# Bethe Ansatz equations and the classical $A_{n-1}^{(1)}$ Toda field theories 

P.M. Adamopoulou

University of Kent
ICFT 2014, University of Glasgow

## Plan

- Main motivation
- Classical integrable PDEs : $A_{n-1}^{(1)}$ Toda field equations
- Modified $A_{n-1}^{(1)}$ Toda equations
- Particular example of $A_{2}^{(1)}$ case
- Asymptotic solutions of modified $A_{2}^{(1)}$ Toda field equations
- Solutions to the associated linear problem for $A_{2}^{(1)}$
- Functional relations
- Connection to quantum integrability
- Generalisation to $A_{n-1}^{(1)}$ cases


## Integrable PDEs and quantum Integrable Models

Relation of quantum integrable models to classical integrable PDEs has been observed

- Barouch, McCoy, Tracy and Wu: spin-spin correlation function in the scaling limit of the 2d Ising model in terms of solutions to Painlevé III.
- Zamolodchikov, Fendley \& Saleur : sine-Gordon partition function in terms of other solutions to Painlevé III.
- More recently: Lukyanov \& Zamolodchikov showed a way to connect the classical sinh-Gordon model to the quantum massive sine(h)-Gordon model.

Generalising in such way the so-called ODE/IM correspondence to a PDE/IM correspondence which encompasses massive quantum field theories.

## The ODE/IM Correspondence

- The ODE/IM Correspondence (Dorey, Tateo, Dunning, Bazhanov, Lukyanov, Zamolodchikov, Suzuki) is a link between particular linear ODEs defined in the complex plane and the conformal field theory limit of certain quantum integrable models in two dimensions (six-vertex model)
- This link is based mainly on certain functional relations that appear on both sides of the correspondence
- On the ODE side: functional relations are satisfied by spectral determinants related to certain eigenvalue problems for the ODEs
- On the quantum integrable model side: Baxter's TQ relation, T and Q operators of Bazhanov, Lukyanov, Zamolodchikov for quantum field theory satisfy functional relations


## The ODE/IM Correspondence

Until recently:

- The correspondence concerned the mapping of certain ODEs to massless quantum field theories
- Lukyanov \& Zamolodchikov showed how to include massive quantum field theories.
- They had as a starting point the classical sinh-Gordon equation
- Here a correspondence between classical $A_{n-1}^{(1)}$ Toda field theories and $A_{n-1}$ Bethe Ansatz systems will be presented
- We will consider the particular example of $A_{2}^{(1)}$ Toda equations


## $A_{n-1}^{(1)}$ Toda field equations

The two-dimensional $A_{n-1}^{(1)}$ Toda field theories are described by the Lagrangian

$$
L=\frac{1}{2} \sum_{i=1}^{n}\left(\partial_{t} \eta_{i}\right)^{2}-\left(\partial_{x} \eta_{i}\right)^{2}-\sum_{i=1}^{n} \exp \left(2 \eta_{i+1}-2 \eta_{i}\right)
$$

with $\eta_{i} \equiv \eta_{i}(x, t)$, periodic boundary conditions $\eta_{n+1}=\eta_{1}$ and $\sum_{i=1}^{n} \eta_{i}=0$. Using coordinates $w=x+t$ and $\bar{w}=x-t$, which are considered to be complex, the corresponding equations of motion are

$$
2 \partial_{\bar{w}} \partial_{w} \eta_{i}=\exp \left(2 \eta_{i}-2 \eta_{i-1}\right)-\exp \left(2 \eta_{i+1}-2 \eta_{i}\right) \quad \text { with } \quad i=1, \ldots, n .
$$

## Modified $A_{n-1}^{(1)}$ Toda field equations

## Transformation A

In order to make the connection with quantum integrability we consider a modified version of the $A_{n-1}^{(1)}$ Toda equations. Transformation that relates

$$
A_{n-1}^{(1)} \text { Toda equations } \longleftrightarrow \text { modified } A_{n-1}^{(1)} \text { Toda equations: }
$$

- Change of variables

$$
\mathrm{d} w=p(z)^{1 / n} \mathrm{~d} z, \quad \mathrm{~d} \bar{w}=p(\bar{z})^{1 / n} \mathrm{~d} \bar{z}
$$

where the function $p(t)$ is of the form

$$
p(t)=t^{n M}-s^{n M}, \quad M, s \in \mathbb{R}_{+} .
$$

- Transformation of the fields

$$
\eta_{i}(z, \bar{z}) \rightarrow \eta_{i}(z, \bar{z})+\frac{n-(2 i-1)}{4 n} \ln (p(z) p(\bar{z})) .
$$

## Modified $A_{n-1}^{(1)}$ Toda field equations

This transformation brings the $A_{n-1}^{(1)}$ Toda equations to the modified $A_{n-1}^{(1)}$ Toda equations

$$
\begin{aligned}
& 2 \partial_{\bar{z}} \partial_{z} \eta_{i}=\mathrm{e}^{2 \eta_{i}-2 \eta_{i-1}}-\mathrm{e}^{2 \eta_{i+1}-2 \eta_{i} \quad \text { for } \quad i=2, \ldots, n-1,} \\
& 2 \partial_{\bar{z}} \partial_{z} \eta_{1}=p(z) p(\bar{z}) \mathrm{e}^{2 \eta_{1}-2 \eta_{n}}-\mathrm{e}^{2 \eta_{2}-2 \eta_{1}}, \\
& 2 \partial_{\bar{z}} \partial_{z} \eta_{n}=\mathrm{e}^{2 \eta_{n-1}-2 \eta_{n}}-p(z) p(\bar{z}) \mathrm{e}^{2 \eta_{1}-2 \eta_{n}} .
\end{aligned}
$$

with $\eta_{i} \equiv \eta_{i}(z, \bar{z})$.
It is convenient for later to introduce $z=\rho \mathrm{e}^{i \phi}, \bar{z}=\rho \mathrm{e}^{-i \phi}$ with $\rho, \phi \in \mathbb{R}$.

## Example: $A_{2}^{(1)}$ Toda field equations

When $n=3$ :

- We have the $A_{2}^{(1)}$ Toda field equations for the fields $\eta_{1}, \eta_{3}$

$$
\begin{aligned}
& 2 \partial_{\bar{w}} \partial_{w} \eta_{1}=\mathrm{e}^{2 \eta_{1}-2 \eta_{3}}-\mathrm{e}^{-4 \eta_{1}-2 \eta_{3}} \\
& 2 \partial_{\bar{w}} \partial_{w} \eta_{3}=\mathrm{e}^{4 \eta_{3}+2 \eta_{1}}-\mathrm{e}^{2 \eta_{1}-2 \eta_{3}}
\end{aligned}
$$

- The corresponding modified version of the $A_{2}^{(1)}$ field equations is

$$
\begin{aligned}
& 2 \partial_{\bar{z}} \partial_{z} \eta_{1}=p(z) p(\bar{z}) \mathrm{e}^{2 \eta_{1}-2 \eta_{3}}-\mathrm{e}^{-4 \eta_{1}-2 \eta_{3}} \\
& 2 \partial_{\bar{z}} \partial_{z} \eta_{3}=\mathrm{e}^{4 \eta_{3}+2 \eta_{1}}-p(z) p(\bar{z}) \mathrm{e}^{2 \eta_{1}-2 \eta_{3}}
\end{aligned}
$$

## Modified $A_{2}^{(1)}$ Toda field equations

- We are interested in a particular class of solutions $\eta_{1}, \eta_{3}$ to the modified equations which are real-valued and respect certain discrete symmetries of the equations.
- In order to obtain these particular asymptotic solutions to the modified $A_{2}^{(1)}$ Toda equations we first apply asymptotic analysis in certain asymptotic limits to the original $A_{2}^{(1)}$ Toda equations.


## $A_{2}^{(1)}$ Toda field equations

## Asymptotic Analysis

We observe that the combination $w \bar{w}$ remains invariant under a scaling of the variables, therefore we perform a symmetry reduction. We consider the transformation

$$
t=\sqrt{2 w \bar{w}}, \quad \eta_{1}(w, \bar{w})=y_{1}(t), \quad \eta_{3}(w, \bar{w})=y_{3}(t)
$$

which brings the $A_{2}^{(1)}$ Toda equations to the form

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} y_{1}+\frac{1}{t} \frac{d}{d t} y_{1}+\mathrm{e}^{-4 y_{1}-2 y_{3}}-\mathrm{e}^{2 y_{1}-2 y_{3}}=0, \\
& \frac{d^{2}}{d t^{2}} y_{3}+\frac{1}{t} \frac{d}{d t} y_{3}+\mathrm{e}^{2 y_{1}-2 y_{3}}-\mathrm{e}^{4 y_{3}+2 y_{1}}=0
\end{aligned}
$$

Setting $y_{i}(t)=\ln g_{i}(t), i=1,3$, brings the system of equations to a Painlevé III-type form.

Painlevé analysis of this system of equations is of particular interest.

## $A_{2}^{(1)}$ Toda field equations

## Asymptotic Analysis

Asymptotic analysis to the system of equations provides the following leading order behaviours for $y_{i}(t)$

- As $t \rightarrow 0$

$$
\begin{aligned}
& y_{1}(t) \sim\left(2-g_{2}\right) \ln t+b_{1}+\text { power series in } t, \\
& y_{3}(t) \sim-g_{0} \ln t+b_{1}+\text { power series in } t,
\end{aligned}
$$

with $g_{i}, b_{i}$ constants.

- As $t \rightarrow \infty$

$$
y_{i}(t)=O(1)
$$

The constants $g_{i}$ will be related to certain parameters which enter the particular ODE of the ODE/IM correspondence. The asymptotic analysis provides for free certain relations which were imposed to these parameters on the ODE side (in the massless ODE/IM correspondence).

## Modified $A_{2}^{(1)}$ Toda field equations

Asymptotic Analysis

Thus, we obtain the following asymptotic behaviours for the solutions $\eta_{i}(z, \bar{z})$ to the modified equations

- As $z \bar{z} \rightarrow 0$

$$
\begin{aligned}
& \eta_{1}(z, \bar{z}) \sim\left(1-\frac{g_{2}}{2}\right) \ln (z \bar{z})+b_{1}+\sum_{k=1}^{\infty} \gamma_{i k}\left(z^{3 k M}+\bar{z}^{3 k M}\right)+\text { power series in } z \bar{z}, \\
& \eta_{3}(z, \bar{z}) \sim-\frac{g_{0}}{2} \ln (z \bar{z})+b_{3}+\sum_{k=1}^{\infty} \gamma_{i k}\left(z^{3 k M}+\bar{z}^{3 k M}\right)+\text { power series in } z \bar{z} .
\end{aligned}
$$

- As $z \bar{z} \rightarrow \infty$

$$
\eta_{1}(z, \bar{z})=-\frac{M}{2} \ln (z \bar{z})+o(1), \quad \eta_{3}(z, \bar{z})=\frac{M}{2} \ln (z \bar{z})+o(1) .
$$

## Linear problem $A_{n-1}^{(1)}$

The $A_{n-1}^{(1)}$ Toda field equations are integrable and admit a zero-curvature representation

$$
\left(\partial_{w}+\widehat{U}(w, \bar{w}, \lambda)\right) \boldsymbol{\Phi}=0, \quad\left(\partial_{\bar{w}}+\widehat{V}(w, \bar{w}, \lambda)\right) \boldsymbol{\Phi}=0
$$

where $\widehat{U}, \widehat{V}$ are $n \times n$ matrices which depend on a spectral parameter $\lambda \in \mathbb{C}$ and the Toda fields $\eta_{i}$ with

$$
\begin{gathered}
\widehat{U}(w, \bar{w}, \lambda)=\partial_{w} \eta_{i} \delta_{i j}+\lambda C, \quad \widehat{V}(w, \bar{w}, \lambda)=-\partial_{\bar{w}} \eta_{i} \delta_{i j}+\lambda^{-1} C, \\
(C)_{i j}=\exp \left(\eta_{j+1}-\eta_{j}\right) \delta_{i-1, j} \quad j=1, \ldots, n .
\end{gathered}
$$

The compatibility condition of the linear system of equations reads

$$
\partial_{w} \widehat{V}-\partial_{\bar{w}} \widehat{U}+[\widehat{U}, \widehat{V}]=0
$$

(zero-curvature condition) and is equivalent to the $A_{n-1}^{(1)}$ Toda field equations.

## Linear problem $A_{n-1}^{(1)}$

The linear problem for $A_{n-1}^{(1)}$ Toda equations is associated to that for the modified $A_{n-1}^{(1)}$ Toda equations by a gauge transformation.

$$
A_{n-1}^{(1)} \text { linear problem } \longleftrightarrow \text { modified } A_{n-1}^{(1)} \text { linear problem: }
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\left(\partial_{w}+\widehat{U}(w, \bar{w}, \lambda)\right) \boldsymbol{\Phi}=0 \\
\left(\partial_{\bar{w}}+\widehat{V}(w, \bar{w}, \lambda)\right) \boldsymbol{\Phi}=0
\end{array}\right\} \xrightarrow{\text { transf.A }} \begin{array}{l}
\left(\partial_{z}+\tilde{U}(z, \bar{z}, \lambda)\right) \boldsymbol{\Phi}=0 \\
\left(\partial_{\bar{z}}+\tilde{V}(z, \bar{z}, \lambda)\right) \boldsymbol{\Phi}=0
\end{array}\right\} \xrightarrow{\text { gauge transf. }} \\
& \left(\partial_{z}+U(z, \bar{z}, \lambda)\right) \boldsymbol{\Psi}=0, \quad\left(\partial_{\bar{z}}+V(z, \bar{z}, \lambda)\right) \boldsymbol{\Psi}=0,
\end{aligned}
$$

with

$$
A(z, \bar{z}, \lambda)=g^{-1} g_{z}+g^{-1} \tilde{A}(z, \bar{z}, \lambda) g, \quad \boldsymbol{\Phi}=g \boldsymbol{\Psi}
$$

and

$$
(g)_{i j}=\left(\frac{p(\bar{z})}{p(z)}\right)^{n-\frac{2 i-1}{4 n}} \delta_{i j} .
$$

## Linear problem $A_{2}^{(1)}$

The linear problem associated to the modified $A_{2}^{(1)}$ Toda equations is

$$
\left(\partial_{z}+U(z, \bar{z}, \lambda)\right) \boldsymbol{\Psi}=0, \quad\left(\partial_{\bar{z}}+V(z, \bar{z}, \lambda)\right) \boldsymbol{\Psi}=0,
$$

with

$$
U=\left(\begin{array}{ccc}
\partial_{z} \eta_{1} & 0 & \lambda p(z) \mathrm{e}^{\eta_{1}-\eta_{3}} \\
\lambda \mathrm{e}^{-2 \eta_{1}-\eta_{3}} & -\partial_{z} \eta_{1}-\partial_{z} \eta_{3} & 0 \\
0 & \lambda \mathrm{e}^{\eta_{3}+\eta_{1}} & \partial_{z} \eta_{3}
\end{array}\right)
$$

and

$$
V=\left(\begin{array}{ccc}
-\partial_{\bar{z}} \eta_{1} & \lambda^{-1} \mathrm{e}^{-2 \eta_{1}-\eta_{3}} & 0 \\
0 & \partial_{\bar{z}} \eta_{1}+\partial_{\bar{z}} \eta_{3} & \lambda^{-1} \mathrm{e}^{2 \eta_{3}+\eta_{1}} \\
\lambda^{-1} p(\bar{z}) \mathrm{e}^{\eta_{1}-\eta_{3}} & 0 & -\partial_{\bar{z}} \eta_{3}
\end{array}\right)
$$

Observe that the potential $p(z)$ is associated to the extended root of the $A_{2}^{(1)}$ Lie algebra.

## Linear problem $A_{2}^{(1)}$

## Symmetries of the linear problem

It is convenient to introduce $\lambda=\mathrm{e}^{\theta}$ and $z=\rho \mathrm{e}^{i \phi}, \bar{z}=\rho \mathrm{e}^{-i \phi}$ with $\rho, \phi \in \mathbb{R}$.

We define the following transformations:

- $\widehat{\Omega}: \quad \phi \rightarrow \phi+\frac{2 \pi}{3 M}, \quad \theta \rightarrow \theta-\frac{2 \pi i}{3 M}$
- $\widehat{S}: \quad A(\theta) \rightarrow S A\left(\theta-\frac{2 \pi i}{3}\right) S^{-1} \quad$ or $\quad A(\lambda) \rightarrow S A\left(\omega^{-1} \lambda\right) S^{-1}$

Here $\omega=\exp \left(\frac{2 \pi i}{3}\right),(S)_{i j}=\omega^{i} \delta_{i, j}$ the $3 \times 3$ diagonal matrix and $A(\theta)$ a $3 \times 3$ matrix which depends on the spectral parameter.
$\widehat{S}^{3}=$ id so the group generated by the transformation $\widehat{S}$ is isomorphic to $\mathbb{Z}_{3}$.
Such groups of transformations are known as reduction groups.

## Linear problem $A_{2}^{(1)}$

## Symmetries of the linear problem

For the linear problem associated to $A_{2}^{(1)}$ Toda field equations:

- The matrices $U, V$ of the linear problem are invariant under the action of these transformations, i.e.

$$
\begin{array}{ll}
\widehat{\Omega}(U(\rho, \phi, \theta))=U(\rho, \phi, \theta), & \widehat{\Omega}(V(\rho, \phi, \theta))=V(\rho, \phi, \theta) \\
\widehat{S}(U(\rho, \phi, \theta))=U(\rho, \phi, \theta), & \widehat{S}(V(\rho, \phi, \theta))=V(\rho, \phi, \theta)
\end{array}
$$

- The symmetries of $U, V$ affect the auxiliary solution $\boldsymbol{\Psi}$


## Linear problem $A_{2}^{(1)}$

## Solution

Considering a vector $\boldsymbol{\Psi}=\left(\Psi_{1}, \Psi_{2}, \Psi_{3}\right)^{\mathrm{T}}$ a general solution to the linear problem reads

$$
\begin{aligned}
\boldsymbol{\Psi}(z, \bar{z}, \lambda) & =\left(\begin{array}{c}
\lambda^{-2} \mathrm{e}^{3 \eta_{1}+2 \eta_{3}} \partial_{z}\left(\mathrm{e}^{-2 \eta_{1}-4 \eta_{3}} \partial_{z}\left(\mathrm{e}^{2 \eta_{3}} \psi\right)\right) \\
-\lambda^{-1} \mathrm{e}^{-\eta_{1}-3 \eta_{3}} \partial_{z}\left(\mathrm{e}^{2 \eta_{3}} \psi\right) \\
\mathrm{e}^{\eta_{3}} \psi
\end{array}\right) \\
& =\binom{\mathrm{e}^{-\eta_{1}} \bar{\psi}}{\lambda^{2} \mathrm{e}^{-2 \eta_{1}-3 \eta_{3}} \partial_{\bar{z}}\left(\mathrm{e}^{4 \eta_{1}+2 \eta_{3}} \partial_{\bar{z}}\left(\mathrm{e}^{-2 \eta_{1}} \bar{\psi}\right)\right)} .
\end{aligned}
$$

The functions $\psi, \bar{\psi}$ satisfy the following third-order ODEs

$$
\begin{aligned}
& \partial_{z}^{3} \psi+u_{1}(z, \bar{z}) \partial_{z} \psi+\left(u_{0}(z, \bar{z})+\lambda^{3} p(z)\right) \psi=0 \\
& \partial_{\bar{z}}^{3} \bar{\psi}+\bar{u}_{1}(z, \bar{z}) \partial_{\bar{z}} \bar{\psi}+\left(\bar{u}_{0}(z, \bar{z})+\lambda^{-3} p(\bar{z})\right) \bar{\psi}=0
\end{aligned}
$$

with, e.g.,

$$
\begin{aligned}
& u_{1}(z, \bar{z})=-2\left(2\left(\partial_{z} \eta_{1}\right)^{2}+2 \partial_{z} \eta_{1} \partial_{z} \eta_{3}+2\left(\partial_{z} \eta_{3}\right)^{2}+\partial_{z}^{2} \eta_{1}-\partial_{z}^{2} \eta_{3}\right) \\
& u_{0}(z, \bar{z})=-4 \partial_{z} \eta_{3}\left(2 \partial_{z} \eta_{1} \partial_{z}\left(\eta_{1}+\eta_{3}\right)+\partial_{z}^{2} \eta_{1}+2 \partial_{z}^{2} \eta_{3}\right)+2 \partial_{z}^{3} \eta_{3}
\end{aligned}
$$

## Linear problem $A_{2}^{(1)}$

## Solution

Interested in solutions to the linear problem:

- The different asymptotic solutions for $\eta_{1}, \eta_{3}$ provide with different potentials $u_{0}, u_{1}$ the ODEs for $\psi, \bar{\psi}$.
- Finding specific solutions for $\psi, \bar{\psi}$ will determine a particular solution $\boldsymbol{\Psi}$.

Focus on the third-order ODE for $\psi$ and treat $\bar{z}$ as a parameter:

- In the limit $\rho^{2}=z \bar{z} \rightarrow 0$ there are three different solutions to the ODE for $\psi$

$$
\chi_{0} \sim z^{g_{0}}, \quad \chi_{1} \sim z^{g_{1}}, \quad \chi_{2} \sim z^{g_{2}}, \quad g_{0}+g_{1}+g_{2}=3
$$

- These provide the following solutions to the linear problem

$$
\begin{gathered}
\Xi_{0} \sim\left(0,0, \mathrm{e}^{g_{0}(\theta+i \phi)}\right)^{\mathrm{T}}, \quad \Xi_{1} \sim\left(0, \mathrm{e}^{\left(g_{1}-1\right)(\theta+i \phi)}, 0\right)^{\mathrm{T}} \\
\Xi_{2} \sim\left(\mathrm{e}^{\left(g_{2}-2\right)(\theta+i \phi)}, 0,0\right)^{\mathrm{T}}
\end{gathered}
$$

## Linear problem $A_{2}^{(1)}$

- In the limit $\rho^{2}=z \bar{z} \rightarrow \infty$ the ODE for $\psi$ has a WKB-like solution which decays in the sector $|\phi|<4 \pi /(3 M+3)$ and has the form

$$
\psi \sim z^{-M} \exp \left(-\lambda \frac{z^{M+1}}{M+1}-\lambda^{-1} \frac{\bar{z}^{M+1}}{M+1}\right)
$$

with $M>1 / 2$. This asymptotic solution for $\psi$ provides the following solution to the linear problem

$$
\boldsymbol{\Psi} \sim\left(\begin{array}{c}
\mathrm{e}^{i \phi M} \\
1 \\
\mathrm{e}^{-i \phi M}
\end{array}\right) \exp \left(-2 \frac{\rho^{M+1}}{M+1} \cosh (\theta+i \phi(M+1))\right) .
$$

## $Q$-functions $A_{2}^{(1)}$

We can express the solution $\boldsymbol{\Psi}$ in terms of $\bar{\Xi}_{0}, \Xi_{1}, \Xi_{2}$ as

$$
\boldsymbol{\Psi}=Q_{0}(\theta) \Xi_{0}+Q_{1}(\theta) \Xi_{1}+Q_{2}(\theta) \Xi_{2} .
$$

- The coefficients $Q_{i}$ can be expressed in terms of solutions to the linear problem as

$$
\begin{gathered}
Q_{0}=\frac{\operatorname{det}\left(\boldsymbol{\Psi}, \Xi_{1}, \Xi_{2}\right)}{\operatorname{det}\left(\Xi_{0}, \Xi_{1}, \bar{\Xi}_{2}\right)}, Q_{1}=\frac{\operatorname{det}\left(\mathbf{\Xi}_{0}, \boldsymbol{\Psi}, \Xi_{2}\right)}{\operatorname{det}\left(\Xi_{0}, \Xi_{1}, \Xi_{2}\right)}, \\
Q_{2}=\frac{\operatorname{det}\left(\Xi_{0}, \Xi_{1}, \boldsymbol{\Psi}\right)}{\operatorname{det}\left(\mathbf{\Xi}_{0}, \Xi_{1}, \Xi_{2}\right)} .
\end{gathered}
$$

$(\cdot, \cdot, \cdot)$ denotes the matrix with columns three linearly independent solutions.

- The solutions $\boldsymbol{\Psi}, \Xi_{i}$ are characterised by properties which follow from the symmetries of the linear problem. These properties affect the functions $Q_{i}$ (periodicity, quantum Wronskian relation).


## Q-functions $A_{2}^{(1)}$

## Quasiperiodicity

For example, the relations

$$
S \Xi_{i}\left(\rho, \phi+\frac{2 \pi}{3 M}, \theta-\frac{2 \pi i}{3 M}-\frac{2 \pi i}{3}\right)=\exp \left(-g_{i} \frac{2 \pi i}{3}\right) \Xi_{i}(\rho, \phi, \theta)
$$

and

$$
S \boldsymbol{\Psi}\left(\rho, \phi+\frac{2 \pi}{3 M}, \theta-\frac{2 \pi i}{3 M}-\frac{2 \pi i}{3}\right)=\exp \left(\frac{4 \pi i}{3}\right) \boldsymbol{\Psi}(\rho, \phi, \theta)
$$

imply the following property for the $Q_{i}$

$$
Q_{i}(\theta)=\exp \left(-\frac{2 \pi i}{3}\left(g_{i}-1\right)\right) Q_{j}\left(\theta-\frac{2 \pi i}{3} \frac{(M+1)}{M}\right), \quad \text { with } \quad i=0,1,2 .
$$

## Functional relations $A_{2}^{(1)}$

We can show that the $Q_{i}$ functions satisfy certain functional relations

- Consider the change of variables

$$
x=z \mathrm{e}^{\frac{\theta}{M+1}}, E=s^{3 M} \mathrm{e}^{\frac{3 M \theta}{M+1}}, \bar{x}=\bar{z} \mathrm{e}^{-\frac{\theta}{(M+1)}}, \bar{E}=s^{3 M} \mathrm{e}^{-\frac{3 M \theta}{(M+1)}} .
$$

Then the ODE for $\psi$ becomes

$$
\partial_{x}^{3} \psi+u_{1}(x, \bar{x}) \partial_{x} \psi+\left(u_{0}(x, \bar{x})+\left(x^{3 M}-E\right)\right) \psi=0 .
$$

- The ODE admits the following asymptotic solution

$$
\psi \sim x^{-M} \exp \left(-\frac{x^{M+1}}{M+1}-\frac{\bar{x}^{M+1}}{M+1}\right)
$$

as $|x| \rightarrow \infty$ in the sector $|\arg x|<4 \pi / 3 M+3$, treating $\bar{x}$ as a parameter.

## Functional relations $A_{2}^{(1)}$

- Based on the asymptotic solution $\psi$ we define rotated solutions that decay in certain sectors of the complex plane

$$
\psi_{k}(x, \bar{x}, E, \bar{E})=\omega^{k} \psi\left(\omega^{-k} x, \omega^{k} \bar{x}, \omega^{-3 k M} E, \omega^{3 k M} \bar{E}\right),
$$

with $\omega=\exp \left(\frac{2 \pi i}{3(M+1)}\right)$.

- The functions $\psi_{k}, \psi_{k+1}, \psi_{k+2}$ are linearly independent, so we can write

$$
\psi_{0}=C^{(1)}(E, \bar{E}) \psi_{1}+C^{(2)}(E, \bar{E}) \psi_{2}+C^{(3)}(E, \bar{E}) \psi_{3} .
$$

The coefficients are called Stokes multipliers and can be expressed in terms of Wronskians of rotated solutions $\psi_{k}$.

## Functional relations $A_{2}^{(1)}$

On the other hand:

- Expanding the solution $\psi$ in terms of the basis of solutions to the ODE at the origin we can write

$$
\psi=Q_{0}(E, \bar{E}) \chi_{0}+Q_{1}(E, \bar{E}) \chi_{1}+Q_{2}(E, \bar{E}) \chi_{2} .
$$

- Combining the relations for solutions at the origin and at infinity we can obtain the functional relation

$$
\begin{aligned}
& C^{(1)}(E, \bar{E}) Q^{(1)}\left(\omega^{-3 M} E, \omega^{3 M} \bar{E}\right) Q^{(2)}\left(\omega^{-3 M} E, \omega^{3 M} \bar{E}\right)= \\
& Q^{(1)}(E, \bar{E}) Q^{(2)}\left(\omega^{-3 M} E, \omega^{3 M} \bar{E}\right) \omega^{g_{0}-1} \\
&+Q^{(1)}\left(\omega^{-6 M} E, \omega^{6 M} \bar{E}\right) Q^{(2)}(E, \bar{E}) \omega^{g_{1}-1} \\
&+ Q^{(1)}\left(\omega^{-3 M} E, \omega^{3 M} \bar{E}\right) Q^{(2)}\left(\omega^{-6 M} E, \omega^{6 M} \bar{E}\right) \omega^{2-g_{0}-g_{1}}
\end{aligned}
$$

with $Q^{(1)}=Q_{0}$ and $Q^{(2)} \sim W\left[\psi, \psi_{1}\right]$.

- Why is this result important for the connection to quantum integrable systems?

Because the previous ODE appears in the context of the so-called ODE/IM Correspondence.

## CFT limit

Considering the limit

$$
\bar{z} \rightarrow 0, \quad z \sim s \rightarrow 0, \quad \theta \rightarrow+\infty
$$

the ODE for $\psi$ takes the form
$\partial_{x}^{3} \psi+\frac{1}{x^{2}}\left(g_{0} g_{1}+g_{0} g_{2}+g_{1} g_{2}-2\right) \partial_{x} \psi-\frac{1}{x^{3}} g_{0} g_{1} g_{2}+\left(x^{3 M}-E\right) \psi=0$,
which is the third-order ODE introduced in the context of the ODE/IM Correspondence.

In this limit the coefficients $Q_{i}$ coincide with those of the massless quantum field theory related to the $A_{2}$ Lie algebra.

## Generalisation to $A_{n-1}^{(1)}$

- Asymptotic solutions to modified $A_{n-1}^{(1)}$ Toda field equations
- $\widehat{\Omega}$ and $\widehat{S}$ transformations
- Symmetries of the associated $A_{n-1}^{(1)}$ Lax matrices $U, V$ and properties of the auxiliary vector solution $\boldsymbol{\Psi}$
can be generalised accordingly.


## Generalisation to $A_{n-1}^{(1)}$

Considering a vector $\boldsymbol{\Psi}=\left(\Psi_{1}, \ldots, \Psi_{n}\right)^{\mathrm{T}}$, a general solution to the $A_{n-1}^{(1)}$ linear problem reads

$$
\begin{aligned}
& \Psi_{i}(z, \bar{z}, \lambda)=\left\{\begin{array}{cl}
-\lambda^{-1} \mathrm{e}^{\eta_{i}-\eta_{i+1}}\left(\partial_{z} \Psi_{i+1}+\partial_{z} \eta_{i+1} \Psi_{i+1}\right) & \text { for } \quad i=n-1, \ldots, 1 \\
\mathrm{e}^{\eta_{n}} \psi & \text { for } \quad i=n
\end{array}\right. \\
&=\left\{\begin{array}{cl}
\mathrm{e}^{-\eta_{1}} \bar{\psi} & \text { for } \\
-\lambda=1 \\
-\lambda \mathrm{e}^{\eta_{i-1}-\eta_{i}}\left(\partial_{\bar{z}} \Psi_{i-1}-\partial_{\bar{z}} \eta_{i-1} \Psi_{i-1}\right) & \text { for } \\
i=n-1, \ldots, 1
\end{array}\right.
\end{aligned}
$$

The $\psi \equiv \psi(z, \bar{z}, \lambda)$ and $\bar{\psi} \equiv \bar{\psi}(z, \bar{z}, \lambda)$ satisfy $n^{\text {th }}$-order differential equations

$$
\begin{aligned}
& \left((-1)^{n+1} D_{n}(\eta)+\lambda^{n} p(z)\right) \psi=0 \\
& \left((-1)^{n+1} \bar{D}_{n}(\eta)+\lambda^{-n} p(\bar{z})\right) \bar{\psi}=0
\end{aligned}
$$

and we have introduced the $n^{\text {th }}$-order operators

$$
\begin{aligned}
& D_{n}(\eta)=\left(\partial_{z}+2 \partial_{z} \eta_{1}\right)\left(\partial_{z}+2 \partial_{z} \eta_{2}\right) \ldots\left(\partial_{z}+2 \partial_{z} \eta_{n}\right), \\
& \bar{D}_{n}(\eta)=\left(\partial_{\bar{z}}-2 \partial_{\bar{z}} \eta_{n}\right) \ldots\left(\partial_{\bar{z}}-2 \partial_{\bar{z}} \eta_{2}\right)\left(\partial_{\bar{z}}-2 \partial_{\bar{z}} \eta_{1}\right) .
\end{aligned}
$$

## Outlook/Conclusion

- Classical Integrable PDEs
- Asymptotic solutions
- Linear problem: linear ODEs
- Connection with Quantum Integrability (using the ODE/IM Correspondence)

Starting from a classical integrable PDE we can recover a certain type of ODE which can then be mapped to a massive quantum integrable system, with $s$ playing the role of the mass scale.

## References

P. Adamopoulou, C. Dunning: Bethe Ansatz equations for the classical $A_{n}^{(1)}$ affine Toda field theories
arXiv: 1401.1187 [math-ph], to appear in JPA

## References

- T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Spin-Spin correlation functions for the two dimensional Ising Model: Exact results in the scaling region, Physical Review B 13 (1976)
- A. B. Zamolodchikov, Painlevé III and 2D polymers, Nuclear Physics B 432 (1994)
- P. Fendley and H. Saleur, $\mathrm{N}=2$ supersymmetry, Painlevé III and exact scaling functions in 2D polymers, Nuclear Physics B 388 (1992)
- S. L. Lukyanov and A. B. Zamolodchikov, Quantum sine(h)-Gordon model and classical integrable equations, Journal of High Energy Physics 07 (2010)
- A. V. Mikhailov, Integrability of the two-dimensional generalization of toda chain, JETP Letters 30 (1979)
- A. V. Mikhailov, The reduction problem and the inverse scattering method, Physica D Nonlinear Phenomena 3 (1981)
- P. Dorey, T.C. Dunning, R. Tateo, The ODE/IM correspondence, Journal of Physics A Mathematical General 40 (2007)

