Bethe Ansatz equations and the classical $A_{n-1}^{(1)}$ Toda field theories

P.M. Adamopoulou

University of Kent

ICFT 2014, University of Glasgow

Plan

- ► Main motivation
- ► Classical integrable PDEs : $A_{n-1}^{(1)}$ Toda field equations
- ▶ Modified $A_{n-1}^{(1)}$ Toda equations
- ▶ Particular example of $A_2^{(1)}$ case
- ▶ Asymptotic solutions of modified $A_2^{(1)}$ Toda field equations
- ▶ Solutions to the associated linear problem for $A_2^{(1)}$
- Functional relations
- Connection to quantum integrability
- ▶ Generalisation to $A_{n-1}^{(1)}$ cases

Integrable PDEs and quantum Integrable Models

Relation of quantum integrable models to classical integrable PDEs has been observed

- ▶ Barouch, McCoy, Tracy and Wu: spin-spin correlation function in the scaling limit of the 2d Ising model in terms of solutions to Painlevé III.
- Zamolodchikov, Fendley & Saleur: sine-Gordon partition function in terms of other solutions to Painlevé III.
- More recently: Lukyanov & Zamolodchikov showed a way to connect the classical sinh-Gordon model to the quantum massive sine(h)-Gordon model.

Generalising in such way the so-called ODE/IM correspondence to a PDE/IM correspondence which encompasses massive quantum field theories.

The ODE/IM Correspondence

- ► The ODE/IM Correspondence (Dorey, Tateo, Dunning, Bazhanov, Lukyanov, Zamolodchikov, Suzuki) is a link between particular linear ODEs defined in the complex plane and the conformal field theory limit of certain quantum integrable models in two dimensions (six-vertex model)
- This link is based mainly on certain functional relations that appear on both sides of the correspondence
- ► On the ODE side: functional relations are satisfied by spectral determinants related to certain eigenvalue problems for the ODEs
- ▶ On the quantum integrable model side: Baxter's TQ relation, T and Q operators of Bazhanov, Lukyanov, Zamolodchikov for quantum field theory satisfy functional relations

The ODE/IM Correspondence

Until recently:

- ► The correspondence concerned the mapping of certain ODEs to massless quantum field theories
- Lukyanov & Zamolodchikov showed how to include massive quantum field theories.
- ▶ They had as a starting point the classical sinh-Gordon equation
- ▶ Here a correspondence between classical $A_{n-1}^{(1)}$ Toda field theories and A_{n-1} Bethe Ansatz systems will be presented
- ▶ We will consider the particular example of $A_2^{(1)}$ Toda equations

$A_{n-1}^{(1)}$ Toda field equations

The two-dimensional $A_{n-1}^{(1)}$ Toda field theories are described by the Lagrangian

$$L = \frac{1}{2} \sum_{i=1}^{n} (\partial_t \eta_i)^2 - (\partial_x \eta_i)^2 - \sum_{i=1}^{n} \exp(2\eta_{i+1} - 2\eta_i)$$

with $\eta_i \equiv \eta_i(x,t)$, periodic boundary conditions $\eta_{n+1} = \eta_1$ and $\sum_{i=1}^n \eta_i = 0$. Using coordinates w = x + t and $\bar{w} = x - t$, which are considered to be complex, the corresponding equations of motion are

$$2\,\partial_{\bar{w}}\partial_w\eta_i=\exp(2\eta_i-2\eta_{i-1})-\exp(2\eta_{i+1}-2\eta_i)\quad\text{with}\quad i=1,\ldots,n\,.$$

Transformation A

In order to make the connection with quantum integrability we consider a modified version of the $A_{n-1}^{(1)}$ Toda equations. Transformation that relates

 $A_{n-1}^{(1)}$ Toda equations \longleftrightarrow modified $A_{n-1}^{(1)}$ Toda equations:

Change of variables

$$\mathrm{d} w = p(z)^{1/n} \mathrm{d} z$$
, $\mathrm{d} \bar{w} = p(\bar{z})^{1/n} \mathrm{d} \bar{z}$,

where the function p(t) is of the form

$$p(t) = t^{nM} - s^{nM}, \quad M, s \in \mathbb{R}_+.$$

▶ Transformation of the fields

$$\eta_i(z,\bar{z}) \to \eta_i(z,\bar{z}) + \frac{n-(2i-1)}{4n} \ln(p(z)p(\bar{z})).$$

Modified $A_{n-1}^{(1)}$ Toda field equations

This transformation brings the $A_{n-1}^{(1)}$ Toda equations to the *modified* $A_{n-1}^{(1)}$ Toda equations

$$\begin{split} & 2\partial_{\bar{z}}\partial_{z}\eta_{i} = \mathrm{e}^{2\eta_{i}-2\eta_{i-1}} - \mathrm{e}^{2\eta_{i+1}-2\eta_{i}} \quad \text{for} \quad i=2,\ldots,n-1\,, \\ & 2\partial_{\bar{z}}\partial_{z}\eta_{1} = p(z)p(\bar{z})\,\mathrm{e}^{2\eta_{1}-2\eta_{n}} - \mathrm{e}^{2\eta_{2}-2\eta_{1}}\,, \\ & 2\partial_{\bar{z}}\partial_{z}\eta_{n} = \mathrm{e}^{2\eta_{n-1}-2\eta_{n}} - p(z)p(\bar{z})\,\mathrm{e}^{2\eta_{1}-2\eta_{n}}\,. \end{split}$$

with $\eta_i \equiv \eta_i(z, \bar{z})$.

It is convenient for later to introduce $z = \rho e^{i\phi}$, $\bar{z} = \rho e^{-i\phi}$ with $\rho, \phi \in \mathbb{R}$.

Example: $A_2^{(1)}$ Toda field equations

When n = 3:

• We have the $A_2^{(1)}$ Toda field equations for the fields η_1 , η_3

$$\begin{split} & 2\partial_{\bar{w}}\partial_w\eta_1 = e^{2\eta_1-2\eta_3} - e^{-4\eta_1-2\eta_3} \,, \\ & 2\partial_{\bar{w}}\partial_w\eta_3 = e^{4\eta_3+2\eta_1} - e^{2\eta_1-2\eta_3} \,. \end{split}$$

ightharpoonup The corresponding modified version of the $A_2^{(1)}$ field equations is

$$\begin{split} & 2\partial_{\bar{z}}\partial_{z}\eta_{1} = p(z)p(\bar{z})\,\mathrm{e}^{2\eta_{1}-2\eta_{3}} - \mathrm{e}^{-4\eta_{1}-2\eta_{3}}\,,\\ & 2\partial_{\bar{z}}\partial_{z}\eta_{3} = \mathrm{e}^{4\eta_{3}+2\eta_{1}} - p(z)p(\bar{z})\,\mathrm{e}^{2\eta_{1}-2\eta_{3}}\,. \end{split}$$

Modified $A_2^{(1)}$ Toda field equations

- ▶ We are interested in a particular class of solutions η_1 , η_3 to the modified equations which are real-valued and respect certain discrete symmetries of the equations.
- ▶ In order to obtain these particular asymptotic solutions to the modified $A_2^{(1)}$ Toda equations we first apply asymptotic analysis in certain asymptotic limits to the original $A_2^{(1)}$ Toda equations.

$A_2^{(1)}$ Toda field equations

Asymptotic Analysis

We observe that the combination $w\bar{w}$ remains invariant under a scaling of the variables, therefore we perform a *symmetry reduction*. We consider the transformation

$$t = \sqrt{2w\bar{w}}, \quad \eta_1(w,\bar{w}) = y_1(t), \quad \eta_3(w,\bar{w}) = y_3(t)$$

which brings the $A_2^{(1)}$ Toda equations to the form

$$\frac{d^2}{dt^2} y_1 + \frac{1}{t} \frac{d}{dt} y_1 + e^{-4y_1 - 2y_3} - e^{2y_1 - 2y_3} = 0,$$

$$\frac{d^2}{dt^2}y_3 + \frac{1}{t}\frac{d}{dt}y_3 + e^{2y_1 - 2y_3} - e^{4y_3 + 2y_1} = 0.$$

Setting $y_i(t) = \ln g_i(t)$, i = 1, 3, brings the system of equations to a Painlevé III-type form.

Painlevé analysis of this system of equations is of particular interest.

$A_2^{(1)}$ Toda field equations

Asymptotic Analysis

Asymptotic analysis to the system of equations provides the following leading order behaviours for $y_i(t)$

ightharpoonup As t o 0

$$y_1(t) \sim (2-g_2) \ln t + b_1 + ext{power series in t},$$
 $y_3(t) \sim -g_0 \ln t + b_1 + ext{power series in t},$

with g_i, b_i constants.

ightharpoonup As $t \to \infty$

$$y_i(t)=O(1).$$

The constants g_i will be related to certain parameters which enter the particular ODE of the ODE/IM correspondence. The asymptotic analysis provides for free certain relations which were imposed to these parameters on the ODE side (in the massless ODE/IM correspondence).

Thus, we obtain the following asymptotic behaviours for the solutions $\eta_i(z,\bar{z})$ to the modified equations

• As $z\bar{z} \rightarrow 0$

$$\eta_1(z,\bar{z}) \sim (1-\frac{g_2}{2}) \ln(z\bar{z}) + b_1 + \sum_{k=1}^{\infty} \gamma_{ik} \left(z^{3kM} + \bar{z}^{3kM}\right) + \text{power series in } z\bar{z}$$
,

$$\eta_3(z,\bar{z}) \sim -\frac{g_0}{2} \ln(z\bar{z}) + b_3 + \sum_{k=1}^{\infty} \gamma_{ik} \left(z^{3kM} + \bar{z}^{3kM} \right) + \text{power series in } z\bar{z}$$
.

• As $z\bar{z} \to \infty$

$$\eta_1(z,\bar{z}) = -\tfrac{M}{2} \ln(z\bar{z}) + o(1) \,, \quad \eta_3(z,\bar{z}) = \tfrac{M}{2} \ln(z\bar{z}) + o(1) \,.$$

Linear problem $A_{n-1}^{(1)}$

The $A_{n-1}^{(1)}$ Toda field equations are integrable and admit a zero-curvature representation

$$\left(\partial_w + \widehat{U}(w, \bar{w}, \lambda)\right) \boldsymbol{\Phi} = 0 \,, \quad \left(\partial_{\bar{w}} + \widehat{V}(w, \bar{w}, \lambda)\right) \boldsymbol{\Phi} = 0 \,,$$

where \widehat{U} , \widehat{V} are $n \times n$ matrices which depend on a spectral parameter $\lambda \in \mathbb{C}$ and the Toda fields η_i with

$$\begin{split} \widehat{U}(w,\bar{w},\lambda) &= \partial_w \eta_i \, \delta_{ij} + \lambda \, C \,, \quad \widehat{V}(w,\bar{w},\lambda) = -\partial_{\bar{w}} \, \eta_i \, \delta_{ij} + \lambda^{-1} C \,, \\ (C)_{ij} &= \exp(\eta_{j+1} - \eta_j) \, \delta_{i-1,j} \quad j = 1,\dots, n \,. \end{split}$$

The compatibility condition of the linear system of equations reads

$$\partial_{w}\widehat{V} - \partial_{\bar{w}}\widehat{U} + [\widehat{U}, \widehat{V}] = 0$$

(zero-curvature condition) and is equivalent to the $A_{n-1}^{(1)}$ Toda field equations.

Linear problem $A_{n-1}^{(1)}$

The linear problem for $A_{n-1}^{(1)}$ Toda equations is associated to that for the modified $A_{n-1}^{(1)}$ Toda equations by a gauge transformation.

 $A_{n-1}^{(1)}$ linear problem \longleftrightarrow modified $A_{n-1}^{(1)}$ linear problem:

$$\begin{array}{ll} \left(\partial_w + \widehat{U}(w,\bar{w},\lambda)\right) \pmb{\Phi} = 0 \\ \left(\partial_{\bar{w}} + \widehat{V}(w,\bar{w},\lambda)\right) \pmb{\Phi} = 0 \end{array} \right\} \xrightarrow{\text{transf. A}} \quad \begin{array}{ll} \left(\partial_z + \tilde{U}(z,\bar{z},\lambda)\right) \pmb{\Phi} = 0 \\ \left(\partial_{\bar{z}} + \tilde{V}(z,\bar{z},\lambda)\right) \pmb{\Phi} = 0 \end{array} \right\} \xrightarrow{\text{gauge transf.}}$$

$$(\partial_z + U(z,\bar{z},\lambda))\Psi = 0, \quad (\partial_{\bar{z}} + V(z,\bar{z},\lambda))\Psi = 0,$$

with

$$A(z,\bar{z},\lambda) = g^{-1}g_z + g^{-1}\tilde{A}(z,\bar{z},\lambda)g$$
, $\Phi = g\Psi$

and

$$(g)_{ij} = \left(\frac{p(\bar{z})}{p(z)}\right)^{n - \frac{2i-1}{4n}} \delta_{ij}.$$

Linear problem $A_2^{(1)}$

The linear problem associated to the modified $A_2^{(1)}$ Toda equations is

$$(\partial_z + U(z,\bar{z},\lambda))\Psi = 0, \quad (\partial_{\bar{z}} + V(z,\bar{z},\lambda))\Psi = 0,$$

with

$$U = \begin{pmatrix} \partial_z \eta_1 & 0 & \lambda \, p(z) \, e^{\eta_1 - \eta_3} \\ \lambda e^{-2\eta_1 - \eta_3} & -\partial_z \eta_1 - \partial_z \eta_3 & 0 \\ 0 & \lambda e^{2\eta_3 + \eta_1} & \partial_z \eta_3 \end{pmatrix}$$

and

$$V = \begin{pmatrix} -\partial_{\bar{z}}\eta_1 & \lambda^{-1}e^{-2\eta_1-\eta_3} & 0\\ 0 & \partial_{\bar{z}}\eta_1 + \partial_{\bar{z}}\eta_3 & \lambda^{-1}e^{2\eta_3+\eta_1}\\ \lambda^{-1}\rho(\bar{z})e^{\eta_1-\eta_3} & 0 & -\partial_{\bar{z}}\eta_3 \end{pmatrix}$$

Observe that the potential p(z) is associated to the extended root of the $A_2^{(1)}$ Lie algebra.

It is convenient to introduce $\lambda=\mathrm{e}^{\theta}$ and $z=\rho\,\mathrm{e}^{i\phi}$, $\bar{z}=\rho\,\mathrm{e}^{-i\phi}$ with $\rho,\phi\in\mathbb{R}.$

We define the following transformations:

- $\blacktriangleright \ \widehat{\Omega}: \quad \phi \to \phi + \tfrac{2\pi}{3M} \,, \quad \theta \to \theta \tfrac{2\pi i}{3M}$
- $ightharpoonup \widehat{S}: A(\theta) o S A(\theta \frac{2\pi i}{3}) S^{-1} \quad \text{or} \quad A(\lambda) o S A(\omega^{-1}\lambda) S^{-1}$

Here $\omega = \exp\left(\frac{2\pi i}{3}\right)$, $(S)_{ij} = \omega^i \, \delta_{i,j}$ the 3 × 3 diagonal matrix and $A(\theta)$ a 3 × 3 matrix which depends on the spectral parameter.

 $\widehat{S}^3 = id$ so the group generated by the transformation \widehat{S} is isomorphic to \mathbb{Z}_3 .

Such groups of transformations are known as reduction groups.

For the linear problem associated to $A_2^{(1)}$ Toda field equations:

▶ The matrices *U*, *V* of the linear problem are invariant under the action of these transformations, i.e.

$$\widehat{\Omega}(U(\rho,\phi,\theta)) = U(\rho,\phi,\theta), \quad \widehat{\Omega}(V(\rho,\phi,\theta)) = V(\rho,\phi,\theta),$$

$$\widehat{S}(U(\rho,\phi,\theta)) = U(\rho,\phi,\theta), \quad \widehat{S}(V(\rho,\phi,\theta)) = V(\rho,\phi,\theta).$$

ightharpoonup The symmetries of $U,\ V$ affect the auxiliary solution Ψ

Linear problem $A_2^{(1)}$

Solution

Considering a vector $\pmb{\Psi}=(\Psi_1,\Psi_2,\Psi_3)^{\rm T}$ a general solution to the linear problem reads

$$\begin{split} \Psi(z,\bar{z},\lambda) &= \begin{pmatrix} \lambda^{-2} \, \mathrm{e}^{3\eta_1 + 2\eta_3} \, \partial_z \, \big(\mathrm{e}^{-2\eta_1 - 4\eta_3} \, \partial_z \, \big(\mathrm{e}^{2\eta_3} \, \psi \big) \big) \\ -\lambda^{-1} \, \mathrm{e}^{-\eta_1 - 3\eta_3} \, \partial_z \, \big(\mathrm{e}^{2\eta_3} \, \psi \big) \end{pmatrix} \\ &= \begin{pmatrix} \mathrm{e}^{-\eta_1} \, \bar{\psi} \\ -\lambda \, \mathrm{e}^{3\eta_1 + \eta_3} \, \partial_{\bar{z}} \, \big(\mathrm{e}^{-2\eta_1} \, \bar{\psi} \big) \\ \lambda^2 \, \mathrm{e}^{-2\eta_1 - 3\eta_3} \, \partial_{\bar{z}} \, \big(\mathrm{e}^{4\eta_1 + 2\eta_3} \, \partial_{\bar{z}} \, \big(\mathrm{e}^{-2\eta_1} \, \bar{\psi} \big) \big) \end{pmatrix}. \end{split}$$

The functions ψ , $\bar{\psi}$ satisfy the following third-order ODEs

$$\begin{split} \partial_z^3 \psi + u_1(z,\bar{z}) \, \partial_z \psi + \left(u_0(z,\bar{z}) + \lambda^3 \rho(z) \right) \psi &= 0 \,, \\ \partial_{\bar{z}}^3 \bar{\psi} + \bar{u}_1(z,\bar{z}) \, \partial_{\bar{z}} \bar{\psi} + \left(\bar{u}_0(z,\bar{z}) + \lambda^{-3} \rho(\bar{z}) \right) \bar{\psi} &= 0 \,, \end{split}$$

with, e.g.,

$$u_1(z,\bar{z}) = -2\left(2\left(\partial_z\eta_1\right)^2 + 2\partial_z\eta_1\partial_z\eta_3 + 2\left(\partial_z\eta_3\right)^2 + \partial_z^2\eta_1 - \partial_z^2\eta_3\right),$$

$$u_0(z,\bar{z}) = -4\partial_z\eta_3\left(2\partial_z\eta_1\partial_z(\eta_1 + \eta_3) + \partial_z^2\eta_1 + 2\partial_z^2\eta_3\right) + 2\partial_z^3\eta_3.$$

Linear problem $A_2^{(1)}$

Solution

Interested in solutions to the linear problem:

- ▶ The different asymptotic solutions for η_1 , η_3 provide with different potentials u_0 , u_1 the ODEs for ψ , $\bar{\psi}$.
- Finding specific solutions for ψ , $\bar{\psi}$ will determine a particular solution Ψ .

Focus on the third-order ODE for ψ and treat \bar{z} as a parameter:

▶ In the limit $\rho^2=z\bar{z}\to 0$ there are three different solutions to the ODE for ψ

$$\chi_0 \sim z^{g_0}, \quad \chi_1 \sim z^{g_1}, \quad \chi_2 \sim z^{g_2}, \quad g_0 + g_1 + g_2 = 3.$$

These provide the following solutions to the linear problem

$$\begin{split} \Xi_0 &\sim (0, 0, \mathrm{e}^{g_0(\theta + i\phi)})^{\mathrm{T}}, \quad \Xi_1 \sim (0, \mathrm{e}^{(g_1 - 1)(\theta + i\phi)}, 0)^{\mathrm{T}}, \\ \Xi_2 &\sim (\mathrm{e}^{(g_2 - 2)(\theta + i\phi)}, 0, 0)^{\mathrm{T}}. \end{split}$$

▶ In the limit $\rho^2 = z\bar{z} \to \infty$ the ODE for ψ has a WKB-like solution which decays in the sector $|\phi| < 4\pi/(3M+3)$ and has the form

$$\psi \sim z^{-M} \exp\left(-\lambda \frac{z^{M+1}}{M+1} - \lambda^{-1} \frac{\overline{z}^{M+1}}{M+1}\right)$$

with M>1/2. This asymptotic solution for ψ provides the following solution to the linear problem

$$oldsymbol{\Psi} \sim \left(egin{array}{c} \mathrm{e}^{i\phi M} \ 1 \ \mathrm{e}^{-i\phi M} \end{array}
ight) \exp\left(-2\,rac{
ho^{M+1}}{M+1}\cosh(heta+i\phi(M+1))
ight)\,.$$

Q-functions $A_2^{(1)}$

We can express the solution Ψ in terms of Ξ_0 , Ξ_1 , Ξ_2 as

$$\mathbf{\Psi} = Q_0(\theta) \, \mathbf{\Xi}_0 + Q_1(\theta) \, \mathbf{\Xi}_1 + Q_2(\theta) \, \mathbf{\Xi}_2 \, .$$

► The coefficients *Q_i* can be expressed in terms of solutions to the linear problem as

$$\begin{split} Q_0 &= \frac{\det \left(\boldsymbol{\Psi}, \boldsymbol{\Xi}_1, \boldsymbol{\Xi}_2 \right)}{\det \left(\boldsymbol{\Xi}_0, \boldsymbol{\Xi}_1, \boldsymbol{\Xi}_2 \right)}, \ \ Q_1 = \frac{\det \left(\boldsymbol{\Xi}_0, \boldsymbol{\Psi}, \boldsymbol{\Xi}_2 \right)}{\det \left(\boldsymbol{\Xi}_0, \boldsymbol{\Xi}_1, \boldsymbol{\Xi}_2 \right)}, \\ Q_2 &= \frac{\det \left(\boldsymbol{\Xi}_0, \boldsymbol{\Xi}_1, \boldsymbol{\Psi} \right)}{\det \left(\boldsymbol{\Xi}_0, \boldsymbol{\Xi}_1, \boldsymbol{\Xi}_2 \right)}. \end{split}$$

 $\left(\cdot,\cdot,\cdot\right)$ denotes the matrix with columns three linearly independent solutions.

The solutions Ψ, ≡_i are characterised by properties which follow from the symmetries of the linear problem. These properties affect the functions Q_i (periodicity, quantum Wronskian relation).

For example, the relations

$$S \equiv_i \left(\rho, \phi + \frac{2\pi}{3M}, \theta - \frac{2\pi i}{3M} - \frac{2\pi i}{3}\right) = \exp\left(-g_i \frac{2\pi i}{3}\right) \equiv_i \left(\rho, \phi, \theta\right)$$

and

$$S\Psi\left(\rho,\phi+\frac{2\pi}{3M},\theta-\frac{2\pi i}{3M}-\frac{2\pi i}{3}\right)=\exp\left(\frac{4\pi i}{3}\right)\Psi\left(\rho,\phi,\theta\right)$$

imply the following property for the Q_i

$$Q_i(heta) = \exp\left(-rac{2\pi i}{3}(g_i-1)
ight) \; Q_j\left(heta - rac{2\pi i}{3}rac{(M+1)}{M}
ight), \quad ext{with} \quad i=0,1,2 \,.$$

Functional relations $A_2^{(1)}$

We can show that the Q_i functions satisfy certain functional relations

► Consider the change of variables

$$x = z e^{\frac{\theta}{M+1}}, \; E = s^{3M} e^{\frac{3M\theta}{M+1}}, \; \bar{x} = \bar{z} e^{-\frac{\theta}{(M+1)}}, \; \bar{E} = s^{3M} e^{-\frac{3M\theta}{(M+1)}}.$$

Then the ODE for ψ becomes

$$\partial_x^3 \psi + u_1(x,\bar{x}) \, \partial_x \psi + \left(u_0(x,\bar{x}) + (x^{3M} - E) \right) \psi = 0.$$

▶ The ODE admits the following asymptotic solution

$$\psi \sim x^{-M} \exp\left(-\frac{x^{M+1}}{M+1} - \frac{\bar{x}^{M+1}}{M+1}\right)$$

as $|x| \to \infty$ in the sector $|\arg x| < 4\pi/3M + 3$, treating \bar{x} as a parameter.

Functional relations $A_2^{(1)}$

 \blacktriangleright Based on the asymptotic solution ψ we define rotated solutions that decay in certain sectors of the complex plane

$$\psi_k(x,\bar{x},E,\bar{E}) = \omega^k \psi(\omega^{-k}x,\omega^k \bar{x},\omega^{-3kM}E,\omega^{3kM}\bar{E}),$$

with
$$\omega = \exp\left(\frac{2\pi i}{3(M+1)}\right)$$
.

▶ The functions ψ_k , ψ_{k+1} , ψ_{k+2} are linearly independent, so we can write

$$\psi_0 = C^{(1)}(E,\bar{E})\,\psi_1 + C^{(2)}(E,\bar{E})\,\psi_2 + C^{(3)}(E,\bar{E})\,\psi_3\,.$$

The coefficients are called Stokes multipliers and can be expressed in terms of Wronskians of rotated solutions ψ_k .

Functional relations $A_2^{(1)}$

On the other hand:

 \blacktriangleright Expanding the solution ψ in terms of the basis of solutions to the ODE at the origin we can write

$$\psi = Q_0(E, \bar{E})\chi_0 + Q_1(E, \bar{E})\chi_1 + Q_2(E, \bar{E})\chi_2.$$

 Combining the relations for solutions at the origin and at infinity we can obtain the functional relation

$$\begin{split} C^{(1)}(E,\bar{E})\,Q^{(1)}(\omega^{-3M}E,\omega^{3M}\bar{E})\,Q^{(2)}(\omega^{-3M}E,\omega^{3M}\bar{E}) = \\ Q^{(1)}(E,\bar{E})\,Q^{(2)}(\omega^{-3M}E,\omega^{3M}\bar{E})\,\omega^{g_0-1} \\ +\,Q^{(1)}(\omega^{-6M}E,\omega^{6M}\bar{E})\,Q^{(2)}(E,\bar{E})\,\omega^{g_1-1} \\ +\,Q^{(1)}(\omega^{-3M}E,\omega^{3M}\bar{E})\,Q^{(2)}(\omega^{-6M}E,\omega^{6M}\bar{E})\,\omega^{2-g_0-g_1} \,, \end{split}$$

with $Q^{(1)} = Q_0$ and $Q^{(2)} \sim W[\psi, \psi_1]$.

▶ Why is this result important for the connection to quantum integrable systems?

Because the previous ODE appears in the context of the so-called $\ensuremath{\mathsf{ODE}}/\ensuremath{\mathsf{IM}}$ Correspondence.

CFT limit

Considering the limit

$$\bar{z} \to 0$$
, $z \sim s \to 0$, $\theta \to +\infty$

the ODE for ψ takes the form

$$\partial_x^3 \psi + \frac{1}{x^2} \left(g_0 g_1 + g_0 g_2 + g_1 g_2 - 2 \right) \partial_x \psi - \frac{1}{x^3} g_0 g_1 g_2 + (x^{3M} - E) \psi = 0 \,,$$

which is the third-order ODE introduced in the context of the ODE/IM Correspondence.

In this limit the coefficients Q_i coincide with those of the massless quantum field theory related to the A_2 Lie algebra.

Generalisation to $A_{n-1}^{(1)}$

- Asymptotic solutions to modified $A_{n-1}^{(1)}$ Toda field equations
- $\triangleright \widehat{\Omega}$ and \widehat{S} transformations
- Symmetries of the associated $A_{n-1}^{(1)}$ Lax matrices U, V and properties of the auxiliary vector solution Ψ can be generalised accordingly.

Generalisation to $A_{n-1}^{(1)}$

Considering a vector $\mathbf{\Psi} = (\Psi_1, \dots, \Psi_n)^{\mathrm{T}}$, a general solution to the $A_{n-1}^{(1)}$ linear problem reads

$$\begin{split} \Psi_i(z,\bar{z},\lambda) &= \left\{ \begin{array}{cc} -\lambda^{-1} \mathrm{e}^{\eta_i - \eta_{i+1}} \big(\partial_z \Psi_{i+1} + \partial_z \eta_{i+1} \Psi_{i+1} \big) & \text{for} \quad i = n-1,\dots,1 \\ \mathrm{e}^{\eta_n} \psi & \text{for} \quad i = n \end{array} \right. \\ &= \left\{ \begin{array}{cc} \mathrm{e}^{-\eta_1} \bar{\psi} & \text{for} \quad i = 1 \\ -\lambda \, \mathrm{e}^{\eta_{i-1} - \eta_i} \big(\partial_{\bar{z}} \Psi_{i-1} - \partial_{\bar{z}} \eta_{i-1} \Psi_{i-1} \big) & \text{for} \quad i = n-1,\dots,1 \end{array} \right. \end{split}$$

The $\psi \equiv \psi(z, \bar{z}, \lambda)$ and $\bar{\psi} \equiv \bar{\psi}(z, \bar{z}, \lambda)$ satisfy n^{th} -order differential equations

$$((-1)^{n+1}D_n(\eta) + \lambda^n p(z))\psi = 0,$$

$$((-1)^{n+1}\bar{D}_n(\eta) + \lambda^{-n}p(\bar{z}))\bar{\psi} = 0,$$

and we have introduced the n^{th} -order operators

$$D_{n}(\eta) = (\partial_{z} + 2 \partial_{z} \eta_{1}) (\partial_{z} + 2 \partial_{z} \eta_{2}) \dots (\partial_{z} + 2 \partial_{z} \eta_{n}) ,$$

$$\bar{D}_{n}(\eta) = (\partial_{\bar{z}} - 2 \partial_{\bar{z}} \eta_{n}) \dots (\partial_{\bar{z}} - 2 \partial_{\bar{z}} \eta_{2}) (\partial_{\bar{z}} - 2 \partial_{\bar{z}} \eta_{1}) .$$

Outlook/Conclusion

- Classical Integrable PDEs
- Asymptotic solutions
- ► Linear problem: linear ODEs
- Connection with Quantum Integrability (using the ODE/IM Correspondence)

Starting from a classical integrable PDE we can recover a certain type of ODE which can then be mapped to a massive quantum integrable system, with s playing the role of the mass scale.

References

P. Adamopoulou, C. Dunning: Bethe Ansatz equations for the classical $A_n^{(1)}$ affine Toda field theories

arXiv: 1401.1187 [math-ph] , to appear in JPA

References

- ▶ T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Spin-Spin correlation functions for the two dimensional Ising Model: Exact results in the scaling region, Physical Review B 13 (1976)
- A. B. Zamolodchikov, Painlevé III and 2D polymers, Nuclear Physics B 432 (1994)
- P. Fendley and H. Saleur, N = 2 supersymmetry, Painlevé III and exact scaling functions in 2D polymers, Nuclear Physics B 388 (1992)
- S. L. Lukyanov and A. B. Zamolodchikov, Quantum sine(h)-Gordon model and classical integrable equations, Journal of High Energy Physics 07 (2010)
- ▶ A. V. Mikhailov, Integrability of the two-dimensional generalization of toda chain, JETP Letters 30 (1979)
- ► A. V. Mikhailov, The reduction problem and the inverse scattering method, Physica D Nonlinear Phenomena 3 (1981)
- ▶ P. Dorey, T.C. Dunning, R. Tateo, The ODE/IM correspondence, Journal of Physics A Mathematical General 40 (2007)

