Characters of the W_{3} algebra

Nicholas J. Iles

King's College London

ICFT 2014
April 12, 2014

Based on hep-th/1307.3771 with G. Watts

The W_{3} algebra

$$
\begin{aligned}
{\left[L_{m}, L_{n}\right]=} & (m-n) L_{m+n}+\delta_{m+n, 0} \frac{c}{12} m\left(m^{2}-1\right) \\
{\left[L_{m}, W_{n}\right]=} & (2 m-n) W_{m+n} \\
{\left[W_{m}, W_{n}\right]=} & (m-n)\left[\frac{1}{15}(m+n+3)(m+n+2)-\frac{1}{6}(m+2)(n+2)\right] L_{m+n} \\
& \quad+\beta(m-n) \Lambda_{m+n}+\delta_{m+n, 0} \frac{c}{360} m\left(m^{2}-1\right)\left(m^{2}-4\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\Lambda_{n}=\sum_{p=-\infty}^{\lfloor(n-1) / 2\rfloor} L_{p} L_{n-p}+\sum_{p=\lceil n / 2\rceil}^{\infty} L_{n-p} L_{p}+\gamma(n) L_{n}, \\
\beta=\frac{16}{22+5 c}, \quad \text { and } \quad \gamma(n)= \begin{cases}-\frac{1}{20}\left(n^{2}-4\right) & n \text { even } \\
-\frac{1}{20}\left(n^{2}-9\right) & n \text { odd }\end{cases}
\end{gathered}
$$

Null states and modules

- Highest-weight state $|h, w\rangle$, descendant states $L_{-1}|h, w\rangle, W_{-1}|h, w\rangle$, etc.
- Verma module V :

Level 0	$\|h, w\rangle$
Level 1	$L_{-1}\|h, w\rangle, W_{-1}\|h, w\rangle$
Level 2	$L_{-2}\|h, w\rangle, W_{-2}\|h, w\rangle$, $L_{-1}^{2}\|h, w\rangle, W_{-1}^{2}\|h, w\rangle, L_{-1} W_{-1}\|h, w\rangle$

- A descendant state $|N\rangle$ is null if $L_{n}|N\rangle=0$ for all $n>0$.
- Irreducible module: $L=V /\{|N\rangle\}$

$$
\mathcal{O}_{m, n}^{L}=\sum_{r, s=-\infty}^{\infty} \sum_{\omega \in \mathbb{W}\left(a_{2}\right)}(-1)^{l(\omega)} \mathcal{O}_{\omega(m, n)+p r \alpha_{1}+p s \alpha_{2}}^{V}
$$

Characters

Virasoro partition function on a torus ($q=\exp 2 \pi i \tau$):

$$
Z=\operatorname{Tr}_{\mathcal{H}}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{c}{24}}\right)=\sum_{h, \bar{h}} N_{h, \bar{h}} \chi_{h}^{L_{V i r}} \chi_{\bar{h}}^{L_{V i r}}
$$

where the Virasoro character is

$$
\chi^{M_{V i r}}=\operatorname{Tr}_{M_{V i r}}\left(q^{L_{0}-\frac{c}{24}}\right) .
$$

Characters

Virasoro partition function on a torus ($q=\exp 2 \pi i \tau)$:

$$
Z=\operatorname{Tr}_{\mathcal{H}}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{c}{24}}\right)=\sum_{h, \bar{h}} N_{h, \bar{h}} \chi_{h}^{L_{V i r}} \chi_{\bar{h}}^{L_{V i r}}
$$

where the Virasoro character is

$$
\chi^{M_{V i r}}=\operatorname{Tr}_{M_{V i r}}\left(q^{L_{0}-\frac{c}{24}}\right) .
$$

W_{3} partition function:

$$
Z=\operatorname{Tr}_{\mathcal{H}}\left(e^{2 \pi i z W_{0}} q^{L_{0}-\frac{c}{24}} \cdot \text { barred }\right)=\sum_{h, w ; \bar{h}, \bar{w}} N_{h, w ; \bar{h}, \bar{w}} \chi_{h, w}^{L} \chi_{\bar{h}, \bar{w}}^{L}
$$

with W_{3} character

$$
\begin{aligned}
\chi^{M} & =\operatorname{Tr}_{M}\left(e^{2 \pi i z W_{0}} q^{L_{0}-\frac{c}{24}}\right) \\
& =\operatorname{Tr}_{M}\left(q^{L_{0}-\frac{c}{24}}\right)+2 \pi i z \operatorname{Tr}_{M}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)+\frac{(2 \pi i z)^{2}}{2} \operatorname{Tr}_{M}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)+\ldots
\end{aligned}
$$

Outline

- Introduction
- The W_{3} algebra
- Null states and modules
- Characters
- Character calculations
- 'Brute force'
- Null states
- Exact results
- Modular transformation

'Brute force' results

Example: contribution of the state $L_{-2}|h, w\rangle$ to $\operatorname{Tr}\left(W_{0}\right)$

$$
W_{0} L_{-2}|h, w\rangle=\left(L_{-2} W_{0}+4 W_{-2}\right)|h, w\rangle=w L_{-2}|h, w\rangle+4 W_{-2}|h, w\rangle
$$

'Brute force' results

Example: contribution of the state $L_{-2}|h, w\rangle$ to $\operatorname{Tr}\left(W_{0}\right)$

$$
W_{0} L_{-2}|h, w\rangle=\left(L_{-2} W_{0}+4 W_{-2}\right)|h, w\rangle=w L_{-2}|h, w\rangle+4 W_{-2}|h, w\rangle
$$

Results:

$$
\begin{aligned}
\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right) & =q^{-\frac{c}{24}}\left(w q^{h}+2 w q^{h+1}+5 w q^{h+2}+10 w q^{h+3}+20 w q^{h+4}+\ldots\right) \\
\operatorname{Tr}_{V}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right) & =q^{-\frac{c}{24}}\left(w^{2} q^{h}+\left(2 w^{2}+\frac{4}{22+5 c}(32 h-c+2)\right) q^{h+1}+\ldots\right) \\
\operatorname{Tr}_{V}\left(W_{0}^{3} q^{L_{0}-\frac{c}{24}}\right) & =q^{-\frac{c}{24}}\left(w^{3} q^{h}+\left(2 w^{3}+\frac{12 w}{22+5 c}(32 h-c+2)\right) q^{h+1}+\ldots\right)
\end{aligned}
$$

Results from null states

Null state condition: $\operatorname{Tr}_{L}\left(N_{0} q^{L_{0}-\frac{c}{24}}\right)=0$

Results from null states

Null state condition: $\operatorname{Tr}_{L}\left(N_{0} q^{L_{0}-\frac{c}{24}}\right)=0$
Example:

$$
\begin{aligned}
\operatorname{Tr}_{L}\left(L_{-p} L_{p} q^{L_{0}-\frac{c}{24}}\right) & =q^{p} \operatorname{Tr}_{L}\left(L_{p} L_{-p} q^{L_{0}-\frac{c}{24}}\right) \\
& =q^{p} \operatorname{Tr}_{L}\left(L_{-p} L_{p} q^{L_{0}-\frac{c}{24}}\right)+q^{p} \operatorname{Tr}_{L}\left(\left[L_{p}, L_{-p}\right] q^{L_{0}-\frac{c}{24}}\right) \\
& =\frac{q^{p}}{1-q^{p}} \operatorname{Tr}_{L}\left(\left[2 p L_{0}+\frac{c}{12} p\left(p^{2}-1\right)\right] q^{L_{0}-\frac{c}{24}}\right)
\end{aligned}
$$

i.e. if $N_{0}=\sum_{\mathrm{p} \geq 1} L_{-p} L_{p}$, then, using $D:=q \frac{d}{d q}+\frac{c}{24}=L_{0}$,

$$
\begin{aligned}
0 & =2 \sum_{\mathrm{p} \geq 1} \frac{p q^{p}}{1-q^{p}} \operatorname{Tr}_{L}\left(L_{0} q^{L_{0}-\frac{c}{24}}\right)+\frac{c}{12} \sum_{\mathrm{p} \geq 1} \frac{\left(p^{3}-p\right) q^{p}}{1-q^{p}} \operatorname{Tr}_{L}\left(q^{L_{0}-\frac{c}{24}}\right) \\
\Rightarrow \quad 0 & =\left[2 \sum_{\mathrm{p} \geq 1} \frac{p q^{p}}{1-q^{p}} q \frac{d}{d q}+\frac{c}{12} \sum_{\mathrm{p} \geq 1} \frac{p^{3} q^{p}}{1-q^{p}}\right] \operatorname{Tr}_{L}\left(q^{L_{0}-\frac{c}{24}}\right)
\end{aligned}
$$

Results from null states

Three-state Potts model: $c=4 / 5$, and

$$
(h, w)=(0,0),\left(\frac{1}{15}, \pm \frac{1}{9} \sqrt{\frac{2}{195}}\right),\left(\frac{2}{3}, \pm \frac{2}{9} \sqrt{\frac{26}{15}}\right),\left(\frac{2}{5}, 0\right)
$$

At level seven, this model has a null state with zero mode

$$
N_{0}^{(7)}=-\frac{27}{121} L_{0}^{2} W_{0}+\frac{9}{55} L_{0} W_{0}-\frac{6}{605} W_{0}+\ldots
$$

Substituting this into the null state condition gives

$$
0=\left[q^{2} \frac{d^{2}}{d q^{2}}+\left(1-\frac{2}{3} E_{2}\right) q \frac{d}{d q}+\left(\frac{1}{12} E_{2}^{2}-\frac{14}{225} E_{4}\right)\right] \operatorname{Tr}_{L}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)
$$

This has solutions

$$
\begin{aligned}
\operatorname{Tr}_{L}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right) & = \pm \frac{1}{9} \sqrt{\frac{2}{195}} q^{\frac{1}{15}-\frac{c}{24}}\left(1+46 q+74 q^{2}+192 q^{3}-121 q^{4}+\ldots\right) \\
\operatorname{Tr}_{L}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right) & = \pm \frac{2}{9} \sqrt{\frac{26}{15}} q^{\frac{2}{3}-\frac{c}{24}} \frac{1}{26}\left(26+143 q+142 q^{2}+214 q^{3}-22 q^{4}+\ldots\right)
\end{aligned}
$$

Results from null states

Similarly, there is a level six null state with zero mode

$$
N_{0}^{(6)}=W_{0}^{2}-\frac{95}{117} L_{0}^{3}+\frac{5}{13} L_{0}^{2}-\frac{14}{585} L_{0}+\ldots
$$

that leads to $\operatorname{Tr}_{L}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)=\mathcal{D}\left\{\operatorname{Tr}_{L}\left(q^{L_{0}-\frac{c}{24}}\right)\right\}$, which we can solve:
$\operatorname{Tr}_{L}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)=q^{-\frac{c}{24}}\left(12 q^{3}+\frac{4352}{65} q^{4}+\frac{3064}{13} q^{5}+\frac{50864}{65} q^{6}+\ldots\right)$
$\operatorname{Tr}_{L}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)=q^{\frac{1}{15}-\frac{c}{24}}\left(\frac{2}{15795}+\frac{4232}{15795} q+\frac{22868}{3159} q^{2}+\frac{227216}{5265} q^{3}+\ldots\right)$
$\operatorname{Tr}_{L}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)=q^{\frac{2}{3}-\frac{c}{24}}\left(\frac{104}{1215}+\frac{3146}{1215} q+\frac{365224}{15795} q^{2}+\frac{279764}{3159} q^{3}+\ldots\right)$
$\operatorname{Tr}_{L}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)=q^{\frac{2}{5}-\frac{c}{24}}\left(\frac{28}{13} q+\frac{256}{13} q^{2}+\frac{6872}{65} q^{3}+\frac{20992}{65} q^{4}+\frac{61872}{65} q^{5}+\ldots\right)$

Exact results for Verma modules

- For $\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$, we need to consider

$$
W_{0} \mathcal{P}|h, w\rangle=\left[W_{0}, \mathcal{P}\right]|h, w\rangle+w \mathcal{P}|h, w\rangle
$$

The W_{3} algebra - a reminder

$$
[W, A B C D \ldots]=[W, A] B C D \ldots+A[W, B] C D \ldots+A B[W, C] D \ldots+\ldots
$$

$$
\begin{aligned}
{\left[L_{m}, L_{n}\right]=} & (m-n) L_{m+n}+\delta_{m+n, 0} \frac{c}{12} m\left(m^{2}-1\right) \\
{\left[L_{m}, W_{n}\right]=} & (2 m-n) W_{m+n} \\
{\left[W_{m}, W_{n}\right]=} & (m-n)\left[\frac{1}{15}(m+n+3)(m+n+2)-\frac{1}{6}(m+2)(n+2)\right] L_{m+n} \\
& +\beta(m-n) \Lambda_{m+n}+\delta_{m+n, 0} \frac{c}{360} m\left(m^{2}-1\right)\left(m^{2}-4\right) \\
\Lambda_{n}= & \sum_{p=-\infty}^{\lfloor(n-1) / 2\rfloor} L_{p} L_{n-p}+\sum_{p=\lceil n / 2\rceil}^{\infty} L_{n-p} L_{p}+\gamma(n) L_{n}
\end{aligned}
$$

Exact results for Verma modules

- For $\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$, we need to consider

$$
W_{0} \mathcal{P}|h, w\rangle=\left[W_{0}, \mathcal{P}\right]|h, w\rangle+w \mathcal{P}|h, w\rangle
$$

Exact results for Verma modules

- For $\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$, we need to consider

$$
W_{0} \mathcal{P}|h, w\rangle=\left[W_{0}, \mathcal{P}\right]|h, w\rangle+w \mathcal{P}|h, w\rangle
$$

and so we find

$$
\begin{aligned}
\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right) & =w q^{h-\frac{c}{24}} \prod_{p \geq 1} \frac{1}{\left(1-q^{p}\right)^{2}}=\frac{w q^{h-\frac{c}{24}}}{\phi(q)^{2}} \\
& =q^{h-\frac{c}{24}}\left(w+2 w q+5 w q^{2}+10 w q^{3}+20 w q^{4}+\ldots\right)
\end{aligned}
$$

Exact results for Verma modules

- For $\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$, we need to consider

$$
W_{0} \mathcal{P}|h, w\rangle=\left[W_{0}, \mathcal{P}\right]|h, w\rangle+w \mathcal{P}|h, w\rangle
$$

and so we find

$$
\begin{aligned}
\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right) & =w q^{h-\frac{c}{24}} \prod_{p \geq 1} \frac{1}{\left(1-q^{p}\right)^{2}}=\frac{w q^{h-\frac{c}{24}}}{\phi(q)^{2}} \\
& =q^{h-\frac{c}{24}}\left(w+2 w q+5 w q^{2}+10 w q^{3}+20 w q^{4}+\ldots\right)
\end{aligned}
$$

- For $\operatorname{Tr}_{V}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)$, things are slightly more complicated:

$$
W_{0}^{2} \mathcal{P}|h, w\rangle=w^{2} \mathcal{P}|h, w\rangle+2 w\left[W_{0}, \mathcal{P}\right]|h, w\rangle+\left[W_{0},\left[W_{0}, \mathcal{P}\right]\right]|h, w\rangle
$$

Exact results for Verma modules

$$
\begin{aligned}
& \operatorname{Tr}_{V}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right) \\
= & \frac{q^{h-\frac{c}{24}}}{\phi(q)^{2}}\left[\begin{array}{c}
w^{2}+\frac{4}{15} \sum_{\mathrm{p} \geq 1} \frac{p^{2}\left(p^{2}-4\right) q^{p}}{\left(1-q^{p}\right)^{2}} \\
+4 \beta \sum_{\mathrm{p} \geq 1} \frac{p^{2} q^{p}}{\left(1-q^{p}\right)^{2}}\left[2 h+\gamma(p)-2 \frac{p q^{2 p}}{1-q^{2 p}}+4 \sum_{k=1}^{p} \frac{k q^{k}}{1-q^{k}}\right] \\
+8 \beta \sum_{\mathrm{p} \geq 1} \frac{p q^{p}}{1-q^{p}} \sum_{s>p / 2}^{p-1} \frac{q^{s}}{1-q^{s}}\left[\frac{p(2 s-p)}{1-q^{p}}+\frac{s(3 s-2 p)}{1-q^{s}}\right]
\end{array}\right]
\end{aligned}
$$

Summary

- A series expansion for $\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found by brute force. $\operatorname{Tr}_{L}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found as a series expansion for the Potts model.
$\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found exactly for any model.
\rightarrow These all agree!

Summary

- A series expansion for $\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found by brute force.
$\operatorname{Tr}_{L}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found as a series expansion for the Potts model.
$\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found exactly for any model.
\rightarrow These all agree!
- A series expansion for $\operatorname{Tr}_{V}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)$ was found by brute force.
$\operatorname{Tr}_{L}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)$ was found exactly and as a series expansion for the Potts model.
$\operatorname{Tr}_{V}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)$ was found exactly for any model.
\rightarrow These all agree!

Summary

- A series expansion for $\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found by brute force. $\operatorname{Tr}_{L}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found as a series expansion for the Potts model.
$\operatorname{Tr}_{V}\left(W_{0} q^{L_{0}-\frac{c}{24}}\right)$ was found exactly for any model.
\rightarrow These all agree!
- A series expansion for $\operatorname{Tr}_{V}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)$ was found by brute force. $\operatorname{Tr}_{L}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)$ was found exactly and as a series expansion for the Potts model.
$\operatorname{Tr}_{V}\left(W_{0}^{2} q^{L_{0}-\frac{c}{24}}\right)$ was found exactly for any model.
\rightarrow These all agree!
- Higher powers $\operatorname{Tr}_{V}\left(W_{0}^{n} q^{L_{0}-\frac{c}{24}}\right)$ were found as series expansions for any model.

Thank you!

