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Integrable PDEs and quantum Integrable Models

Relation of quantum integrable models to classical integrable PDEs has
been observed

» Barouch, McCoy, Tracy and Wu : spin-spin correlation function in
the scaling limit of the 2d Ising model in terms of solutions to
Painlevé IlI.

» Zamolodchikov, Fendley & Saleur : sine-Gordon partition function in
terms of other solutions to Painlevé Ill.

» More recently: Lukyanov & Zamolodchikov showed a way to
connect the classical sinh-Gordon model to the quantum massive
sine(h)-Gordon model.

Generalising in such way the so-called ODE/IM correspondence to a
PDE/IM correspondence which encompasses massive quantum field
theories.



The ODE/IM Correspondence

» The ODE/IM Correspondence (Dorey, Tateo, Dunning, Bazhanov,
Lukyanov, Zamolodchikov, Suzuki) is a link between particular linear
ODEs defined in the complex plane and the conformal field theory
limit of certain quantum integrable models in two dimensions
(six-vertex model)

» This link is based mainly on certain functional relations that appear
on both sides of the correspondence

» On the ODE side: functional relations are satisfied by spectral
determinants related to certain eigenvalue problems for the ODEs

» On the quantum integrable model side: Baxter's TQ relation, T and
Q operators of Bazhanov, Lukyanov, Zamolodchikov for quantum
field theory satisfy functional relations



The ODE/IM Correspondence

Until recently:

» The correspondence concerned the mapping of certain ODEs to
massless quantum field theories

» Lukyanov & Zamolodchikov showed how to include massive
quantum field theories.

» They had as a starting point the classical sinh-Gordon equation

» Here a correspondence between classical AS}L Toda field theories
and A,_; Bethe Ansatz systems will be presented

» We will consider the particular example of A(zl) Toda equations



A

571,)1 Toda field equations

The two-dimensional Af,l_)l Toda field theories are described by the
Lagrangian

1 n n
L=35 > (i) = (0xmi)® = > exp(2mis1 — 2n7)

i=1 i=1

with 7; = n;(x, t), periodic boundary conditions 7,.; = 7, and
Zle n;i = 0. Using coordinates w = x + t and w = x — t, which are

considered to be complex, the corresponding equations of motion are

2050wm;i = exp(2m;i — 2mi—1) — exp(2miz1 — 2n;) with i=1,...,

n.



Modified A", Toda field equations

n
Transformation A

In order to make the connection with quantum integrability we consider a
modified version of the Af,l)l Toda equations. Transformation that relates

Af,l_)l Toda equations <— modified AETI_)I Toda equations:

» Change of variables
dw = p(z)¥/"dz, dw = p(z)/"dz,
where the function p(t) is of the form
p(t)=t™ —s"™M M secR,.

» Transformation of the fields

n—(2i—1)

ni(z,2) = ni(z,2) + i In(p(z)p(2)) .



Modified A", Toda field equations

This transformation brings the Af}jl Toda equations to the modified
AE}—)1 Toda equations
2050,m; = N —2Mi-1 _ e2Min=20  for =2 ... . n-1,
20;0;m = p(z)p(2) M2 — 2R =2m
20;0,m, = e2n=172M — p(z)p(Z) &> 2
with n; = ni(z, 2).

It is convenient for later to introduce z = pe®, Z = pe™'® with p, » € R.



Example: Agl) Toda field equations
When n = 3:

» We have the Agl) Toda field equations for the fields 71, 173
2050w = e2Mm—2n3 _ g—4m—2m3 ,

2050un3 = edmt2m _ o2m—2mns

» The corresponding modified version of the A(zl) field equations is
2050, = p(z)p(2) eXm—2m — g=4m—2ns

20;0,13 = ¥t — p(z)p(z) M .



Modified AS") Toda field equations

> We are interested in a particular class of solutions 71, 13 to the
modified equations which are real-valued and respect certain discrete
symmetries of the equations.

> In order to obtain these particular asymptotic solutions to the
modified Agl) Toda equations we first apply asymptotic analysis in
certain asymptotic limits to the original A(zl) Toda equations.



Agl) Toda field equations

Asymptotic Analysis

We observe that the combination ww remains invariant under a scaling
of the variables, therefore we perform a symmetry reduction. We consider
the transformation

t=V2ww, 771(W7 V_V) :yl(t)ﬂ 773(W7 V_V) :y3(t)

which brings the Agl) Toda equations to the form

d2 d e Y1 2}/3 e2y1 2}/3 =0
142 .y]. J yl bl
2)’1 2}’3 3 2}/1 —
7y3+77y3_l’_e — e 0'

Setting y;(t) = Ing;(t), i = 1,3, brings the system of equations to a
Painlevé Ill-type form.

Painlevé analysis of this system of equations is of particular interest.



Agl) Toda field equations

Asymptotic Analysis

Asymptotic analysis to the system of equations provides the following
leading order behaviours for y;(t)

> Ast—0
y1(t) ~ (2 — g») Int + by + power series in t,
y3(t) ~ —goInt + by + power series in t,
with g;, b; constants.

» Ast — 00

The constants g; will be related to certain parameters which enter the
particular ODE of the ODE/IM correspondence. The asymptotic analysis
provides for free certain relations which were imposed to these
parameters on the ODE side (in the massless ODE/IM correspondence).



Modified AS") Toda field equations

Asymptotic Analysis

Thus, we obtain the following asymptotic behaviours for the solutions
ni(z, Z) to the modified equations

» Aszz — 0

m(z,z) ~ (1-%) In(zZ)—i—bH—Z Vi (22 + 22KM) +-power series in zZ
k=1

oo
m(z,2) ~ - In(22)+b3+z Yik (22M + 23*M) - power series in zZ .
k=1

» As zZ — ©

m(z,2) = —%in(z2) + o(1), n3(z,2) = ¥In(z2) + o(1).



Linear problem Afil

The A(l)1 Toda field equations are integrable and admit a zero-curvature

n—

representation
(8W+ U(W,W,/\)) ®=0, (8V—V+ \7(w,v7/,/\)) ®=0,

where U V are n x n matrices which depend on a spectral parameter
A € C and the Toda fields n; with

U(w, W, A) = 8uni 6 + AC,  V(w,w,\) = =8 n; 6; + A\"1C,
(C)j =exp(njp1 —nj) 6i—1; j=1,....n.
The compatibility condition of the linear system of equations reads
0wV —05U+[U, V] =0

(zero-curvature condition) and is equivalent to the Af,l_)l Toda field
equations.



: (1)
Linear problem A,
) Toda equations is associated to that for the

The linear problem for A,
modified Af,l_)l Toda equations by a gauge transformation.

A linear problem +— modified A", linear problem:

(Z,f, A))‘b =0 } gauge transf .

9, +
9z + V(2,2,1))® =0

<<t &

(O + U(w, w,\))® =0 | transr. A (
(0w + V(w, w,\))® =0 } (

w

(0. + U(z,Z\))W =0, (9:+ V(z,7)\)W =0,

with
Az,z2,)) =g 'g: +g 'A(z,2,\)g, ®=gV¥

_2i—1

and
@s=(22)" "




Linear problem Agl)

The linear problem associated to the modified Agl) Toda equations is

(0, + U(z,Z,\))W =0, (9;+ V(z,2,))W =0,

with
0,m 0 Ap(z)em=m
U= [Xe??m=  —0,m — d,m3 0
0 At B,13
and
—0zm A"le=2m=ms 0
V= 0 Ozm + Dzmz - A retm
e 0 oy

Observe that the potential p(z) is associated to the extended root of the
Agl) Lie algebra.



Linear problem Agl)

Symmetries of the linear problem

It is convenient to introduce A = e’ and z = pe'®, z = pe~'¢ with
p,p ER.

We define the following transformations:

~

»Q: 9o+, 00— 2
>S: AWB) = SAG-Z)ST or AN = SA(w A ST!

Here w = exp (%'), (S);j = w' &;; the 3 x 3 diagonal matrix and
A(0) a 3 x 3 matrix which depends on the spectral parameter.

5% = id so the group generated by the transformation Sis
isomorphic to Zs.

Such groups of transformations are known as reduction groups.



Linear problem Agl)

Symmetries of the linear problem
For the linear problem associated to Agl) Toda field equations:

» The matrices U, V of the linear problem are invariant under the
action of these transformations, i.e.

Q(U(p,6,0)) = U(p, 6,6), Q(V(p,6,0)) = V(p,,0),

S(U(p,$,0)) = U(p,6.0), S(V(p,$,0)) = V(p.,6).

> The symmetries of U, V affect the auxiliary solution W



Linear problem Agl)

Solution
Considering a vector W = (W, V5, lU3)T a general solution to the linear
problem reads

A2 g3m+2ms 0, (67277174773 9, (e2773 ¢))
W(z,z,\) = A lem=3m g, (e2’73 7/1)
e”73w

e ™ ’l/)
_)\ e3771+773 af (e_2771 r(/_}) _
A2e—2m—3ns 05 (e47]1+2773 0s (e—2771 w))

The functions v, v satisfy the following third-order ODEs
83’1/1 + Ul(Z,Z) az"/} + (UO(zvz) + )\3p(2)) 1/] = Oa
030 + 01(2,2) 0z + (8o(2,2) + A *p(2)) ¥ = 0,
with, e.g.,

(2, 2) = =2 (2(0.m)° + 20,m 0,15 + 2 (0:ma)” + 0% — 923 )
uo(z,2) = —40,13(20,m0;(m + n3) + 2m1 + 202n3) + 203ns .



Linear problem Agl)

Solution
Interested in solutions to the linear problem:

» The different asymptotic solutions for 71, 13 provide with different
potentials up, u; the ODEs for v, 1.

» Finding specific solutions for 1, 9 will determine a particular
solution W.

Focus on the third-order ODE for ¢ and treat Z as a parameter:

> In the limit p> = zZ — 0 there are three different solutions to the
ODE for ¥

Xo~2z8, x1~2z%, xo~2%, go+tg+g,=3.
» These provide the following solutions to the linear problem
=y ~ (0,0,e20FONT = (0, et~ OF9) )T

= ~ (e(ng2)(9+i¢)7 0,0)T.



Linear problem A,

Solution

(1)

> In the limit p?> = zZ — oo the ODE for 7 has a WKB-like solution

which decays in the sector |¢| < 47/(3M + 3) and has the form

v ZM+1 1 2M+1
~z —\ A"
vz eXp( M+1 M+1>

with M > 1/2. This asymptotic solution for ¢ provides the following
solution to the linear problem

cioM v
pM+1 _
v~ 1 exp (2 cosh(6 + i¢p(M + 1))) .
o—i®oM M+1



. 1
Q-functions Ag )
We can express the solution W in terms of =g, =1, =5 as

W = Qo(0) =0+ Qu(0) =1 + @(0) =2

» The coefficients Q; can be expressed in terms of solutions to the
linear problem as

Qo = det(lll,El,E2) . det (Eo,w,zg)
S 7R —— 1 — | = = =
det (:0,:1,:2)’ det (:0,:1,:2)’
o= SetEnZ9)
det (:Q, =1, :2)
(-, -, -) denotes the matrix with columns three linearly independent
solutions.
» The solutions W, =; are characterised by properties which follow

from the symmetries of the linear problem. These properties affect
the functions Q; (periodicity, quantum Wronskian relation).



Q-functions Agl)

Quasiperiodicity

For example, the relations

SZi(po+ 35,0 — & — ) = exp(—gi &) Zi(p, ¢, 0)

and
SW(p, ¢+ 25,0 — 2 — 220 = exp (422) W(p, ¢,0)

imply the following property for the Q;

Qi(0) = exp (— 2 (g — 1)) @;(0 — 2 WMD) - with i=0,1,2.



Functional relations Agl)

We can show that the Q; functions satisfy certain functional relations

» Consider the change of variables

3Mo 0 3Mmo

X = zeMLH7 E=3sMeMt1, x = ze (M)
Then the ODE for ¢ becomes
R + i (x, %) 0xtp + (up(x, %) + (x* — E)) v = 0.
» The ODE admits the following asymptotic solution

XM+1 )—<M+1 )

—-M s
Yo x eXp( M+1 M+1

as |x| — oo in the sector | arg x| < 47/3M + 3, treating X as a
parameter.



Functional relations Agl)

> Based on the asymptotic solution 1 we define rotated solutions that
decay in certain sectors of the complex plane

Yi(x, %, E, E) = wkp(w™kx, wkz,w3ME (W3ME) |
with w = exp (%)
» The functions ¥, ¥k+1, ¥ks2 are linearly independent, so we can
write

o = CO(E, E)py + CO(E, E)¢ho + CON(E, E) 3.

The coefficients are called Stokes multipliers and can be expressed in
terms of Wronskians of rotated solutions .



Functional relations Agl)

On the other hand:

» Expanding the solution v in terms of the basis of solutions to the
ODE at the origin we can write

¥ = Qo(E,E)xo+ Qi(E,E)x1 + Q(E, E)x2.

» Combining the relations for solutions at the origin and at infinity we
can obtain the functional relation

CO(E, E) QW (wME,ME) Q@) (w3ME, ME) —
QW(E, E) Q@ (w 3ME, WM E) w81
+ QW(WOME WOME) QP(E, E)wer ™t
+ QW(WIME, WIME) QO (W OME SV E) 28081 |

with Q) = @ and Q®) ~ Wy, 41].



» Why is this result important for the connection to quantum
integrable systems?

Because the previous ODE appears in the context of the so-called
ODE/IM Correspondence.



CFT limit

Considering the limit
z—0, z~s5—0, 00—+

the ODE for 1 takes the form

1 1
R+ — (g8 + gog2 + g182 — 2) Ot — — gogrge + (X*M — E)¢ =0,
which is the third-order ODE introduced in the context of the ODE/IM
Correspondence.

In this limit the coefficients Q; coincide with those of the massless
quantum field theory related to the A, Lie algebra.



Generalisation to Af,l,)l

» Asymptotic solutions to modified Af,lzl Toda field equations

» Q and S transformations

» Symmetries of the associated Afﬂl Lax matrices U, V and
properties of the auxiliary vector solution W

can be generalised accordingly.



- 1
Generalisation to A(Jl
n (1)
n—1

Considering a vector W = (Vq,.. ., \U,,)T, a general solution to the A~/
linear problem reads

_ — A" leniTmin Oz Vi1 4+ 9mi1Vias for i=n—-1,...,1
Vi(z,2,)) :{ ( e ) for i—n

_ e M) for i=1
o —Aeli-17"m (82\11,-_1 — (927],'_1\“,'_1) for i=n—-1,...,1.

The ¢ = (2,2, \) and ¥ = 1)(z, Z, \) satisfy nt"-order differential
equations

((=1)"1Da(m) + A"p(2) ) = 0.
((=1)"*1Du(m) + A ~"p(2) ) = 0.
and we have introduced the n''-order operators
Dn(n) =(0; +20,m) (0; +20,m2) ... (0 +20,m,) ,

Dn(’ﬂ) = (82 — 2(92’[],,) N (82 — 2827’]2) (62 — 2(92’[]1) .



Outlook/Conclusion

Classical Integrable PDEs
Asymptotic solutions
Linear problem: linear ODEs

Connection with Quantum Integrability (using the ODE/IM
Correspondence)

Starting from a classical integrable PDE we can recover a certain type of
ODE which can then be mapped to a massive quantum integrable
system, with s playing the role of the mass scale.
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