffer
	4.5 Periodic landscape with two patch types

	5 Derivation of the approximation results
	5.1 Single-patch approximation: steady state
	5.2 Single-patch approximation: eigenvalue
	5.3 Multi-patch approximation

	6 Discussion
	Acknowledgments
	Appendix A: Core and buffer habitat
	Appendix B: MFPT of a rectangle
	References


