A product formula for the eigenfunctions of a quartic oscillator

 Martin Hallnäs ${ }^{1}$ Edwin Langmann ${ }^{2}$${ }^{1}$ Dept. of Mathematical Sciences, Loughborough University, UK
${ }^{2}$ Dept. of Theoretical Physics, Royal Institute of Technology KTH, Sweden

A quartic oscillator

We consider solutions to the eigenvalue problem consisting of the differential equation

$$
\begin{equation*}
H(a, \lambda) \psi \equiv-\frac{d^{2} \psi}{d x^{2}}+\left(a x^{2}+\frac{\lambda}{2} x^{4}\right) \psi=E \psi, \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

and boundary conditions

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \psi(x)=0 \tag{2}
\end{equation*}
$$

Throughout we assume that $a \in \mathbb{R}$ and $\lambda>0$. As is well known, this eigenvalue problem has a discrete spectrum consisting of real eigenvalues $E_{0}<E_{1}<\cdots<E_{k}<\cdots$ with $E_{k} \rightarrow \infty$ as $k \rightarrow \infty$, and all eigenspaces are one-dimensional.
For any (complex) value of E, the differential equation (1) has a unique solution $\psi=\psi(a, \lambda, E ; x)$ with asymptotic behaviour

$$
\psi \sim x^{-1} \exp \left(-\frac{(\lambda / 2)^{1 / 2}}{3} x^{3}-\frac{a}{2(\lambda / 2)^{1 / 2}} x\right), \quad x \rightarrow+\infty
$$

The eigenvalues $E=E_{k}$ of (1)-(2) are precisely those values of E for which ψ also decays as $x \rightarrow-\infty$, which happens if and only if ψ is either even or odd. We let

$$
\psi_{k}(a, \lambda ; x) \equiv \psi\left(a, \lambda, E_{k} ; x\right)
$$

denote the corresponding eigenfunctions. Since ψ_{k} has k real zeros, ψ_{k} is even (odd) if and only if k is even (odd).

A product formula

Recall the standard solution $w(x)=\operatorname{Ai}(x)$ of Airy's equation

$$
\begin{equation*}
\frac{d^{2} w}{d x^{2}}=x w \tag{3}
\end{equation*}
$$

given explicitly by the integral representation

$$
\operatorname{Ai}(x)=\frac{1}{2 \pi i} \int_{\infty e^{-i \pi / 3}}^{\infty e^{i \pi / 3}} \exp \left(\zeta^{3} / 3-\zeta x\right) d \zeta
$$

(Here, the contour of integration consists of two rays emerging from the origin at angles $\pm \pi / 3$.)
Theorem: For $a \in \mathbb{R}, \lambda>0$ and $k=0,1, \ldots$, we have a product formula

$$
\begin{equation*}
\psi_{k}(x) \psi_{k}(y)=\int_{\mathbb{R}} \psi_{k}(z) \mathcal{K}(x, y, z) d z \tag{4}
\end{equation*}
$$

with kernel function

$$
\begin{aligned}
\mathcal{K}(a, \lambda ; x, y, z) \equiv & \lambda^{1 / 3} \\
& \exp \left((\lambda / 2)^{1 / 2} x y z\right) \\
& \times \operatorname{Ai}\left(\frac{\lambda^{1 / 3}}{2}\left(x^{2}+y^{2}+z^{2}\right)+\frac{a}{\lambda^{2 / 3}}\right)
\end{aligned}
$$

Moreover, as long as a $>\lambda^{2 / 3} a_{1}$ with $a_{1}=-2.3381074105 \ldots$ being the first zero of $\operatorname{Ai}(x)$, the kernel function $\mathcal{K}(x, y, z)$ is positive for all $x, y, z \in \mathbb{R}$.
Note that this product formula does not have a non-trivial limit as $\lambda \rightarrow 0$. In other words it is non-perturbative in the sense that it yields no result for the harmonic oscillator case $\lambda=0$.

Interpretations

Such a product formula can be viewed in various ways.
Integral equation: For $m=0,1, \ldots$, the eigenfunction $\psi_{2 m}$ is even and we have $\psi_{2 m}(0) \neq 0$. Setting $x=0$ in the product formula (4), we thus obtain the integral equation

$$
\begin{aligned}
& \psi_{2 m}(0) \psi_{2 m}(y) \\
& \quad=2 \lambda^{1 / 3} \int_{0}^{\infty} \psi_{2 m}(z) \operatorname{Ai}\left(\frac{\lambda^{1 / 3}}{2}\left(x^{2}+y^{2}+z^{2}\right)+\frac{a}{\lambda^{2 / 3}}\right) d z
\end{aligned}
$$

(For the odd eigenfunctions $\psi_{2 m+1}$, a nontrivial result is obtained by differentiating the product formula before setting $x=0$.)

Interpretations (contd.)

Harmonic analysis: The product formula (4) entails a convolution relevant to the eigenfunction transform given (under suitable conditions) by

$$
\hat{f}_{k}=\int_{\mathbb{R}} \psi_{k}(x) f(x) d x, \quad k=0,1
$$

Specifically, letting

$$
(f * g)(z)=\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) g(y) \mathcal{K}(x, y, z) d x d y
$$

we (formally) have

$$
\begin{aligned}
(\widehat{f * g})_{k} & =\int_{\mathbb{R}} \psi_{k}(z)\left(\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) g(y) \mathcal{K}(x, y, z) d x d y\right) d z \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}}\left(\int_{\mathbb{R}} \psi_{k}(z) \mathcal{K}(x, y, z) d z\right) f(x) g(y) d x d y \\
& =\int_{\mathbb{R}} \psi_{k}(x) f(x) d x \int_{\mathbb{R}} \psi_{k}(y) g(y) d y \\
& =\hat{f}_{k} \cdot \hat{g}_{k} .
\end{aligned}
$$

We believe it would be interesting to consider the implications of such a convolution on the harmonic analysis of expansions in the eigenfunctions ψ_{k}.

Sketch of proof

Note that $\psi_{k}(x) \psi_{k}(y)$ satisfies the partial differential equation (PDE)

$$
(H(x)-H(y)) \Psi(x, y)=0
$$

A key ingredient in the proof of the theorem is the observation that also the kernel function $\mathcal{K}(x, y, z)$ satisfies this PDE. More generally, the following proposition can be established by direct computations.
Proposition: Let $w(x)$ be a solution of Airy's equation (3). Then the function
$\mathcal{K}(a, \lambda ; x, y, z) \equiv \exp \left((\lambda / 2)^{1 / 2} x y z\right) w\left(\frac{\lambda^{1 / 3}}{2}\left(x^{2}+y^{2}+z^{2}\right)+\frac{a}{\lambda^{2 / 3}}\right)$
satisfies the identities

$$
H(x) \mathcal{K}(x, y, z)=H(y) \mathcal{K}(x, y, z)=H(z) \mathcal{K}(x, y, z)
$$

These identities and the (formal) self-adjointness of $H(z)$ entail

$$
\begin{aligned}
H(x) \int_{\mathbb{R}} \psi_{k}(z) \mathcal{K}(x, y, z) d z & =\int_{\mathbb{R}} \psi_{k}(z) H(z) \mathcal{K}(x, y, z) d z \\
& =\int_{\mathbb{R}} \mathcal{K}(x, y, z) H(z) \psi_{k}(z) d z \\
& =E_{k} \int_{\mathbb{R}} \psi_{k}(z) \mathcal{K}(x, y, z) d z
\end{aligned}
$$

i.e. the right-hand side of (4) satisfies the differential equation (1). From the asymptotic of $\operatorname{Ai}(x)$ it is readily inferred that it also satisfies the boundary conditions (2). Since all eigenspaces of (1)-(2) are one-dimensional and $\mathcal{K}(x, y, z)$ is invariant under the interchange $x \leftrightarrow y$, we have

$$
\int_{\mathbb{R}} \psi_{k}(z) \mathcal{K}(x, y, z) d z=c_{k} \psi_{k}(x) \psi_{k}(y)
$$

for some constant c_{k}. Finally, computing the asymptotic of the left-hand side and comparing it with the known asymptotic of ψ_{k}, one can show that in fact $c_{k}=1$.

Reference

A detailed account of the results and corresponding proofs sketched above can be found in the following preprint.
M. H. \& E. L. (2013). A product formula for the eigenfunctions of a quartic oscillator. arXiv:1312.3493.

