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Abstract

Realistic measures of biodiversity should reflect not only the relative abundances of species,

but also the differences between them. We present a natural family of diversity measures

taking both factors into account. This is not just another addition to the already long list of

diversity indices: instead, a single formula subsumes many of the most popular indices,

including Shannon’s, Simpson’s, species richness, and Rao’s quadratic entropy. These popular

indices can then be used and understood in a unified way, and the relationships between them

are made plain. The new measures are, moreover, effective numbers, so that percentage

changes and ratio comparisons of diversity value are meaningful.

We advocate the use of diversity profiles, which provide a faithful graphical representation

of the shape of a community; they show how the perceived diversity changes as the emphasis

shifts from rare to common species. Communities can usefully be compared by comparing

their diversity profiles. We show by example that this is a far more subtle method than any

relying on a single statistic.

Some ecologists view diversity indices with suspicion, questioning whether they are

biologically meaningful. By dropping the naive assumption that distinct species have nothing

in common, working with effective numbers, and using diversity profiles, we arrive at a system

of diversity measurement that should lay much of this suspicion to rest.

Key words: diversity, biodiversity, entropy, quadratic entropy, species similarity, model,

effective number, diversity profile, microbial diversity.

1 Introduction

‘A mathematical approach does not oblige a biologist to be modest about his ability to make

biological distinctions’, wrote Hurlbert in 1971. Yet modesty seems to prevail when it comes

to measuring diversity: all the most commonly-used indices are based on a crude model in

which distinct species are assumed to have nothing in common, contrary to what every
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biologist knows. Non-specialists are amazed to learn that a community of six dramatically

different species is said to be no more diverse than a community of six species of barnacle.

There is a mismatch between the general understanding of biodiversity as the variety of life,

and the diversity indices used by biologists every day.

With the preservation of biodiversity a pressing global concern, this mismatch matters.

‘Diversity’ is one of those words that is used freely in both scientific and non-scientific

contexts, often with different meanings (Adams et al. 1997). Politicians may understand

diversity to mean one thing; the scientists advising them may use it to mean another.

Misguided policies may be the result. The Organisation for Economic Co-operation and

Development’s guide to biodiversity for policy makers states that ‘associated with the idea of

diversity is the concept of “distance”, i.e. some measure of the dissimilarity of the resources in

question’ (OECD 2002). But the conventional measures of diversity ignore this aspect

altogether.

This unhappy situation may result from a lack of good diversity measures that reflect the

varying dissimilarities between species, or a lack of understanding of how to use them. Let us

call such measures similarity-sensitive. The best-known similarity-sensitive diversity measure

is the quadratic entropy of Rao (1982a,b). This is receiving increasing attention, but is still a

minor player. Perhaps theoretical ecologists have been hesitant to introduce new diversity

indices when the profusion of similarity-insensitive indices is already perceived to form an

impenetrable jungle (Ricotta 2005)—although work of Jost (2006, 2007, 2009) dispels that

myth.

We present a new family of similarity-sensitive diversity measures, and show how to use

them. This family includes—either directly or upon applying a simple transformation—Rao’s

quadratic entropy, species richness, Shannon entropy, the Gini–Simpson index, the

Berger–Parker index, the Hill numbers, the Patil–Taillie–Tsallis entropies, and the entropies

of Ricotta and Szeidl (2006) (of which we give a new interpretation). We can also extract the

indices of Hurlbert (1971) and Smith and Grassle (1977), and there are close connections with
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the phylogenetic indices of Faith (1992), Allen et al. (2009) and Chao et al. (2010). Once

these many indices are all seen in the same context (Table 1), the relationships between them

are clarified.

Our diversity measures take two inputs:

• Relative abundance data. We assume the members of the community to be divided into

species; the relative abundance data describes the proportions in which they are present.

The word ‘species’ can stand for any unit thought biologically meaningful.

• Similarity data: for each pair of species, a number specifying how similar they are.

Again, ‘similar’ can be used in any biologically meaningful way: a genetic notion of

similarity will lead to a measure of genetic diversity, a functional notion of similarity

will lead to a measure of functional diversity, and so on. The traditional, naive model,

in which commonalities between species are ignored, implicitly takes all similarities

between distinct species to be zero. This leads to a naive measure of diversity.

The user also chooses a parameter q between 0 and ∞, indicating how much significance is

attached to species abundance. For example, at one extreme (q = 0), species richness attaches

as much significance to rare species as common ones. At the other (q = ∞), the index of

Berger and Parker (1970) depends only on the most abundant species; rare species are ignored

altogether.

Given the abundance and similarity data, and a choice of parameter q, our formula

produces a number: the diversity of order q of the community. It is an effective number. This

means that the diversity of order q of a community of S totally dissimilar species in equal

proportions is simply S. Thus, if a community is assigned a diversity of 18.2, that means that

it is slightly more diverse than a community of 18 totally dissimilar equally abundant species.

There are ‘effectively’ 18.2 species. Effective numbers ‘enable us to speak naturally’ (Hill

1973).

Jost (2006, 2007, 2009) has argued eloquently for the primacy of effective numbers. Among
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the many diversity indices, those that are effective numbers play a special role and deserve a

special name. Jost calls them ‘true diversities’; we call our measures simply ‘diversities’. Any

diversity index can be converted into an effective number by a few simple steps of algebra

(Jost 2006). Adopting this as a common standard clears up much confusion.

Similarity-sensitive measures that are effective numbers have a crucial advantage over

earlier similarity-sensitive indices such as Rao’s (1982a, 1982b) and Ricotta and Szeidl’s

(2006). Chao et al. (2010) defined an important family of effective number similarity-sensitive

measures, tailored specifically to phylogenetic diversity. As shown in the Appendix, they are

closely related to our measures.

Given relative abundance and similarity data, one should calculate the diversity of order q

for every q, and plot it against q. This graph is the community’s diversity profile. Meaningful

ecological information can be read off at a glance. We illustrate this with examples, arguing

that the diversity profile of a community can be regarded as its fingerprint.

Microbial ecologists have long recognized the need for similarity or distance measures in the

quantification of diversity (Mills and Wassel 1980), because of the complexities of microbial

taxonomy. We show how to apply our measures to communities of microbes.

Taking species similarity into account gives a more accurate reflection of reality. It also

sheds light on the hidden assumptions inherent in the naive model. Our more subtle approach

is adaptable to the needs of the user, in that it allows for measurement of different types of

diversity: genetic, morphological, functional, and so on. A plethora of diversity indices, both

sensitive and insensitive to species similarity, is replaced by a single formula. Thus, our

approach is not only more realistic and versatile: it also simplifies.

2 The diversity measures

We consider throughout a fully-censused community of S species, with relative abundances

denoted by p1, . . . , pS; thus, pi ≥ 0 and
∑S

i=1 pi = 1. We write p = (p1, . . . , pS). The
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similarities between species are encoded in an S × S matrix Z = (Zij), with Zij measuring the

similarity between the ith and jth species. We assume that 0 ≤ Zij ≤ 1, with 0 indicating

total dissimilarity and 1 indicating identical species; hence we also assume that Zii = 1.

Genetic measures of similarity or homology are often expressed as percentages, directly

providing similarity coefficients Zij on a scale of 0 to 1. Other measures of inter-species

distance dij lie on a scale of 0 to infinity, but can easily be transformed to lie on a scale of 0 to

1 by the formula Zij = e−udij (Nei 1972), where u is a constant. Different transformations are

possible, but this is probably the simplest. We return to this in the Discussion.

Although the most obvious examples of similarity matrices are symmetric (Zij = Zji),

symmetry is not part of the definition of similarity matrix. Partly this is because none of our

results require the assumption of symmetry. Partly it is because there are useful

non-symmetric similarity matrices; for example, such matrices enable us to connect our

diversity measures to certain existing measures of phylogenetic diversity (Appendix,

Proposition A7). If the prospect of a non-symmetric similarity matrix seems counterintuitive,

it may be useful to consider the related concept of distance. In a general scientific context,

the most obvious measures of distance are, again, symmetric. But there are many physical

situations in which non-symmetric distances play an important role. For example, the work

required to push a load up a slope is greater than that required to push it down again.

We now define our family of diversity measures. There is one measure for each value of the

parameter q in the range 0 ≤ q ≤ ∞. This is called the sensitivity parameter, and controls the

relative emphasis that the user wishes to place on common and rare species; it is explained in

Section 5.

For q �= 1,∞, the diversity of order q of the community is

qDZ(p) =
(∑

pi(Zp)q−1
i

) 1
1−q

, (1)

where

(Zp)i =
S∑

j=1

Zijpj.
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The sum in (1) is over all values of i = 1, . . . , S such that pi �= 0. In other words, it is over all

species that are actually present.

We justify our definition in three ways: by explaining the formula directly (this section), by

exhibiting many well-known diversity measures as special cases (Section 3), and by listing its

many desirable properties (Section 4), chief among which is that qDZ(p) is an effective

number.

First we explain the significance of the quantity (Zp)i. It is the expected similarity between

an individual of the ith species and an individual chosen at random. It therefore measures the

ordinariness of the ith species within the community. We call (Zp)i the relative abundance of

species similar to the ith. We always have (Zp)i ≥ pi: the relative abundance of species

similar to the ith is at least as great as the relative abundance of the ith species itself. (It

follows that
∑

(Zp)i usually exceeds 1.)

Since (Zp)i measures the ordinariness of the ith species within the community, the average

ordinariness of an individual from the community is

S∑
i=1

pi(Zp)i. (2)

This quantity is large if most of the population is concentrated into a few very similar species.

So, average ordinariness could be called concentration, and is inversely related to diversity. A

measure of diversity is therefore provided by the reciprocal, 1
/∑

pi(Zp)i. This is precisely

2DZ(p), the diversity of order 2.

The diversities of other orders q �= 2 arise from other notions of average. The mean of

x1, . . . , xS is
∑

1
S
xi. More generally, for any weights p1, . . . , pS adding up to 1, the weighted

mean is
∑

pixi. But there is also, for each real number t �= 0, another kind of average: first

transform each xi into xt
i, then take the weighted mean, then apply the inverse

transformation. This is the generalized mean or power mean (
∑

pix
t
i)

1/t (Hardy et al. 1952).

Taking t = q − 1 and xi = (Zp)i gives

(∑
pi(Zp)q−1

i

) 1
q−1
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as a measure of average ordinariness, or concentration, of the community. Its reciprocal,

qDZ(p), is therefore a measure of diversity. Varying the parameter q varies the influence on

diversity of ordinary species (those i for which (Zp)i is large) relative to unusual species

(those for which it is small).

The cases q = 1 and q = ∞ have been excluded because the formula (1) for qDZ(p) does

not make sense there. It does, however, converge to a limit as q → 1 or q → ∞. We define

1DZ(p) and ∞DZ(p) as those limits, namely

1DZ(p) = 1/(Zp)p1

1 (Zp)p2

2 · · · (Zp)pS

S ,

∞DZ(p) = 1/ max(Zp)i

(Appendix, Proposition A2), where any term 00 in the first formula is evaluated as 1, and the

maximum in the second is over all i = 1, . . . , S such that pi �= 0.

We have taken care to cover the eventuality that pi = 0 for some values of i. This may

occur if, for instance, one conducts an annual survey of a site using a checklist of species:

some years, some species may be absent. Propositions A1 and A2 of the Appendix show why

this eventuality must be handled in the way that it is.

3 Relationships between diversity indices

Here we show that many familiar diversity indices arise from ours, or are closely related

(Table 1). In some cases, the familiar index is equal to qDZ(p) for a particular value of q

and/or Z. In others, it becomes equal upon applying a simple transformation.

We also explain some of the new measures arising from the general definition, and show

how they can be used to measure the diversity of a community of microbes—a problem area

for many diversity indices.

The oldest and most common measure of diversity is species richness, the number s ≤ S of

values of i such that pi �= 0. This measure takes no notice of the varying similarities between

species; it uses the naive model of a community, in which the similarity coefficient Zij is taken
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to be 0 (total dissimilarity) if i �= j, and 1 (total similarity) if i = j. Hence Z is the identity

matrix I, and (Zp)i = pi. Writing qD(p) = qDI(p), we have 0D(p) = s: species richness is the

naive diversity of order 0.

In general, the naive diversity qD(p) is the Hill number of order q (Hill 1973). The naive

diversity 1D(p) of order 1 is the exponential of Shannon entropy, a form advocated by

MacArthur (1965) and Whittaker (1972).

Now take an arbitrary similarity matrix Z. The diversity of order 0 is a similarity-sensitive

version of species richness, given by

0DZ(p) =
∑

i: pi �=0

pi

(Zp)i

.

The contribution pi/(Zp)i made by the ith species is always between 0 and 1. It is close to 1

when there are few individuals of other similar species: a species makes the greatest

contribution to diversity when it is unusual. Diversity of order 0 includes species richness (the

case Z = I), as well as Faith’s phylogenetic diversity measure when the phylogenetic tree is

ultrametric (Appendix, pages 4–7). Neither of these depends on p, except concerning whether

each pi is zero or not; but in general, diversity of order 0 does depend on p.

The diversity of order 2 is

2DZ(p) =
1∑

i,j piZijpj

=
1

μ2

,

where μ2 is the expected similarity between a randomly-chosen pair of individuals. This is

closely related to a common measure of genetic diversity, as we shall see. In the naive model,

it is the inverse Simpson concentration 1/
∑

p2
i .

More generally, take any whole number q ≥ 2. Given q individuals of respective species

i1, i2, . . . , iq, the product

Zi1,i2Zi1,i3 · · ·Zi1,iq (3)

is a measure of their similarity as a group. Call (3) their group similarity, and let μq be the

expected similarity of a randomly-chosen group of q individuals (sampled with replacement).
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Then

qDZ(p) = μ1/(1−q)
q (4)

(Appendix, Proposition A3). Thus, diversity increases as the mean group similarity decreases.

Formula (4) can be applied in situations where many diversity indices are unusable. For

example, we can use it to estimate the diversity of a community of microbes, where there are

good notions of similarity but the question of what constitutes a species is highly problematic

(Johnson 1973, Watve and Gangal 1996). To apply the formula for qDZ(p) we do not need to

know what a species is: it is enough to have a measure of similarity between two isolates. An

estimate for μq (hence qDZ) is given by repeatedly taking q isolates from the community,

calculating the group similarity for each, and taking the mean.

The naive diversity ∞D(p) of order ∞ is 1/ max pi, the reciprocal of the Berger–Parker

index. This is a measure of dominance. The same can be said of ∞DZ(p) for general Z, but

now dominance is measured not merely in terms of how abundant each species is—it also

takes into account how abundant similar species are. The species i for which (Zp)i is greatest

need not itself be very abundant, as long as there are highly abundant species similar to it.

For morphological diversity (Pavoine et al. 2005), diversity of order ∞ will be highest when

there are no clusters of populous species in any small region of morphometric space.

Much of the literature on diversity indices concerns ‘entropies’ of various kinds. These are

not effective numbers, so we do not advocate using them as primary measures. However, in

order to demonstrate the simplifying power of our definition, we now show that many such

entropies are also just transformations of the diversities qDZ(p).

The explanation is in terms of ‘surprise’, a concept from information theory. (We need to

invoke information theory only to make connections with historically established indices; it is

not needed in order to justify our diversities themselves.) This extends the narrative of Patil

and Taillie (1982) and Ricotta and Szeidl (2006).

When sampling from the community, our surprise at finding an individual of the ith species

decreases with its ordinariness—that is, with the abundance of organisms of the same or
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similar species. We are most surprised when we find a rare, distinctive species.

Mathematically, we can quantify the surprise as σ((Zp)i), where σ(x) is some decreasing

function of x (0 ≤ x ≤ 1). For a randomly-chosen individual, the expected surprise is
∑

piσ((Zp)i). This is an index of the diversity of the whole community.

Patil and Taillie (1982) defined a surprise function σq for each q ≥ 0:

σq(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
q−1

(1 − xq−1) if q �= 1

− ln x if q = 1.

(The second expression is the limit of the first as q → 1.) This gives, for each q ≥ 0, a

diversity index qHZ, the expected surprise according to σq:

qHZ(p) =
∑

piσq((Zp)i) =

⎧⎪⎪⎨
⎪⎪⎩

1
q−1

(
1 − ∑

pi(Zp)q−1
i

)
if q �= 1

−∑
pi ln(Zp)i if q = 1.

As usual, the sums are over all i = 1, . . . , S such that pi �= 0.

These indices qHZ are the entropies of Ricotta and Szeidl (2006), who explained them in

terms of inter-species conflict; the interpretation as expected surprise is new. Ricotta and

Szeidl used the dissimilarity matrix Δ, with entries Δij = 1 − Zij, rather than the similarity

matrix Z; Proposition A4 of the Appendix proves the equivalence of their formula and ours.

(We adopt the policy that the word dissimilarity and the symbol Δij refer to a measure of

difference on a scale of 0 to 1, while distance and dij refer to a measure of difference on a scale

of 0 to ∞. So although Ricotta and Szeidl called their coefficients ‘distances’ and denoted

them by dij, we call them dissimilarities Δij, because they are measured on a scale of 0 to 1.)

The diversities qDZ and entropies qHZ are related by the transformation

qHZ(p) =

⎧⎪⎪⎨
⎪⎪⎩

1
q−1

(1 − qDZ(p)1−q) if q �= 1

ln(1DZ(p)) if q = 1.

The indices qHZ and qDZ carry the same information, and they always make the same

judgement on which of two communities is the more diverse. (This is because the
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transformation is invertible and increasing.) However, only qDZ has the cardinal virtue of

being an effective number.

The entropy of order 2 is

2HZ(p) = 1 −
S∑

i,j=1

piZijpj.

This is the quadratic entropy of Rao (1982a,b), notably used to measure nucleotide diversity

(Nei and Tajima 1981). Usually it is expressed in terms of the dissimilarity matrix Δ; then

2HZ(p) =
S∑

i,j=1

piΔijpj,

the expected dissimilarity between a random pair of individuals. The effective number form

2DZ(p) was also derived by Ricotta and Szeidl (2009).

Quadratic entropy in the naive model is the Gini–Simpson index, 2H(p) = 1 − ∑
p2

i . Many

authors have used quadratic entropy with matrices in which some of the dissimilarities Δij are

greater than 1, or equivalently Zij < 0 (e.g. Izsák and Papp 1995). This still gives a

meaningful index of diversity; but since Zij < 0 indicates ‘more-than-total dissimilarity’, it

destroys the possibility of a meaningful relationship between quadratic entropy and the

Gini–Simpson index.

In the naive model Z = I, the Ricotta–Szeidl entropies qHZ become a well-known family of

entropies qH = qHI. These first appeared, in a slightly different form, in information theory

(Havrda and Charvát 1967, Aczél and Daróczy 1975). In ecology they were introduced by

Patil and Taillie (1982), and in physics, finally, by Tsallis (1988). See Table 1.

The apparent profusion of diversity indices is, then, partly an illusion. Many familiar

indices are special cases of our measures, or simple transformations thereof.

Chao et al. (2010) proposed a family of diversity measures taking into account phylogenetic

similarities, derived from a phylogenetic tree. Their measures, called the mean phylogenetic

diversity of order q, have excellent properties and are closely related to ours. (See

Proposition A7 of the Appendix. There is a subtlety concerning non-ultrametric trees,
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detailed there.) Chao et al. showed that, after applying a simple transformation, the

phylogenetic diversity measure of Faith (1992) and the phylogenetic entropy of Allen et al.

(2009) are special cases of mean phylogenetic diversity. Hence they, too, are closely related to

ours. As we show in the next section, new insights into mean phylogenetic diversity are

gained by connecting it with our measures.

Further diversity indices can be obtained by combining qDZ for several values of q. For

example, Hurlbert (1971) and Smith and Grassle (1977) studied the expected number of

species occurring in a random sample of m individuals. This turns out to be a combination of

the diversities 2D, 3D, . . . , mD (Appendix, Proposition A8). By incorporating as many indices

as possible into the family (qDZ), we move towards a systematic understanding of diversity

measures.

4 Properties

Here we state the principal properties of our diversity measures. These properties encode basic

scientific intuition, and any diversity measure taking species similarity into account should

satisfy them all. For each value of q (0 ≤ q ≤ ∞), the diversity measure qDZ passes this test.

Some of these properties might seem so obvious as not to merit a mention. But the

literature on diversity measurement is strewn with indices failing to satisfy properties that

might seem ‘obvious’. Some indices have been used for decades, and even become the

textbook standard, before it is pointed out that the supposedly obvious properties are, in fact,

false; see Jost (2008) for an example.

Comparable lists of properties can be found in Rényi (1961), Routledge (1979),

Chakravarty and Eichhorn (1991), Suyari (2002) and Jost (2009)—but none of the indices

discussed there take account of the varying differences between species.

The properties are arranged in three groups and proved in the Appendix

(Propositions A9–A19).
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1. Partitioning properties

Effective number: the diversity of a community of S equally abundant, totally dissimilar

species is S.

Modularity: suppose that the community is partitioned into m subcommunities, with no

species shared between subcommunities, and with species in different subcommunities being

totally dissimilar. Then the diversity of the community is entirely determined by the sizes and

diversities of the subcommunities.

Replication: if, moreover, these m subcommunities are of equal size and equal diversity, d,

then the diversity of the whole community is md.

Modularity enables us to calculate the diversity of a partitioned community from the

diversities and sizes of the subcommunities alone, without having to know the abundance and

similarity data within the subcommunities. The formula is as follows. Write w1, . . . , wm for

the relative sizes of the subcommunities, so that
∑

wi = 1. Write di for the diversity of order

q of the ith subcommunity. Then the diversity of order q of the whole community is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∑
wq

i d
1−q
i

) 1
1−q if q �= 1,∞

1D(w)dw1
1 dw2

2 · · · dwm
m if q = 1

min(di/wi) if q = ∞

where the sum and the minimum are over all i such that wi �= 0. This is proved in the

Appendix (Proposition A10).

For a simple example of replication, suppose that m islands are each populated by d

species, with all the species totally dissimilar and equally abundant. Then the whole

community consists of md totally dissimilar equally abundant species. Diversity is an effective

number, so each island has diversity d and the whole community has diversity md, as claimed.

When m = 2, replication is called ‘doubling’. Its importance is explained in Hill (1973) and

Jost (2006); and as shown by Jost (2009), replication is essential for reasoning logically about

conservation.
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The replication and modularity principles for our measures give some new results on

existing measures. For example, Chao et al. (2010) proved that their mean phylogenetic

diversity satisfies replication, but only under the assumption that the subcommunities all

have the same mean evolutionary change. Our general results show that their measures

satisfy replication even without this assumption (Appendix, Corollary A12). Moreover, our

results provide modularity formulas for the mean phylogenetic diversity of a community

partitioned into completely distinct subcommunities, even when the subcommunities have

different sizes and different diversities.

2. Elementary properties

Symmetry: diversity is unchanged by the order in which the species happen to be listed.

Absent species: diversity is unchanged by adding a new species of abundance 0.

Identical species: if two species are identical, then merging them into one leaves the

diversity unchanged.

The identical species property is formulated mathematically in the Appendix

(Proposition A16). It means that ‘a community of 100 species that are identical in every way

is no different from a community of only one species’ (Ives 2007).

Uncontroversial as this may be, it has the important consequence that our measures are not

oversensitive to decisions about taxonomy. Consider, for example, a system of 3 species with

relative abundances p = (0.1, 0.3, 0.6), and with the species regarded as totally dissimilar.

Suppose that on the basis of new genetic evidence, the last species is reclassified into two

separate species of equal abundance, so that the relative abundances become 0.1, 0.3, 0.3, 0.3.

Under the wholly unrealistic assumption that the two new species are totally dissimilar, the

diversity profile jumps dramatically (Fig. 1). For example, the diversity of order ∞ jumps by

100%, from 1.67 to 3.33. But if, based on the genetic evidence, the two new species are given

a high similarity, the diversity profile changes only slightly. Fig. 1 shows the profile with a

similarity of Z34 = Z43 = 0.9 between the two new species (and Zij = 0 for i �= j otherwise).
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This sensible behaviour is guaranteed by the identical species property. For if the two new

species were deemed to be identical then, by that property, the profile would be unchanged.

Since our measures are continuous, if the new species are deemed to be nearly identical then

the profile is nearly unchanged.

3. Effect of species similarity on diversity

Monotonicity: when the similarities between species are increased, diversity decreases.

Naive model: when similarities between species are ignored, diversity is greater than when

they are taken into account.

Range: the diversity of a community of S species is between 1 and S.

Monotonicity is formulated mathematically in Proposition A17 of the Appendix. It means

that a community is more diverse when its species are more dissimilar. The naive model

property is an extreme case: if a measure knows nothing of the commonalities between

species, it will evaluate the community as more diverse than it really is. The naive model

typically overestimates diversity.

This completes the list of fundamental properties satisfied by the diversity measures qDZ.

It is a logical consequence that they are also satisfied by the mean phylogenetic diversity of

Chao et al. (2010) when the phylogenetic tree is ultrametric. This is proved in the Appendix

(Proposition A7). For non-ultrametric trees, mean phylogenetic diversity can be greater than

the number of species, contravening the naive model and range properties: see the supplement

to Chao et al. (2010) and Example A20 in the Appendix.

The Ricotta–Szeidl entropies qHZ satisfy some of the properties, but not effective number,

replication or range. This is a major advantage of the diversities qDZ over the entropies qHZ.
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5 Diversity profiles

We now have not just a single measure of a community’s diversity, but a family of measures:

qDZ(p), for each value of the sensitivity parameter q. The diversity profile of a community is

the graph of qDZ(p) against q.

Diversity profiles convey a great deal of meaningful information. Although various other

types of diversity profile have been discussed for decades (Hill 1973, Patil and Taillie 1979,

1982, Dennis and Patil 1986, Tóthmérész 1995, Patil 2002, Mendes et al. 2008), the idea has

not achieved its full potential. When coupled with a model that takes species similarity

properly into account, they are a powerful graphical tool for comparing ecological

communities. The examples below show that one should draw the whole profile, rather than

just calculating one or two indices. A diversity profile tells us more about ecological reality.

The left-hand end of a diversity profile gives information about species richness and rare

species: when q is small, qDZ(p) is affected almost as much by rare species as common ones.

The right-hand tail gives information about dominance and common species: when q is large,

qDZ(p) is barely affected by rare species. For discussion in the naive case, see Whittaker

(1972) and Hill (1973).

The sensitivity parameter q is, therefore, the insensitivity to rare species. As it grows, the

perceived diversity qDZ(p) drops. More precisely, the diversity profile is always a decreasing

continuous curve (Appendix, Proposition A21).

In the first few examples, for the sake of exposition, we use the naive similarity matrix

Z = I.

Example 1 Riegl et al. (2009) monitored coral cover on the Roatán fringing reef (western

Caribbean) from 1996 to 2005. The diversity profiles for the first and last years, using the

naive similarity matrix, are shown in Fig. 2(i). The profiles cross, so we cannot

unambiguously say which of the two communities is the more diverse. An ecologist most

concerned with species richness would say that diversity had dropped; as the profiles show, 3
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fewer species were observed in 2005 than 1996. But the profiles cross very far to the left

(q ≈ 0.3), so from almost any other point of view, the diversity increased. Indeed, for q ≥ 1,

the diversity of order q of the 2005 community is 2 to 3 species greater than in 1996. In short,

the profiles indicate that the coral community became less rich in species but more even.

Individually, the two curves display properties typical of diversity profiles. Diversity tends

to drop sharply between q = 0 and q = 1, levelling off soon after q = 2. (For this reason, the

values of 0D, 1D, 2D and ∞D usually give a good indication of the shape of the whole

profile.) The abrupt drop of the 1996 curve in the region 0 ≤ q ≤ 1 indicates that there were

many rare species.

At the heart of Hurlbert’s (1971) critique of the ‘nonconcept’ of diversity lay the

observation that different diversity measures can make different judgements on which of two

communities is the more diverse. All this means is that diversity profiles can cross. In fact

this happens frequently. For example, Table 1 of Ellingsen (2001) gives data on populations of

soft-sediment macrobenthos at 16 sites on the Norwegian continental shelf. There are

1 + 2 + · · · + 15 = 120 pairs of sites, and the data show that for at least 53 of the 120 pairs,

the profiles cross.

When the profile of one community is wholly above that of another, it can simply be called

‘more diverse’. But when diversity profiles cross, the locations of the crossings give meaningful

information about how the communities differ. Contrast Example 1 with the following.

Example 2 DeVries et al. (1997) surveyed butterfly populations in the canopy and

understorey at a site in the Ecuadorian rainforest. The diversity profiles for the subfamily

Nymphalinae, using the naive similarity matrix, are shown in Fig. 2(ii). In contrast to

Example 1, the profiles cross at a high value of q (approximately 3.1). So if one is principally

concerned with dominance, the population in the canopy appears to be fractionally more

diverse, but from any other point of view, there is more diversity in the understorey.

In practice, diversity profiles do not usually cross more than once, although in principle
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there is no limit to the number of crossings. Figure 2(iii) shows diversity profiles for the diet

of flounders (Platichthys flesus) at three different sites in an Irish estuary (Wirjoatmodjo

1980). One pair of profiles crosses twice, although with very small magnitude. The answer to

the question ‘where is flounder diet most diverse?’ depends heavily on the sensitivity

parameter: as q varies, the ranking of the three sites changes several times.

Patil and Taillie (1982) and Patil (2002) plotted diversity profiles using the entropies qH

instead of the Hill numbers qD. This conveys the same information, but, as Patil noted, often

makes it hard to see where profiles cross. This is another advantage of effective numbers.

Diversity profiles give much more information than one or two diversity indices, but their

biological relevance remains limited if they are used with the naive model. The following

examples illustrate the effect of incorporating species similarity.

Example 3 Again we use the butterfly data of DeVries et al. (1997), this time taking the

species of subfamily Charaxinae (Fig. 3(i)).

According to the naive model, the diversity profile of the canopy lies above that of the

understorey until about q = 5, from which point they are almost identical. So for any

sensitivity value, the canopy is more diverse than, or as diverse as, the understorey.

When no other species similarity data is available, one can fall back on taxonomy. Define a

similarity matrix Z by

Zij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if the ith and jth species are of different genera

0.5 if the ith and jth species are different but congeneric

1 if i = j.

The diversity profiles now tell a different story. For q greater than about 1, it is the

understorey that is more diverse. It is easy to see why. Most of the population in the canopy

is from the Memphis genus, whereas the understorey population is spread more evenly

between genera. So when we build into the model the principle that species of the same genus

tend to be somewhat similar, the canopy looks much less diverse than it did before.
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All the diversity values drop when similarity is taken into account. This illustrates the

‘naive model’ property of the previous section.

Taxonomic models of this kind are certainly crude, and the similarity coefficient 0.5 was

chosen arbitrarily. (Existing taxonomic models are just as arbitrary: e.g. Warwick and Clarke

(1995), Shimatani (2001).) Some ecologists might prefer to stick to the naive model, ducking

the question of how to choose the similarity coefficients. But to do so is to pretend that

taxonomy says nothing about the commonalities and contrasts between species. It throws

away relevant information.

Example 4 Turnbaugh et al. (2009) compared the microbial communities in the guts of lean

and overweight humans. Here we compare the diversity profiles for two particular test

subjects from that study, a lean child and an overweight mother. Since only a fraction of

microbial species have been isolated and given taxonomic classifications, it is not possible to

partition the microbes into species. Instead we work directly with DNA sequencing data,

kindly supplied to us by Christopher Quince, treated with the noise removal algorithms

described in the supplement of Turnbaugh et al. (2010).

Using the naive similarity matrix, the diversity profiles cross at q ≈ 1 (Fig. 3(ii)). This

suggests that the gut microbiome of the lean child has greater variety, but is less evenly

distributed, than that of the overweight mother. However, using a genetic similarity matrix,

the diversity in the lean child is seen to be greater for all values of q. This supports the

results of Turnbaugh et al. (2009).

Example R code illustrating the calculation of diversity profiles is available at www.maths.

gla.ac.uk/∼cc/supplements/diversity.html.

6 Discussion

We have described a general and biologically meaningful system for quantifying diversity. It is

versatile enough to accommodate diversity of different types (functional, genetic, etc). It
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produces quantities that satisfy the ecologically intuitive properties of Section 4. The system

acknowledges the spectrum of viewpoints on the relative importance of rare and common

species. In this way, it meets a wide variety of ecological needs.

The field of diversity analysis has been criticized repeatedly over the years. We believe that

our measures answer many of the criticisms. Let us consider some of them.

The varying differences between species are ignored. A basic fault of most diversity indices

is that they behave as if different species had nothing in common. This has long been

recognized: ‘one would obviously regard [the diversity of a community] as greater if the

species belonged to several genera than if they were all congeneric, and as greater still if these

genera belonged to several families than if they were confamilial’ (Pielou 1975). It is a

glaringly obvious fault. Yet to this day, the most popular indices are wholly insensitive to the

similarities between species.

There have been attempts to solve this problem. Some diversity indices depend only on

species similarity, ignoring abundance (Faith 1992, Solow and Polasky 1994, Izsák and Papp

2000, Petchey and Gaston 2002). Rao’s quadratic entropy takes both abundance and

similarity into account, but represents a particular viewpoint on the relative importance of

rare and common species. Ricotta and Szeidl’s (2006) family of entropies qHZ allows for that

viewpoint to be varied, by varying the parameter q; but their entropies suffer from not being

effective numbers. The measures of Chao et al. (2010) are effective numbers, and do allow a

varying q, but are particular to situations in which species similarity is derived from a tree

(e.g. phylogenetic or taxonomic). We believe that ours is the first general system for

quantifying diversity that takes species similarity into account, allows for any weighting of

rare against common species, and produces an effective number.

The numbers produced by diversity indices are meaningless. This is often a fair criticism.

Diversity indices that are not effective numbers can be very hard to interpret, and to speak of

percentage changes in their value, or ratios between values, is perilous (Jost 2007). But our

diversity measures qDZ are effective numbers, so their values have an intuitive interpretation
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and one can speak safely of percentage changes and ratios.

Diversity indices carry little information. A diversity index, being a single number, cannot

carry much information; it must not be treated as a ‘talisman’ (Pielou 1975). This is why we

advocate the use of diversity profiles. Diversity profiles allow for much more subtle

inter-community comparison than a single number ever could. An ecologist who has enough

information to calculate quadratic entropy (namely, a relative abundance vector p and a

similarity matrix Z) has enough information to graph the diversity profile, and should do so.

Earlier we called the diversity profile of a community its ‘fingerprint’. There is a

mathematical result justifying this, in the naive case at least: no two relative abundance

vectors p have the same diversity profile, unless they consist of the same numbers p1, . . . , pS

listed in different orders (Appendix, Proposition A22). This says that the diversity profile is

simply the relative abundance data repackaged—and repackaged in a way that lets ecologists

extract meaningful information at a glance.

Diversity indices depend too much on the notion of species. The division of living organisms

into species is notoriously problematic. Conventional indices such as Shannon’s, Simpson’s

and species richness depend wholly on this division, and behave badly in the face of

taxonomic reclassification.

We have demonstrated two ways in which our measures answer this criticism. First, as

shown in Section 4, our measures respond proportionately to changes in taxonomy. Second,

we are able to measure diversity in situations where there is no clear division of organisms

into species or other discrete units. We demonstrated this for microbes, and the method can

be applied in other similar situations (e.g. soil types: McBratney and Minasny (2007)).

We also anticipate, and answer, a possible objection to our own diversity measures. In

order to compute qDZ(p), one has to assign a similarity coefficient Zij to each pair of species.

There is no canonical way to do this, so it might be objected that this makes the

quantification of diversity too subjective.

Our answer is that diversity is subjective: it depends on which characteristics of organisms
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are taken to be important. This flexibility is, in fact, an advantage. If community A is

genetically more diverse, but functionally less diverse, than community B, that is not a

contradiction but a point of interest. Different ways of quantifying similarity lead to different

measures of diversity. The word ‘diversity’ means little until one has specified the biological

characteristics with which one is concerned.

Several methods for determining a similarity matrix Z have already been developed,

principally in connection with Rao’s quadratic entropy. Some are genetic (Hughes et al.

2008); others are functional (Botta-Dukát 2005, Petchey and Gaston 2006), taxonomic

(Vane-Wright et al. 1991, Warwick and Clarke 1995, Shimatani 2001), morphological (Pavoine

et al. 2005), or phylogenetic (Faith 1992, Hardy and Senterre 2007). Typically one begins by

associating with each species some data embodying the characteristics deemed to be

important: a list of functional traits, a DNA sequence, a location on a phylogenetic tree, etc.

One then computes the similarity coefficients Zij in terms of some notion of difference

between the associated data. There are as many possibilities as there are quantifiable

characteristics of living organisms.

Similarity and diversity vary according to perspective. Suppose, for example, that we are

interested in the antigenic diversity of a collection of strains of the parasite Plasmodium. If

similarity is measured using a nucleotide comparison of the entire genome then any two

strains will look near-identical, giving the collection a very low diversity. But since we wish to

measure antigenic diversity, we are really only concerned with the part of the genome that

determines antigenicity. A nucleotide comparison localized to that region will reveal the

sought-after differences, producing lower similarities and higher diversity.

The same question of perspective arises in other contexts. Chao et al. (2010) defined a

measure of mean phylogenetic diversity since T years ago, which decreases as T increases.

From the perspective of the history of all life on earth, all species of, say, eucalyptus look

nearly identical, having diverged a relatively short time ago. Correspondingly, for large T the

mean phylogenetic diversity of any eucalyptus community is very low. But if we wish to
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compare two eucalyptus communities, it would be sensible to take a smaller value of T , or, for

a more complete picture, plot diversity against T (as in Fig. 3 of Chao et al. (2010)).

Similarly, inter-species distances 0 ≤ dij ≤ ∞ can be transformed into similarities

0 ≤ Zij ≤ 1 by putting Zij = e−udij , where the parameter u represents a choice of perspective.

The complete picture emerges when we plot diversity against both q and u. (This

transformation and the variation of the parameter u have deep mathematical roots (Leinster

2010).) Alternatively, we can choose a threshold dmax and define Zij = 1 − dij/dmax, or

Zij = 0 if dij > dmax; this amounts to a piecewise linear approximation of the exponential

transformation e−(1/dmax)dij . Again, the choice of parameter dmax represents a choice of

perspective on species similarity.

As a last resort, on the rare occasion that there is genuinely no information about species

similarity—not even a taxonomic classification—one can use the naive model, Z = I. But the

user should be aware that this represents an extreme assumption: distinct species have

nothing whatsoever in common.

Every diversity index makes an assumption on the similarity of species. When no

assumption is made explicit, there is invariably an implicit assumption of the naive model.

For example, Shannon’s and Simpson’s indices use the naive model. To argue for the use of

similarity-insensitive measures is to ignore the plain fact that some species are more similar

than others. Deliberately ignoring biological reality is unlikely to lead to a helpful assessment

of diversity.

At least two important questions remain. First, we have said very little about partitioning

and α-, β- and γ-diversity. Jost (2007) (foreshadowed by Routledge (1979)) showed that in

the naive context, there is no room for debate: if α- and β-diversity are to be independent,

there is only one possible definition. (And in that context, q = 1 plays a special role.) It

remains to extend this analysis to the similarity-sensitive context.

Second, we have deliberately avoided the evident statistical questions, preferring to

separate the issue of principle (what are the meaningful quantities to measure?) from the
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issue of practice (how do we measure them?).

Our system of diversity measurement replaces a jumble of indices by a single formula. It

behaves intuitively because it uses effective numbers. It allows for a nuanced comparison of

communities because it produces diversity profiles, not just a single statistic. It provides a

more faithful reflection of reality, because it takes into account the similarities between

species. And it is highly versatile, since it allows similarity, hence diversity, to be measured in

different ways according to ecologists’ differing needs.
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� �sensitive to
rare species

insensitive to
rare species

q = 0 q = 1 q = 2 q = ∞ Remarks

Diversity qDZ (compare Faith) 1
1−Rao

compare CCJ

Naive diversity qD = qDI species richness exp(Shannon) inverse Simpson 1
Berger–Parker

2D, . . . , mD

(Hill numbers) concentration give HSG

Entropy qHZ (compare AKB) Rao’s quadratic —
(Ricotta–Szeidl) entropy

Naive entropy qH = qHI species richness Shannon Gini–Simpson —
(Patil–Taillie–Tsallis) minus 1 entropy

Table 1: How some familiar diversity indices can be derived from our diversities qDZ. For
the the three entries marked ‘compare’, see the Appendix (pages 4–7). Abbreviations: CCJ =
Chao–Chiu–Jost; HSG = Hurlbert–Smith–Grassle; AKB = Allen–Kon–Bar-Yam. References:
Faith (1992), Rao (1982a,b), Chao et al. (2010), Hill (1973), Simpson (1949), Berger and
Parker (1970), Hurlbert (1971), Smith and Grassle (1977), Ricotta and Szeidl (2006), Allen
et al. (2009), Patil and Taillie (1982), Tsallis (1988), Gini (1912).
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Figure 1: Diversity profiles of a hypothetical community, before and after taxonomic

reclassification.

Figure 2: Diversity profiles using naive similarity matrix. (i) Coral: data from Table 4 of

Riegl et al. (2009); (ii) butterflies of subfamily Nymphalinae: data from Table 5 of DeVries

et al. (1997); (iii) flounder diet: data from Wirjoatmodjo (1980).

Figure 3: (i) Abundances of six butterfly species of subfamily Charaxinae, and their diversity

profiles using (a) the naive similarity matrix, and (b) a taxonomic similarity matrix. Data

from Table 5 of DeVries et al. (1997). (ii) Diversity profiles of the gut microbiomes in a lean

child (TS1) and an overweight mother (TS3) (Turnbaugh et al. 2009), using (a) naive and

(b) genetic similarity matrices. Note the different scales.
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fication.
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Figure 2: Diversity profiles using naive similarity matrix. (i) Coral: data from Table 4 of Riegl

et al. (2009); (ii) butterflies of subfamily Nymphalinae: data from Table 5 of DeVries et al.

(1997); (iii) flounder diet: data from Wirjoatmodjo (1980).
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Species Canopy Understorey
Prepona laertes 15 0
Archaeoprepona demophon 14 37
Zaretis itys 25 11
Memphis arachne 89 23
Memphis offa 21 3
Memphis xenocles 32 8
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Figure 3: (i) Abundances of six butterfly species of subfamily Charaxinae, and their diversity
profiles using (a) the naive similarity matrix, and (b) a taxonomic similarity matrix. Data from
Table 5 of DeVries et al. (1997). (ii) Diversity profiles of the gut microbiomes in a lean child
(TS1) and an overweight mother (TS3) (Turnbaugh et al. 2009), using (a) naive and (b) genetic
similarity matrices. Note the different scales.

34


