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Yangians and Twisted Yangians

Yangians we first introduced in Faddeev’s Leningrad school concerning
quantum inverse scattering method in late 70s and early 80s. Named by
V.G.Drinfeld to honour C.N.Yang [Drinfeld 85, 86]

Twisted Yangians appeared in the work of G.I.Olshanski in ’91 and were
generalized by Delius-MacKay-Short ’01, MacKay ’02 & ’03

Plan of the talk:

• Brief review
• Construction of Yangian in Drinfeld Basis (DI)
• Construction of Twisted Yangian in Drinfeld Basis (DI)



Drinfel’d Basis (DI) [Drinfeld’85,86]

• Yangian Y (g) is a flat deformation of U(g[u]). It is a Hopf algebra generated
by J(x), x ∈ g satisfying:

[xa, xb] = f c
ab xc , [xa, J(xb)] = J([xa, xb]) = f c

ab J(xc )

[J(xa), J([xb, xc ])] + [J(xb), J([xc , xa])] + [J(xc ), J([xa, xb])] = ~2β ijk
abc{xi , xj , xk}

[[J(xa), J(xb)], J([xc , xd ])] + [[J(xc ), J(xd )], J([xa, xb])] = ~2γ ijk
abcd{xi , xj , J(xk )}

• Coalgebra structure is:

∆(x) = x ⊗ 1 + 1⊗ x , ∆(J(x)) = J(x)⊗ 1 + 1⊗ J(x) +
~
2 [x ⊗ 1,Ω]

+ Minimal realization
+ Unique form for any simple g
+ Very simple presentation, often used in theoretical physics
+ Simple evaluation modules for Y (slN)

− Non-trivial higher level generators
− Complicated higher-order relations
− Not well suitable for representation theory



Drinfel’d New presentation (DII) [Drinfeld’88]

• The Yangian Y (g) is isomorphic to the algebra generated by the elements
x±ir , hir for i ∈ I, r ∈ Z≥0 subject to the relations

[hir , hjs ] = 0, [hi0, x±jr ] = ±(αi , αj )x±jr , [x +
ir , x−js ] = δij hi,r+s

[hi,r+1, x±js ]− [h±ir , x
±
j,s+1] = ±~(αi , αj )

2 (h±ir x±js + x±js h±ir )

[x±i,r+1, x
±
js ]− [x±ir , x

±
j,s+1] = ±~(αi , αj )

2 (x±ir x±js + x±js x±ir )∑
σ∈Sn

[x±irσ(1)
, [· · · , [x±irσ(n)

, x±js ] · · · ]] = 0 for i 6= j and n = 1− aij

+ Well suited for representation theory
+ Well defined generators and relations for any simple g
+ Loved by mathematicians

− No explicit form of coproduct ∆(x±i,r ) = . . . ∆(hi,r ) = . . .
− Has complicated form of non-simple root vectors



RTT-presentation (FRT) [Fadeev-Reshetikhin-Takhtajan’89]

• The Yangian Y (g) is isomorphic to the algebra generated by the elements t(r)
ij

for 0 ≤ i , j ≤ N and r ∈ Z≥0, satisfying:

R(u − v) T1(u) T2(v) = T2(v) T1(u) R(u − v),
where

T1(u) =

n∑
i,j=−n

Eij ⊗ 1⊗ tij (u), T2(u) =

n∑
i,j=−n

1⊗ Eij ⊗ tij (u),

tij (u) =

∞∑
r=0

t(r)
ij u−r ∈ Y (g)[[u−1]], t(0)

ij = δij

• Coalgebra structure is

∆(tij (u)) =

N∑
k=0

tik (u)⊗ tkj (u)

+ Well suited for representation theory
+ Well defined generators and relations
+ Good to treat central elements

− Coproduct has complicated concrete realization∗
− Concrete realization of Y (g) depends on R-matrix R(u)
− Lots of technical difficulties∗



Twisted Yangian

• Twisted Yangian Y (g, h) is a flat deformation of U(g[u]ρ)

• It is a coideal subalgebra of Y (g) introduced by G.I.Olshanski in ’92 for slN
and generalized to any simple g by Delius-MacKay-Short in ’01 playing a major
role in quantum integrable models with open boundaries

∆(Y (g, h)) = Y (g)⊗ Y (g, h)

• There is a huge family of Y (g, h) that is in a 1-to-1 correspondence with
symmetric pairs (g, h) of simple complex Lie algebras g = h⊕m satifying

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h

• RTT-type presentation for symmetric pairs of simple complex Lie algebras:

AI : (slN , soN ),AII : (slN , spN/2) Olshanski’92, Molev-Nazarov-Olshanski’96

AIII : (slN , slk ⊕ sll ) Molev-Ragoucy’02

CI : (spN , glN ),CII : (spN , spp ⊕ spq),DIII : (soN , glN/2)

BDI : (soN , sop ⊕ soq),C0 : (spN , spN ),BD0 : (soN , soN ) [Guay-VR’14: to appear]

• Generic twisted Yangians Y (g, h) for any (g, h) Delius-MacKay-Short’01, MacKay’02 ’03

Arnoudon, Avan, Baseilhac, Crampe, Doikou, Frappat, Khoroshkin, Mudrov, Nepomechie, Sklyanin, Sorba...



RA-presentation (RTT)

• Twisted Yangian Y (g, h) is isomorphic to the algebra generated by the
elements s(r)

ij for 0 ≤ i , j ≤ N and r ∈ Z≥0, satisfying:

R(u − v) S1(u) R(u + v) S2(v) = S2(v) R(u + v) S1(u) R(u − v)

and some additional symmetry relations S(U) = f (S(U)), where

S(u) =

N∑
i,j=0

Eij ⊗ sij (u), sij (u) =

∞∑
r=0

s(r)
ij u−r , s(0)

ij = bij

• Coideal structure is

∆(sij (u)) =

N∑
k,l=0

tik (u) θ(tjl (u))⊗ skl (u)

+ Well suited for representation theory
+ Well defined generators and relations
+ Good to treat central elements

− Coproduct has complicated concrete realization
− Requires additional symmetry relations for each (g, h)
− Defining relations depend on the type of symmetric pair,

R-matrix R(u) and bij



Drinfeld Basis (DI)
• Twisted Yangian Y (g, h) is isomorphic to the algebra generated by elements

x ∈ h and B(y) for y ∈ m, satisfying:

[xα, xβ ] = f γ
αβ xγ , [xα,B(yp)] = B([xα, yp]) = g q

αp B(yq)

[B(yp),B(yq)] +
1

c̄(α)
w α

pq w rs
α [B(yr ),B(ys)] = ~2Λλµνpq {xλ, xµ, xν}

[[B(yp),B(yq)],B(yr )] +
2
cg
κtu
m w α

pq g s
rα [[B(ys),B(yt)],B(yu)] = ~2Υλµu

pqr {xλ, xµ,B(yu)}

• Twisted Yangian Y (g, g) is isomorphic to the algebra generated by elements
G(x), x ∈ g satisfying:

[xa, xb] = α c
ab xc , [xa,G(xb)] = G([xa, xb]) = α c

ab G(xc )

[G(xa),G([xb, xc ])] + [G(xb),G([xc , xa])] + [G(xc ),G([xa, xb])]

= ~2 Ψijk
abc {xi , xj ,G(xk )}+ ~4 (Φijk

abc{xi , xj , xk}+ Φ̄ijklm
abc {xi , xj , xk , xl , xm})

+ Minimal realization
+ Unique form for any simple g
+ Very simple presentation, good for theoretical physics

− Non-trivial higher level generators and relations
− Not well suitable for representation theory



Yangian Y (g)



Preliminaries: Lie algebra and Lie bi-algebra

• Let g be a complex simple Lie algebra of dim(g) = n with a basis {xa} and a
Lie bracket

[ , ] : g⊗ g→ g, [xa, xb] = α c
ab xc

Let ηab be the Killing form and ηab its inverse:

(xa, xb)g = ηab = α d
ac α

c
bd , α d

ab ηdc = αabc , ηabη
bc = δ c

a

Let Cg = ηabxaxb be the Casimir operator and cg be its eigenvalue in the
adjoint representation, then

cg δ
d

c = ηabα e
ac α

d
be = α eb

c α d
be , α bc

a [xc , xb] = cg xa

• A Lie bi-algebra structure on g is a skew-symmetric linear map

δ : g→ g⊗ g

the cocommutator, such that δ∗ : g∗ ⊗ g∗ → g∗ is a Lie bracket on g∗ and δ is
a 1-cocycle

δ([x , y ]) = x .δ(y)− y .δ(x)

where dot denotes the adjoint action on g∗ ⊗ g∗.



Preliminaries: Half-loop Lie algebra

• Let L+ be a half-loop Lie algebra generated by elements {x (k)
a } with k ∈ Z≥0.

It is a graded algebra with deg(x (k)
a ) = k and the defining relations

[x (k)
a , x (l)

b ] = α c
ab x (k+l)

c

This algebra can be identified with the set of polynomial maps f : C→ g using
the Lie algebra isomorphism L+ ∼= g[u] = g⊗ C[u] with x (k)

a ∼= xa ⊗ uk .

• L+ is isomorphic to an algebra generated by xa, J(xb) satisfying (µ, ν ∈ C)

[xa, xb] = α c
ab xc , J(µxa + νxb) = µJ(xa) + νJ(xb), [xa, J(xb)] = α c

ab J(xc )

[J(xa), J([xb, xc ])] + [J(xb), J([xc , xa])] + [J(xc ), J([xa, xb])] = 0
[[J(xa), J(xb)], J([xc , xd ])] + [[J(xc ), J(xd )], J([xa, xb])] = 0

• The isomorphism with the standard loop basis is given by the map

xa 7→ x (0)
a , J(xa) 7→ x (1)

a

• Next step: we want to construct a Lie bi-algebra structure δ : L+ → L+ ⊗ L+.



Preliminaries: Manin triple
• A Manin triple is a triple of Lie bi-algebras (p, p+, p−) such that

• p+ and p− are Lie subalgebras of p
• p = p+ ⊕ p− as a vector space
• ( , )p is isotopic for p± (i.e. (p±, p±)p = 0)
• (p+)∗ ∼= p−

• For any g the is a 1-to-1 correspondence between Lie bi-algebra structures on g
and the Manin triple (p, p+, p−) such that p+ = g.

• Let L = g[[u±1]] and L− = g[[u−1]]. Then (L,L+,L−) is a Manin triple.

• The cocomutator δ on L+ is deduced from the duality relation
(δ(x), y ⊗ z)L = (x , [y , z])L where (x , y)L = (x , y)g δdeg(x)+deg(y)+1,0

For xa ∈ L+, deg(xa) = 0 we find

(δ(xa), y ⊗ z)L = 0 =⇒ δ(xa) = 0.

since deg(y ⊗ z) < 1 for any y , z ∈ L−, and for J(xa) ∈ L+, deg(J(xa)) = 1
we have

(δ(J(xa)), α cd
b x (−1)

d ⊗ x (−1)
c )L = cg ηab

=⇒
δ(J(xa)) = α lk

a xk ⊗ xl = [xa ⊗ 1,Ωg], Ωg = ηabxa ⊗ xb



Preliminaries: Quantization [Drinfeld’85 ’86]
• A Hopf algebra is a sextuple (A, µ, ı,∆, ε, S) where

product µ : A⊗ A→ A unit ı : C→ A
coproduct ∆ : A→ A⊗ A couint ε : A→ C

antipode S : A→ A

such that (A, µ, ı) is an algebra and (A,∆, ε) is a coalgebra.

• Let (L+, δ) be a Lie bi-algebra. We say that a quantized universal enveloping
algebra (U~(L+),∆~) is a quantization of (L+, δ), or that (L+, δ) is the
quasi-classical limit of (U~(L+),∆~), if it is a free C[[~]] module and

• U~(L+) / ~U~(L+) is isomorphic to U(L+) as a Hopf algebra
• for any x ∈ L+ and any X ∈ U~(L+) equal to x (mod ~) one has(

∆~(X)− σ ◦∆~(X)
)
/~ ∼ δ(x) (mod ~)

with σ the permutation map σ(a ⊗ b) = b ⊗ a.

• The simplest solution of the quantization conditions for xa,J (xa) ∈ U~(L+)
satisfying co-associativity property (∆⊗ id) ◦∆ = (id ⊗∆) ◦∆ is:

∆h(xa) = xa ⊗ 1 + 1⊗ xa

∆h(J (xa)) = J (xa)⊗ 1 + 1⊗ J (xa) +
~
2 [xa ⊗ 1,Ωg]



Yangian [Drinfeld’85 ’86]

Let g be a finite dimensional complex simple Lie algebra. There is, up to
isomorphism, a unique homogeneous quantization Y(g) := U~(g[u]) of (g[u], δ)
generated by elements xa, J (xa) satisfying:

[xa, xb] = α c
ab xc , [xa,J (xb)] = α c

ab J (xc ),

[J (xa),J ([xb, xc ])] + [J (xb),J ([xc , xa])] + [J (xc ),J ([xa, xb])]

= 1
4~

2β ijk
abc {xi , xj , xk}

[[J (xa),J (xb)],J ([xc , xd ])] + [[J (xc ),J (xd )],J ([xa, xb])]

= 1
4~

2γ ijk
abcd {xi , xj ,J (xk )}

where
β ijk

abc = α il
a α

jm
b α kn

c αlmn, γ ijk
abcd = α e

cd β
ijk
abe + α e

ab β
ijk
cde

for all xa ∈ g and λ, µ ∈ C. The antipode is

S(xa) = −xa, S(J (xa)) = −J (xa) +
1
4 ~ cgxa.

The counit is given by ε~(xa) = ε~(J (xa)) = 0.



Twisted Yangian Y (g, h)



Preliminaries: Symmetric pair decomposition
• Let θ be an involution of g. Then g can be decomposed as g = h⊕m with
θ(h) = h and θ(m) = −m satisfying

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h

here h is a (semi) simple Lie algebra, such that (at most) h = a⊕ b⊕ k.

• The pair (g, h) is called a symmetric pair

• Let Xα ∈ h, Yp ∈ m, and set (f γ
αβ = 0 for α 6= β)

[Xα,Xβ ] = f γ
αβ Xγ , [Xα,Yp] = g q

αp Yq, [Yp ,Yq] = w α
pq Xα

• The Casimir operator Cg in this basis decomposes as (cg = ca + cb + cm + cz )

Cg = CX + CY = καβXαXβ + (κm)pqYpYq

CX = C + C ′ + Cz = (κa)ij Xi Xj + (κb)i′j′Xi′Xj′ + (κk)
zz Xz Xz

• The following relations hold

f βν
α [Xν ,Xβ ] = c(α)Xα, g pα

q [Xα,Yp] =
cg
2 Yq, w qp

γ [Yp ,Yq] = c̄(γ)Xγ

f µν
α f β

νµ = c(α) δ
β
α , g rα

p g q
αr =

cg
2 δ q

p , w qp
α w β

pq = c̄(α) δ
β
α



Preliminaries: Twisted half-loop Lie algebra I

• Let us extend the involution θ of g to the whole of L+ ' g[u] as follows

θ(x (k)
a ) = (−1)kθ b

a x (k)
b

• We write L+ in terms of the elements {X (k)
α ,Y (k)

q } satisfying

[X (k)
α ,X (l)

β ] = f γ
αβ X (k+l)

γ [X (k)
α ,Y (l)

p ] = g q
αp Y (k+l)

q [Y (k)
p ,Y (l)

q ] = w α
pq X (k+l)

α

• The twisted half-loop Lie algebra H+ ∼= g[u]θ is a subalgebra of L+ invariant
under θ, namely H+ = {x ∈ L+ | θ(x) = x}. We have:

L+ = H+ ⊕M+, H+ = {X (2k)
α ,Y (2k+1)

q }, M+ = {X (2k+1)
α ,Y (2k)

q }



Preliminaries: Twisted half-loop Lie algebra II
• Let rank(g) ≥ 2. Then H+ ' g[u]θ is isomorphic to an algebra generated by

elements {Xα,B(Yp)} satisfying

[Xα,Xβ ] = f γ
αβ Xγ , [Xα,B(Yp)] = g q

αp B(Yq)

[B(Yp),B(Yq)] +
1

c̄(α)
w α

pq w rs
α [B(Yr ),B(Ys)] = 0

[[B(Yp),B(Yq)],B(Yr )] +
2
cg
κtu
m w α

pq g s
rα [[B(Ys),B(Yt)],B(Yu)] = 0

The isomorphism with the standard twisted half-loop basis is given by the map

Xα 7→ X (0)
α , B(Yp) 7→ Y (1)

p

• Let rank(g) ≥ 2 and m = {0}. Then H+ ' g[u2] is isomorphic to an algebra
generated by elements {xi ,G(xj )} satisfying

[xi , xj ] = α k
ij xk , [xi ,G(xj )] = α k

ij G(xk )

[G(xi ),G([xj , xk ])] + [G(xj ),G([xk , xi ])] + [G(xk ),G([xi , xj ])] = 0

The isomorphism with the standard half-loop basis is given by the map

xi 7→ x (0)
i , G(xi ) 7→ x (2)

i



Preliminaries: Lie bi-ideal and twisted Manin triple I [Belliard-Crampe’12]

• The anti-invariant Manin triple twist φ of (L,L+,L−) is an automorphism of L
satisfying:

• φ is an involution;
• φ(L±) = L±;
• (φ(x), y)L = −(x , φ(y))L for all x , y ∈ L+.

• The twist φ gives symmetric pair decomposition of the Manin triple (L,L+,L−)

L = H⊕M, L± = H±⊕M± with φ(H±) = H±, φ(M±) = −M±

From the anti-invariance of φ for ( , )L it follows

(H−,H+)L = (M−,M+)L = 0 and (H±)∗ ∼=M∓

• The linear map τ : H+ →M+ ⊗H+ is a left Lie bi-ideal structure for the
couple (H+,M+) if it is the dual of the following action of H− on M−,

τ∗ : H− ⊗M− → M−, (1)
x ⊗ y 7→ [x , y ]L− ,

for all x ∈ H− and y ∈M−.



Preliminaries: Lie bi-ideal and twisted Manin triple II [Belliard-Crampe’12]

• The Lie bi-ideal structure of (L+,H+), τ : H+ →M+ ⊗H+ is given by

θ 6= id : τ(Xα) = 0, τ(B(Yp)) = [Yp ⊗ 1,Ωh], Ωh = καβXα ⊗ Xβ
θ = id : τ(xa) = 0, τ(G(xa)) = [J(xa)⊗ 1,Ωg]

• Let θ 6= id . For X (0)
α = Xα we have (Xα, [y , z])L = 0 for all y ∈ H−, z ∈M−

giving
τ(Xα) = 0.

For Y (1)
p = B(Yp) we have

(B(Yp),Y (−2)
q )L = (κm)pq, Y (−2)

q = 2 c−1
g g αp

q [Y (−1)
p ,X (−1)

α ]

Then
(τ(B(Yp)), g rα

q Y (−1)
r ⊗ X (−1)

α )L =
cg
2 (κm)pq.

Consider an ansatz τ(B(Yp)) = v βs
p Ys ⊗ Xβ . Then we must have

v αs
p gqsα =

cg
2 (κm)pq giving τ(B(Yp)) = g αs

p Ys ⊗ Xα = [Yp ⊗ 1,Ωh].

• The Lie bi-ideal structure for the θ = id case follows from the pairing
(G(xa), x (−3)

b )L = (κg)ab and using similar arguments as above



Preliminaries: Co-ideal subalgebra

• Let A = (A, µ, η,∆, ε) be a bi-algebra. Then B = (B,m, i , , ε) is a left
coideal subalgebra of A if:

1. the triple (B,m, i), where m is the multiplication and i is the unit, is an
algebra;

2. B is a subalgebra of A, i.e. there exists an injective homomorphism
ϕ : B → A;

3. coaction is a coideal map : B → A⊗ B
4. the following identities hold

(∆⊗ id) ◦ = (id ⊗ ) ◦

(id ⊗ ϕ) ◦ = ∆ ◦ ϕ
5. ε : B → C is the counit.

• The identities above are called coideal-coassoctivity, it is an analogue of
coassociativity for coideal algebras, and coideal-compatibility



Preliminaries: Quantization

• Let (L+, δ) be a Lie bi-algebra and (H+, τ) be a left Lie bi-ideal of (L+, δ).
We say that a left coideal subalgebra (U~(L+,H+), ~) is a quantization of
(H+, τ), or that (H+, τ) is the quasi-classical limit of (U~(L+,H+), ~),
if it is a free C[[~]] module and:

1. (U~(L+),∆~) is a quantization of (L+, δ)

2. U~(L+,H+)/ ~U~(L+,H+) is isomorphic to U(H+) as a Lie algebra
3. (U~(L+,H+), ~) is a left coideal subalgebra of (U~(L+),∆~)

4. for any x ∈ H+ and any X ∈ U~(L+,H+) equal to x (mod ~) one has(
~(X)− (ϕ(X)⊗ 1 + 1⊗ X)

)
/~ ∼ τ(x) (mod ~)

with ϕ the natural embedding U~(L+,H+) ↪→ U~(L+)



Preliminaries: Coideal map
• Let θ 6= id (m 6= {0}). The simplest solution of the quantization conditions

satisfying properties of a co-ideal subalgebra are

~(Xα) = Xα ⊗ 1 + 1⊗ Xα
~(B(Yp)) = ϕ(B(Yp))⊗ 1 + 1⊗ B(Yp) + ~ [Yp ⊗ 1,ΩX ]

ϕ(B(Yp)) = J (Yp) +
1
4~ [Yp ,CX ]

The grading is deg(Xα) = 0, deg(B(Yp)) = 1 and deg(~) = 1.

• The embedding ϕ(B(Yp)) is usually reffered to as the MacKay twisted Yangian
formula.

• Let θ = id (m = {0}). In this case we find

~(xa) = xa ⊗ 1 + 1⊗ xa ,

~(G(xa)) = ϕ(G(xa))⊗ 1 + 1⊗ G(xa) + ~ [J (xa)⊗ 1,Ωg]

+
1
4~

2([[xa ⊗ 1,Ωg],Ωg] + c−1
g α bc

a [[xc ⊗ 1,Ωg], [xb ⊗ 1,Ωg]]),

ϕ(G(xa)) = c−1
g αbc

a [J (xc ),J (xb)] +
1
4~ [J (xa),Cg]

The grading is deg(xa) = 0, deg(~) = 1 and deg(G(xa)) = 2.



Twisted Yangian Y (g, h) [Belliard-VR’14]

• There is, up to isomorphism, a unique homogeneous quantization
Y(g, h) := U~(L+,H+) of (L+,H+, τ). It is generated by Xα, B(Yp) satisfying:

[Xα,Xβ ] = f γ
αβ Xγ , [Xα,B(Yp)] = g q

αp B(Yq),

[B(Yp),B(Yq)] +
1

c̄(α)
w α

pq w rs
α [B(Yr ),B(Ys)] = ~2Λλµνpq {Xλ,Xµ,Xν},

[[B(Yp),B(Yq)],B(Yr )] +
2
cg
κtu
m w α

pq g s
rα [[B(Ys),B(Yt)],B(Yu)]

= ~2Υλµu
pqr {Xλ,Xµ,B(Yu)}

where

Λλµνpq =
1
3

(
gµt

p gλu
q +
∑
α

(̄c(α))
−1w α

pq w rs
α gµt

r gλu
s

)
w ν

tu ,

Υλµu
pqr =

1
4
∑
α

(
w α

st g λs
p g µt

q g u
αr +

∑
β

w α
pq f λβ

α g µs
r g u

βs

)
+

1
2 cg

∑
α,γ

κvx
m w γ

pq g y
rγ

(
w α

st g λs
y g µt

v g u
αx +

∑
β

w α
yv f λβ

α g µs
x g u

βs

)
.

The counit is ε~(Xα) = ε~(B(Yp)) = 0 for all non-central Xα,
and ε~(Xz ) = c with c ∈ C for Xz central in h.



Twisted Yangian Y (g, g) [Belliard-VR’14]

• There is, up to isomorphism, a unique homogeneous quantization
Y(g, g) := U~(L+,H+) of (L+,H+, τ). It is generated by xi , G(xi ) satisfying:

[xa, xb] = α c
ab xc , [xa,G(xb)] = α c

ab G(xc )

[G(xa),G([xb, xc ])] + [G(xb),G([xc , xa])] + [G(xc ),G([xa, xb])]

= ~2 Ψijk
abc {xi , xj ,G(xk )}+ ~4 (Φijk

abc{xi , xj , xk}+ Φ̄ijklm
abc {xi , xj , xk , xl , xm})

The co-unit is ε~(xi ) = ε~(G(xi )) = 0.

• Coefficients Ψijk
abc , Φijk

abc , Φ̄ijklm
abc have a very large generic form, which can be

simplified for g or low rank. For example, for g = sl3 they are

Ψijk
abc =

1
3 β

ijk
(abc) + α d

(ab α k
c)l φ

lij
d − α

k
dl α

d
(ab φ lij

c)

Φijk
abc = −1

6 β
ijk
abc Φ̄ijkln

abc =
1

36 α
ir

(a α
js

b β
klm

c)rs

φ bcd
a =

1
24 cg

∑
π

(α jk
a α

π(d)r
j α

π(b)s
k α π(c)

sr ), β ijk
abc = α il

a α
jm

b α kn
c αlmn



Example I: Y(sl3, gl2)

Twisted Yangian Y(sl3, gl2) is generated by

h, e, f, k and E2,F2,E3,F3

satisfying level-0 relations (of the gl2 Lie algebra)

[e, f] = h, [h, e] = 2e, [h, f] = −2f, [e, k] = [f, k] = [h, k] = 0,

level-1 Lie relations

[e,E2] = E3, [f,F2] = F3, [e,F2] = [f,E2] = 0,
[e,F3] = F2, [f,E3] = E2, [e,E3] = [f,F3] = 0,
[h,E2] = −E2, [h,F2] = F2, [k,Ei ] = 3Ei ,

[h,E3] = E3, [h,F3] = −F3, [k,Fi ] = −3Fi ,

level-2 horrific relations

[E2,E3] = 0, [F2,F3] = 0,

level-3 horrific relations

[E2, [E2,F3]] = −2~2{E2, f, k}, [F2, [E3,F2]] = −2~2{F2, f, k}.



Example II: Y(sl3, so3)

Twisted Yangian Y(sl3, so3) is generated by elements

h, e, f and H,E,F,E2,F2

satisfying level-0 relations (of the so3 Lie algebra)

[e, f] = h, [h, e] = e, [h, f] = −f,

level-1 Lie relations

[e,F] = [E, f] = H, [h,E] = E, [h,F] = −F,
[e,E] = 2E2, [f,F] = 2F2, [e,E2] = [f,F2] = 0,
[e,F2] = F, [f,E2] = E, [h,F2] = −2F2, [h,E2] = 2E2,

[H, e] = 3E, [H, f] = −3F, [H, h] = 0,

level-2 horrific relation

[E,F] + [E2,F2] = 1
4~

2({h, h, h} − 3{e, f, h}
)
,

level-3 horrific relation

[[E,F],H] = 3
2~

2({E2, f, f}+ {F2, e, e}
)

+ 15
4 ~

2({E, f, h} − {F, e, h}).



Thank Y (o)u
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