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ABSTRACT
Myotonic dystrophy type 1 is the most common of about
20 human diseases associated with inheriting an abnor-
mally large unstable DNA simple sequence repeat. New
quantitative data, collected by single molecule analysis of
repeat length in blood cells from 145 patients reveals the
extent and nature of the genetic cell to cell variation within
(somatic mosaicism) and between patients.

We are developing discrete-state continuous-time math-
ematical models and stochastic simulation techniques that
capture key features of the mutation mechanism underly-
ing repeat length evolution. Modern Bayesian techniques
involving Markov chain Monte Carlo are employed to cal-
ibrate our models against the biological data and test model
hypotheses. This work has the potential to improve prog-
nostic information for patients, as well as providing deeper
understanding of the underlying biological process.

We report here an initial finding that the distribution of
repeat length is better described by a threshold birth and
death process model than by a traditional pure birth pro-
cess. This suggests that the underlying biological mecha-
nism consists of both expansions and contractions and that
the observed tendency towards repeat expansion is the net
result of many more expansion and contraction mutations
than previously thought. Our estimates for expansion and
contraction give only a slight bias (2%) in favour of repeat
expansion and they predict that mutation events occur at a
much greater rate than a pure birth model would allow.

1. INTRODUCTION

Simple sequence tandem repeats in DNA, for example
the motif CTG repeated multiple times, are known as mi-
crosatellites and are present in both coding and non-coding
regions of the genome. One of the ways these sequences
mutate is by a change in the number of repeats and these
length changes occur more frequently than other types of
mutations. Because of their high mutation rates, these
microsatellites come in many forms making them popu-
lar genetic markers. However, changes in repetitive se-
quences, even when they occur in a non-coding region,
may lead to disease. In particular, genomic amplification
of simple trinucleotide repeats is the underlying genetic

defect in a number of human diseases including myotonic
dystrophy type 1 (DM1).

DM1 patients have an expansion of unstable CTG re-
peats located in the untranslated region of a gene encod-
ing a protein kinase, reviewed in [1]. The CTG repeat
is polymorphic in the general population ranging from
5 to 37 repeats in healthy individuals and from upwards
of 50 to several thousand in affected DM1 patients. The
different variants of a specific gene are known as alleles
and expanded disease-associated alleles of greater than 50
CTG repeats are unstable in both the germline and soma.
Germline expansion accounts for the phenomenon of an-
ticipation whereby the disorder becomes apparent at an
earlier age, often with an increase in the severity of the
symptoms, as it is passed on to the next generation. Ex-
pansion of the unstable alleles over time and variation in
the level of mutation between the somatic tissues of an
individual are thought to account at least partially for the
tissue specificity and progressive nature of the symptoms.
Studies in the past ten years have linked instability to the
DNA replication, repair and recombination machineries
[2], but expansion activity does not obviously correlate
with cell turnover [3] and so there is increasing focus on
repair [4].

We are interested in developing a mathematical model
that captures the key features of the mutation mechanism
underlying repeat length evolution. Currently patients con-
cerned about their own prognosis and their reproductive
choices have limited information available to them about
how their disease will progress. This is because variance
in mean length only accounts for 25% of the variance in
age of onset. Low correlation between age of onset of
symptoms and mean repeat length is in part due to the an-
ticipation associated with DM1 and sampling bias caused
by the tendency for people to be tested only when they or
a member of their family presents with symptoms. Thus,
there is great potential for more sophisticated modelling
and inference techniques to improve the prognostic value
of genetic information. There is, however, a clear link
between the degree of somatic mosaicism of the repeat
lengths and the progression of the disease [3]. A more re-
liable measure for patients would be an indication of pro-



genitor allele length, that is, the length of the allele inher-
ited. A key objective of our work is, therefore, to infer
progenitor allele length.

In this paper we discuss the mathematical model we
have developed and apply our methods to a published data
set [3]. Data collected using small pool analysis of length
in blood cells from a male DM1 patient aged 56 and com-
prises 325 alleles of different lengths so this dataset is suf-
ficient for us to fit the model at the individual patient level
(Figure 1). This means that we can examine the evolution
and infer the progenitor allele length.

In the non-disease case there exist models for micro-
satellite evolution, which are summarised in [5]. However
mutation at these sites occurs at lower rates and typically
involves shorter lengths than in the pathological disease
case. Also these models tend to assume that an equilib-
rium in the distribution of lengths has been reached in
the population. In the pathological disease case the data
suggests that the distribution of length is time-dependent
throughout the life of a patient. This makes the analysis
different as we cannot assume equilibrium status. How-
ever these models form a useful basis for our work. The
oldest model for microsatellite evolution is the stepwise
mutation model originally proposed by Ohta and Kimura
for electrophoretic alleles [6]. Kruglyak proposed a pro-
portional slippage model where the mutation rate increases
linearly with microsatellite length [7]. Although most ob-
served microsatellite mutations are by one repeat unit not
all are so, Di Rienzo proposed a model which allows for
larger mutations [8]. There have been several further de-
velopments, we refer to [5] for details. Kaplan et al. [9]
use a simple birth process to simulate allele evolution and
derive expressions to fit clinical data for a range of dis-
eases associated with expanded repeats. These models as-
sume that the expansion bias observed in patients is solely
due to expanding lengths. We would like to investigate
the possibility that the expansion bias is due to the differ-
ence between expansion and contraction mutations. We
use the same stochastic modelling framework, but intro-
duce a threshold below which expansion and contraction
is disallowed.

2. METHODS

Kaplan et al. fit a discrete-state continuous-time stochastic
model (based on a simple birth process) to clinical data re-
lating to mean allele length and age of onset using derived
analytical expressions for the mean and standard software
(Matlab Nelder-Mead simplex direct search least square
error). We are fortunate that our data set allows us to
go beyond the mean by providing us with a large set of
samples from the distribution of allele lengths at a known
point in time. Microsatellites are known to expand and
contract and there is evidence from distributions collected
for patients at two time points that some alleles may have
contracted [10]. This justifies our extension of the model
to include contraction as well as expansion.

We propose to consider expansion and contraction rates
linearly proportional to allele length and with a threshold
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Figure 1. Allele length distribution in blood cells for a
male DM1 patient aged 56. The predicted distribution is
calculated for each of the MCMC samples and the shaded
area shows the predicted 5-95 percentile range for this pa-
tient.

of 50, this value being based on observations from family
studies. We derive an analytical expression for the deriva-
tive of the probability distribution of allele length n given
expansion and contraction rates λ and µ respectively (1).
We solve this equation numerically by truncating at a suit-
ably large value of n and treating it numerically as a sys-
tem of ordinary differential equations (ODEs). Several
other methods were investigated [11] including manipu-
lation of the exact solution using the exponential of the
matrix, eigenvalues and Taylor series expansion. How-
ever the treatment using the stiff ODE solver ode15s from
Matlab proved to be the quickest solution, in some cases
50-fold, which is an important consideration for param-
eter estimation where exploration of the parameter space
requires the equations to be solved many times.

2.1. Mathematical Model

The approach we take to modelling is a birth and death
process involving a threshold. We refer to [12] for fur-
ther motivation and explanation of the basic methology.
Suppose that the length, l, defined as the number of CTG
repeats, is n at time t and λ is the rate of expansion above
a threshold length called a and µ is the rate of contraction
above a. Then at time t + δt:

• the probability that l is n + 1 ≈ λ (n− a) δt

• the probability that l is n− 1 ≈ µ (n− a) δt

• the probability that l is n ≈ 1− (λ + µ) (n− a) δt

Now let Pn (t) denote the probability that an allele has
length n at time t. Then the rate of change of Pn (t) with
respect to time is

Ṗn (t) = − (λ + µ) (n− a)Pn (t)
+λ (n− a− 1)Pn−1 (t)
+µ (n− a + 1) Pn+1 (t) , (1)

where for convenience we set Pa−1 (t) ≡ 0.



In order to derive expressions for mean and variance,
we note that the first and second moments of Pn (t), M (t)
and M2 (t), respectively, are:

M (t) =
∑

n≥a

nPn (t) , (2)

M2 (t) =
∑

n≥a

n2Pn (t) . (3)

Differentiating both (2) and (3) with respect to t and
substituting (1) into the result gives expressions for Ṁ (t)
and Ṁ2 (t) which after algebraic manipulation become:

Ṁ (t) = (λ− µ) (M (t)− a) , (4)
Ṁ2 (t) = 2 (λ− µ)M2 (t) + (λ + µ) M (t) . (5)

Solving (4) and (5) with M (t = 0) = n0 where n0

is the length of the progenitor allele and setting V (t) =
M2 (t)− (M (t))2 for the variance at time t gives the fol-
lowing analytical expressions:

M (t) = (n0 − a) e(λ−µ)t + a, (6)

V (t) = (n0 − a)
(

λ + µ

λ− µ

) (
e2(λ−µ)t − e(λ−µ)t

)
,

which generalise the standard a = 0 case [12].

2.2. Parameter Estimation

We used a Bayesian framework [13] and Markov chain
Monte Carlo (MCMC) Metropolis Hastings [14], with a
Gaussian proposal function, for inferring the model pa-
rameters from the dataset described in Figure 1. Bayes’
theorem links the quantities that we are interested in, the
probability of the parameters given the data, to quantities
we can estimate numerically. The latter involves (a) the
likelihood of the data given the parameters and (b) our
prior knowledge about the parameters before we see the
data. The likelihood L (θ) of our parameters

θ = {n0, λ, µ} will be the solution Pn (D|θ) where
D = {d1, d2, . . . d325} is the data comprising of 325

allele lengths. Assuming that the evolution of individual
alleles is independent Pn (D|θ) =

∏325
k=1 Pn (dk|θ). We

propose almost uniform priors for θ by using a gamma
distribution Γ (1, 1). Bayes’ theorem says

p (θ|D) ∝ Pn (D|θ) p (θ) . (7)

The relation in (7) is expressed using proportionality be-
cause the term p (D) has been omitted from the denomi-
nator in the right hand side. This is appropriate for param-
eter estimation since the missing denominator is simply a
normalisation constant not depending explicitly on the pa-
rameters.
Initial investigation of the likelihood surface suggests that
that the data holds more information about λ − µ than
about either λ or µ. This is consistent with equation (6),
where the mean is seen to depend only on λ and µ through
their difference, λ − µ. We mention, as an aside, M (t)
in (6) would arise from the deterministic analogue of this

0 0.2 0.4
0

200

400

λ+µ

p
(λ

+
µ

|D
)

 

  posterior
 prior

0 0.01 0.02
0

200

400

λ−µ

p
(λ

−
µ

|D
)

 

 

0 0.05 0.1
0

200

400

λ

p
(λ

|D
)

0 0.05 0.1
0

200

400

µ

p
(µ

|D
)

Figure 2. Prior and Posterior probability distributions for
λ + µ, λ − µ and the same information transformed into
expansion and contraction rates λ and µ. Threshold a =
50 and t = 56 (patient age).
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Figure 3. Posterior probability distribution for the progen-
itor allele length, n0.

birth and death process, in which case only λ−µ, and not
λ and µ individually, could be inferred. With only three
parameters to infer, a brute force grid search is perhaps
a feasible alternative to MCMC. However the MCMC ap-
proach allows us to collect samples from the posterior dis-
tribution, p (θ|D) which can be used to show the uncer-
tainity in the fit. Use of an MCMC method also paves
the way for future refinements of the model which may
increase dimensionality.

There are three parameters in this model λ, µ and n0.
However, we can simplify the problem by using (6) to ex-
press n0 in terms of λ, µ and M (t):

n0 = (M (t)− a) e−(λ−µ)t + a. (8)

3. RESULTS

In order to obtain posterior probability distribution func-
tions (pdfs) for the model parameters, λ, µ and n0, we
used a Bayesian framework to fit the model to the data.
The results for λ + µ, λ − µ and the same results trans-
formed for λ and µ are shown in Figure 2. The posterior
pdfs for λ + µ and λ − µ clearly modify the uninforma-
tive prior and provide strong support for their values of
around 0.23 and 0.022 respectively. The transformation
of these pdfs into their counterpart pdfs for λ and µ show
strong evidence for µ not equal to zero, which supports



the hypothesis that contractions as well as expansions ex-
plain the observed variance of the allele lengths. Figure
3 shows the estimated posterior pdf for n0. The distribu-
tion has a second mode and wide variance suggesting that
alternative values of n0 would provide almost as good a
fit as the main peak. Results like this show the impor-
tance of considering the full distribution and not relying
on a point estimate. The MCMC samples can be used to
predict the distribution of alleles at the age of the patient
and the shaded area in Figure 1 shows the predicted 5-95
percentile range for this patient. The peak of the predic-
tion lies over the data mode and closely follows the data
variation.

4. CONCLUSION

Under the assumption that a discrete stochastic birth and
death process is an appropriate model to explain the evo-
lution of allele length in the pathelogical disease case, we
have shown that there is support for the expansion bias to
be the net result of expansion and contraction. For the par-
ticular patient investigated, the bias is about 0.022 per unit
length which equates to 102 steps forward and 100 steps
back. Fitting this model also provides an estimate for the
progenitor allele length n0, which is of direct clinical in-
terest. At a mechanistic level, this stepping forward and
backwards is aggravating the level of variance within the
alleles. The uncovering of this possible mechanism pro-
vides insights in to allele evolution that could be validated
independently.

We are currently applying the methods discussed here
to a larger data set [15] containing about 30,000 de novo
mutations from 145 DM1 patients from families in Scot-
land, USA and Chile. Future work includes inference over
multiple patients and the evaluation of more sophisticated
birth and death models.
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