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Yangians and Twisted Yangians

Yangians we first introduced in Faddeev's Leningrad school concerning
quantum inverse scattering method in late 70s and early 80s. Named by
V.G.Drinfeld to honour C.N.Yang [Drinfeld 85, 86]

Twisted Yangians appeared in the work of G.l.Olshanski in '91 and were
generalized by Delius-MacKay-Short '01, MacKay '02 & '03

Plan of the talk:

o Brief review
e Construction of Yangian in Drinfeld Basis (DI)
e Construction of Twisted Yangian in Drinfeld Basis (DI)



Drinfel'd Basis (DI) [Drinfeld'85,86]

e Yangian Y(g) is a flat deformation of U(g[u]). It is a Hopf algebra generated
by J(x), x € g satisfying:
[Xa, xb] = fop“xc,  [xay J(6)] = J([xa, 6]) = fap I (xc)
[J0xa), ([, %D + [ (x6), I (Ixe, xa])] + [ (xe)s H([xas x6])] = 1 Blpe{x1, 3, 3}
[[0xa), J0)]s I (e xa])] + [ (xe), I (xa)], S ([xas x6])] = B2 g {05, I ()}

e Coalgebra structure is:
h
AX)=x®1+10x, AUKX)=J(Xx)®1+1® J(x)+ 5[x@LQ]

+ Minimal realization

+ Unique form for any simple g

+ Very simple presentation, often used in theoretical physics
+ Simple evaluation modules for Y (sly)

— Non-trivial higher level generators
— Complicated higher-order relations
— Not well suitable for representation theory



Drinfel'd New presentation (DIl) [Drinfeld'88]

. The Yangian Y(g) is isomorphic to the algebra generated by the elements
hir for i € I, r € Z> subject to the relations

[hffa hjs] =0, [hiO,Xjf] = i(Oé,‘, aj)Xjfv [ Xir 5 JS] - 5Uh’ r+s

II"

e, a
+ iy + + +
[hfnyrlvxjs] [hlr7 +1] - %(h,r jS + st h )
h(ai, o
+ + + _+ iy + +
[Xi,r+17xjs] - [Xir 7Xj,s+1] =+ ( 2 J) (X,r st + Xjs X; )
§ :[Xiiu)’['“’[Xffig(n)’xfic]”’]]:o for i#j and n=1-a;

oES,

+ Well suited for representation theory
+ Well defined generators and relations for any simple g
+ Loved by mathematicians

— No explicit form of coproduct A(x,.j;) =... A(hi,)=...
— Has complicated form of non-simple root vectors



RTT-presentation (FRT) [Fadeev-Reshetikhin-Takhtajan'89]

e The Yangian Y/(g) is isomorphic to the algebra generated by the elements tér)
for 0 <i,j < N and r € Z>, satisfying:

R(u—=v) Ti(u) To(v) = Tao(v) Ta(u) R(u = v),

where

= Z Ej ®1® t;(uv), Ta(u) = Z 1® E; @ ty(uv),

ij=—n i,j=—n
ty(u) = Zt TevEle Tl ) =4

e Coalgebra structure is
At (v Z tu(u) @ tig(u

+ Well suited for representation theory
+ Well defined generators and relations
+ Good to treat central elements

— Coproduct has complicated concrete realization™
— Concrete realization of Y(g) depends on R-matrix R(u)
— Lots of technical difficulties™



Twisted Yangian

e Twisted Yangian Y(g,bh) is a flat deformation of U(g[u]?)

e It is a coideal subalgebra of Y(g) introduced by G.I.Olshanski in '92 for sly
and generalized to any simple g by Delius-MacKay-Short in '01 playing a major
role in quantum integrable models with open boundaries

A(Y(g,h)) = Y(g) ® Y(g,h)

e There is a huge family of Y(g,h) that is in a 1-to-1 correspondence with
symmetric pairs (g, ) of simple complex Lie algebras g = hh @ m satifying

[h,6]Ch, [pm]Cm, [mm]Ch
o RTT-type presentation for symmetric pairs of simple complex Lie algebras:

Al (sly,s0n), All 2 (sly, 5Py /o) Olshanski'92, Molev-Nazarov-Olshanski'96
Alll : (sly, sl & sl)) Molev-Ragoucy'02
Cl: (sppy, aly), Cll 2 (spy,sp, D spg), DI (sow, gly)2)

BDI : (son,s0p, @ s0q), CO : (spy,spy), BDO : (son,s0p) [Guay-VR'14: to appear]

e Generic twisted Yangians Y(g, h) for any (g, b) Delius-MacKay-Short'01, MacKay'02 03

Arnoudon, Avan, Baseilhac, Crampe, Doikou, Frappat, Khoroshkin, Mudrov, Nepomechie, Sklyanin, Sorba...



RA-presentation (RTT)

e Twisted Yangian Y(g, ) is isomorphic to the algebra generated by the
elements 5,5-') for 0 <i,j < N and r € Z>y, satisfying:

R(u—v)Si(u) R(u+ v) Sz(v) = So(v) R(u+ v) Si(u) R(u — v)

and some additional symmetry relations S(U) = f(S(U)), where

N oo
S(u)=> Ey@si(u),  siu)=> su, s =b
i,j=0 r=0

e Coideal structure is N

Asi(w)) = > tu(u) 0(t3(u)) @ su(u)

k,I=0

+ Well suited for representation theory
+ Well defined generators and relations
+ Good to treat central elements

— Coproduct has complicated concrete realization

— Requires additional symmetry relations for each (g, b)

— Defining relations depend on the type of symmetric pair,
R-matrix R(u) and bj



Drinfeld Basis (DI)

o Twisted Yangian Y(g, ) is isomorphic to the algebra generated by elements
x € b and B(y) for y € m, satisfying:

[Xa, Xg] = &ﬁ I Xy [Xe B(yp)] = B([Xa, yp]) = gaqu(yG)

1B(y»), B(ya)] + % Woa Wil [B(yr), B(ys)] = HEAM {30, s %0 }
[B(y»). B(va)]. B()] %n:: Wyl g, [1B(s), B Blyo)] = 2T v, s B(a)}

e Twisted Yangian Y(g, g) is isomorphic to the algebra generated by elements
G(x), x € g satisfying:
[xa, xb] = Qap Xc, [xa2, G(x6)] = G([Xa, Xb]) = ap G(xc)
[G(xa), G([x6, xc])] + [G(x5), G([xe, Xa])] + [G(xc), G([xa, x6])]

:h2 ZZC{X’7)(J7 (Xk)}+h4( ZZC{XHXJ’X’(}+¢ZZT{X"7XJ'7XMX/7X"1})

+ Minimal realization
+ Unique form for any simple g
+ Very simple presentation, good for theoretical physics

— Non-trivial higher level generators and relations
— Not well suitable for representation theory



Yangian Y (g)



Preliminaries: Lie algebra and Lie bi-algebra

e Let g be a complex simple Lie algebra of dim(g) = n with a basis {x,} and a

Lie bracket .
[,]:9®g—9, [Xa, Xb] = tap Xe

Let 7.5 be the Killing form and 1 its inverse:
d c d bc c
(Xav Xb)g = Tab = Qac Opd Qap Tlde = Kabe, Nabn) . = d,

Let C; = n™xaxp be the Casimir operator and ¢, be its eigenvalue in the
adjoint representation, then

(5d* ab e d __ eb d bc _
CgOc =1 Qg Ope = Q¢ Clpe &P [XC7Xb]7CQXa

e A Lie bi-algebra structure on g is a skew-symmetric linear map
0:g—g®g

the cocommutator, such that §* : g* ® g* — g* is a Lie bracket on g* and § is
a 1-cocycle

5(bx, y]) = x6(y) — y-6(x)

where dot denotes the adjoint action on g* ® g*.



Preliminaries: Half-loop Lie algebra

Let £ be a half-loop Lie algebra generated by elements {xgk)} with k € Z>o.
It is a graded algebra with deg(xgk)) = k and the defining relations

B3] = s X

This algebra can be identified with the set of polynomial maps f:C — g using

the Lie algebra isomorphism £ = g[u] = g ® C[u] with x; () o x, @ uk.

LT is isomorphic to an algebra generated by x,, J(x») satisfying (u, v € C)

[Xa, xb] = ap Xe,  J(pxa +vxp) = pd(xa) + vI(xb),  [¥a, J(xb)] = ap J(xc)
[J0xa), J(Dx6, xe])] + [J0w), S ([xe, xa])] + [J(xe), S(Ixa; x6])] = 0
[[J(xa), J(x6)]; S ([xe, xa])] + [[J(xe)s J(xa)], S ([xa, xe])] = O

The isomorphism with the standard loop basis is given by the map
Xy > xé(,o), J(x5) — X‘.Sl)

o Next step: we want to construct a Lie bi-algebra structure § : £+ — £7 ® £7.



Preliminaries: Manin triple

e A Manin triple is a triple of Lie bi-algebras (p,p™,p~) such that

pT and p~ are Lie subalgebras of p

p=pT @p~ as a vector space

(, )p is isotopic for p* (i.e. (pF,p*), = 0)

(pT)" =p~

e For any g the is a 1-to-1 correspondence between Lie bi-algebra structures on g
and the Manin triple (p,p*,p~) such that p™ = g.

o Let £ =g[[u*']] and £~ = g[[u""]]. Then (£,L£",£7) is a Manin triple.
e The cocomutator § on £ is deduced from the duality relation
(0(x),y @ 2)e = (x,[y,2])c  where (x,y)z = (X,¥)a deg(x)+des(y)+1.0
For x, € LT, deg(x,) = 0 we find
(0a)y®2z)ce=0 = 4(x)=0.

since deg(y ® z) < 1 for any y,z € L7, and for J(xa) € LT, deg(J(x:)) =1
we have
(0(J(xa))s xS @ xEN) 2 = eqmap
—
8(J(x2)) = a xk @ x1 = [xa ® 1, Q) Qy = 1""x2 @ xp



Preliminaries: Quantization [Drinfeld'85 '86]

e A Hopf algebra is a sextuple (A, u,2, A, e, S) where
product pu:ARA—A unit 1:C— A
coproduct A:A—-ARA couint £:A—C
antipode S:A— A
such that (A, u,?) is an algebra and (A, A, ¢€) is a coalgebra.
o Let (L™, 6) be a Lie bi-algebra. We say that a quantized universal enveloping
algebra (Un(L1), Ar) is a quantization of (£T,4), or that (LT, ) is the
quasi-classical limit of (U (L"), Ap), if it is a free C[[]] module and

o Un(LT)/hUxr(LT) is isomorphic to U(LT) as a Hopf algebra
e for any x € LT and any X € Up(L™T) equal to x (mod &) one has

(An(X) = 00 AR(X)) /b~ 5(x) (mod h)
with o the permutation map c(a® b) = b® a.

o The simplest solution of the quantization conditions for x,, 7 (x:) € Un(L™)
satisfying co-associativity property (A ® id) o A = (id ® A) o A is:

Ah(Xa):Xa®1+1®Xa

AT () = T(6) © 1+ 18 T(x) + 5 [ ©1,2]



Yangian [Drinfeld'85 '86]

Let g be a finite dimensional complex simple Lie algebra. There is, up to
isomorphism, a unique homogeneous quantization Y(g) := Ux(g[u]) of (g[u], )
generated by elements x,, J(x,) satisfying:

[Xas Xb] = oy Xe, [Xa, T (xb)] = tap T(xc),
[T (%), T ([0, x])] + [T (x5), T ([xe, xa])] + [T (%) T ([Xa5 x5])]
= 1h2 gﬁc {Xl7)<J7Xk}

[17.(x). T ()], T (b xaD)] + (1T (36}, T (), (e, )
— %h2'ygfcd {xi, x5, T (%) }
where

ijk il jm _ kn ijk e nijk e pijk
Babc = Qy Qp Qe Qimn, fyabcd = Qed ﬁabe + QXap /Bcde

for all x, € g and A, € C. The antipode is
1
S06) ==X, S(T(x)) = ~T(xa) + 7 iegxa.

The counit is given by e(x2) = en(J(x2)) =0



Twisted Yangian Y (g, b)



Preliminaries: Symmetric pair decomposition

e Let 6 be an involution of g. Then g can be decomposed as g = h & m with
0(h) = b and O(m) = —m satisfying

[6,6] C b, [H,m] C m, [m,m] C b

here b is a (semi) simple Lie algebra, such that (at most) h =a @ b P ¢.

The pair (g, bh) is called a symmetric pair
Let Xo €, Y, € m, and set (f ;) = 0 for a # j3)

[Xa, Xs] = fa/; Xy [(Xas Yol = &ap Y, [Yo, Yol = wpg™ Xa

The Casimir operator Cy in this basis decomposes as (¢g = ¢a + ¢p + tm + ¢2)

Co = Cx + Cy = kP XoXs + (5m)P7Y, Yy
Cx = C+ C' + G = (k)" XiX; + (56)" 7 X Xy + (re)Z XX,

The following relations hold

v o C —
faﬁ (X0, Xs] = ¢(a)Xa, gqp [Xa, Yo] = Eﬂ Ya, qup [Yo, Yol =) Xy
B

v ra c -
fau fu;.LB = C(a) 50457 8p garq = Eg 6pqa Waqp quﬁ = (o) 6&



Preliminaries: Twisted half-loop Lie algebra |

o Let us extend the involution § of g to the whole of L1 ~ g[u] as follows
6(x{) = (~1)6,)x"
e We write L in terms of the elements {Xc(f)7 Yq(k)} satisfying
X X0 = £, X8 X, v = g VI Y, v = wgt XEH

e The twisted half-loop Lie algebra 4+ = g[u]® is a subalgebra of £ invariant
under 0, namely H* = {x € LT |0(x) = x}. We have:

E+ _ H+ o M+, H+ _ {thfk)’ YL§2k+l)}’ M+ _ {Xé2k+1)’ Yq(2k)}



Preliminaries: Twisted half-loop Lie algebra Il

o Let rank(g) > 2. Then H' ~ g[u]? is isomorphic to an algebra generated by
elements {X., B(Y,)} satisfying
[Xa, Xp] = f, 5’\/Xw [Xa: B(Yp)] = 8ap B(Yq)

@

[B(Y,), B(Ys)] + % woe w [B(Y,), B(Y5)] = 0
[1B(Y,), B(Y,)], B(Y,)] + ém‘: wo 812 [[B(Y2), B(Y2)], B(Ya)] = 0

The isomorphism with the standard twisted half-loop basis is given by the map
Xo s X B(Yp) = YW
e Let rank(g) > 2 and m = {0}. Then HT ~ g[u?] is isomorphic to an algebra
generated by elements {x;, G(x;)} satisfying
[Xiaxj] = Qj ka7 [Xi7 G(XJ)] = aijkG(Xk)
[G(xi), G(Dx, xk])] + [G (%), G([xk, xi])] + [G(x«), G([xi, x])] = O
The isomorphism with the standard half-loop basis is given by the map

Xj x(o)7 G(xi) — X,-(z)

i



Preliminaries: Lie bi-ideal and twisted Manin triple | [Belliard-Crampe'12]

e The anti-invariant Manin triple twist ¢ of (£, £",£™) is an automorphism of £

satisfying:
® ¢ is an involution;
o ¢(LE) = L*;

o (¢(x),y)e = =(x, d(y))c forall x,y € L.

e The twist ¢ gives symmetric pair decomposition of the Manin triple (£, £", L)
L=HeM, LE¥=HFaM* with oHT)=HE M) =-M*
From the anti-invariance of ¢ for (', )z it follows

H ,H)e=M MY =0 and (HF)" =2M7

e The linear map 7 : H" — M™ ® H" is a left Lie bi-ideal structure for the
couple (H*, M*) if it is the dual of the following action of H~ on M ™,

T H QM - M-, (1)
x@y = [xyle,
forall xe H™ and y € M™.



Preliminaries: Lie bi-ideal and twisted Manin triple Il [Belliard-Crampe'12]

e The Lie bi-ideal structure of (L, H"), 7: H" — M @ H* is given by
0#id : 7(Xa) =0, 7T(B(Y,)=[Y,21,Q], Qb =r"Xe®Xs
0=id : 7(x,) =0, T(G(xa)) = [J(x2) ® 1, Q]

o Let 6 # id. For X&O) = X we have (Xu,[y,2z])c =0forallye H™, ze M~

giving
7(Xa) = 0.
For Y,fl) = B(Y,) we have
(B(Y) Vg D)o = (kmdoar Vg~ =265 g5 [V, X7V

Then ]
(T(B(YP))a gqra Yr(il) & Xéjl))ﬁ = Eg(/im)pq

Consider an ansatz 7(B(Y,)) = v,”* Y ® X5. Then we must have
s ¢ s as
Vp 8asa = Eg(’fm);?q giving  7(B(Yp)) =g, Ys ® Xa = [Yp ® 1,%].

e The Lie bi-ideal structure for the 8 = id case follows from the pairing
(G(xa),xé73))g = (kg)ab and using similar arguments as above



Preliminaries: Co-ideal subalgebra

o Let A= (A, u,n, A c) be a bi-algebra. Then B = (B, m,i,4,¢) is a left
coideal subalgebra of A if:

1. the triple (B, m, i), where m is the multiplication and i is the unit, is an
algebra;

2. B is a subalgebra of A, i.e. there exists an injective homomorphism
p:B—= A

3. coaction 4 is a coideal map 4: B+ A® B

4. the following identities hold

(A®id)od=(id® A)o A

(id@p)od=Aoyp
5. € : B— C is the counit.

e The identities above are called coideal-coassoctivity, it is an analogue of
coassociativity for coideal algebras, and coideal-compatibility



Preliminaries: Quantization

o Let (L1,8) be a Lie bi-algebra and (H",7) be a left Lie bi-ideal of (£*,6).
We say that a left coideal subalgebra (U (L, H"), dr) is a quantization of
(HT,7), or that (H™, 7) is the quasi-classical limit of (Un(L*, H"), 4s),
if it is a free C[[#1]] module and:

1. (U(LT), A) is a quantization of (LT, 6)

2. Un(LY,HT)/ hUdp(LT,HT) is isomorphic to U(HT) as a Lie algebra
3. (Un(LY,HT), ) is a left coideal subalgebra of (Un(L7), Ar)

4. for any x € H* and any X € Up(L",H") equal to x (mod 1) one has

(Ah(X) (X)) @141 ®X)) /i~ 7(x) (modh)

with ¢ the natural embedding Ux (LT, H') — Un(LT)



Preliminaries: Coideal map

o Let 6 # id (m # {0}). The simplest solution of the quantization conditions
satisfying properties of a co-ideal subalgebra are

Ah(Xa) :Xa®1+1®xa
An(B(Yp)) = ¢(B(Y,)) @ 1+ 1® B(Yp) + h[Y, ® 1,0x]

B(B(Y,)) = T(Yy) + 7h (¥, ]
The grading is deg(X,) = 0, deg(B(Y,)) = 1 and deg(h) = 1.

e The embedding (B(Y,)) is usually reffered to as the MacKay twisted Yangian
formula.

o Let 6 = id (m = {0}). In this case we find

ATI,(XQ) :Xa®1+1®Xa,
An(G(x:)) = 9(G(x)) ® 1+ 1@ G(x:) + h[T(x2) ® 1, Q]

+ (e © 1,9], 0] + 65 "ol © 1%l b © 1, 24]),
PG0)) = 65 "l [T (), T ()] + 3h 1T (), Gl

The grading is deg(xa) = 0, deg(h) = 1 and deg(G(x,)) = 2.



Twisted Yangian Y(g,h) [Belliard-VR'14]

e There is, up to isomorphism, a unique homogeneous quantization
V(g,h) :=Un(LT, HT) of (LT, HT, 7). It is generated by X,, B(Y,) satisfying:

[Xa, Xs] = f.5' Xy, [Xa, B(Yp)] = 8ap B(Y),
[B(Yp), B(Yq )]+f)w o [BOY:), B(Ya)] = WA {Xx, Xiu, X,

[[B(Y:), B(Ya)l, B(Y)] + — 2 fim Wpq 8ra [[B(Ys), B(Y:)l, B(Yu)]

where = R2Toh X, X, B(Ya)}

Apv - v
Nog” = (g pee+ E Yo W g g™ )Wm ;

Apu a t u ar 2B u
Tpétr Z E (Wst 8p qult Bar + E Wpq fa grusgﬂs )

1 X «@ u

+ F Rm qu’ygr'y (Wst gy gv gax +ZWyv fAB usgﬁs )
S oy

The counit is €5(Xa) = en(B(Yp)) = 0 for all non-central Xy,

and €;(X;) = c with ¢ € C for X; central in b.



Twisted Yangian Y(g,g) [Belliard-VR'14]

e There is, up to isomorphism, a unique homogeneous quantization
V(g,9) :=Un(LT,HT) of (LT,HT, 7). Itis generated by x;, G(x;) satisfying:
[Xa, xb] = Qap Xc, [Xa, G(x6)] = ap G(xc)

[9(%), G([xb, x])] + [G(6), G([xe, xa])] + [G(xc), G(([xa, Xb])]

= hz gll;c {lexjv (Xk)} + h4( glgc{xlvxhxk} + ¢gll;/cm{X,',Xj,Xk7X/,Xm})

The co-unit is ex(x;) = ex(G(x:)) = 0.

- ik ik ijkim . .
o Coefficients W, , ®7, , ®7, " have a very large generic form, which can be

simplified for g or low rank. For example, for g = sl3 they are

; 1
ik _ ijk d lij
abc = 5 Babe) T b ey <Z5d —ay” Q(ab <Z5
ijk ijk X ijkin __ 1 ir _js o klm
q)abc - T A ﬁabc q>zabz: - % A O Bc)rs
bcd § : d)r w(b)s m(c) ijk __ il _jm _ kn
3 (O[ j Qsp )7 ﬁabc Ay O Qe Qimn

24 g

™



Example I: Y(sl3, gl,)
Twisted Yangian Y(sls, gl,) is generated by
h,e,f,k and Ez, Fo,E3 F;3
satisfying level-0 relations (of the gl, Lie algebra)
[e,fl=h, [h,e]=2e, [h,fl=-2f [ek]=][f,k]=1[h,k]=0,

level-1 Lie relations

[e, E2] = Es, [f,F2] = Fs, [e,F] =[f,E2] =0,

[e, F3] = Fa, [f, Es] = Ea, [e,E3] = [f,F3] =0,

[h7 E2] = —EQ, [h7 FQ] = FQ, [k, E,] = 3Ei,
[h’ E3] = E37 [h’ F3] = _F37 [k7 Fl] = _3Fi7

level-2 horrific relations
[E2, E3] =0, [F2,F3] =0,
level-3 horrific relations

[Ez, [E2, F3]] = —2h*{Ea, f, k}, [F2, [E3, F2]] = —2R*{F2,f,k}.



Example II: Y(sl3, 503)
Twisted Yangian Y(sl3, 503) is generated by elements
h,e,f and H,E,F, Es,F>
satisfying level-0 relations (of the so3 Lie algebra)
[e,fl]=h, [h,e]=¢, [h,f]=—f,
level-1 Lie relations
[e,F]=[E,fl=H, [h,E]=E, [h,F]=—F,
[e,E] = 2E>, [f,F]=2F,, [e,Es]=][f,F2]=0,

[e> F2] =F, [f7 E2] =E, [h7 F2] = —2F,, [h7 E2] = 2Ey,
[H,e] =3E, [H,f]=-3F, [H,h]=0,

level-2 horrific relation
[E, F] + [E2, Fo] = ;1% ({h,h,h} — 3{e,f, h}),
level-3 horrific relation

[[E,F],H] = 31 ({E2, . f} + {F2,e,e}) + 277 ({E,f,h} — {F,e,h}).



Thank Y (o)u
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