Drinfeld basis for twisted Yangians

Vidas Regelskis
in collaboration with Samuel Belliard
arXiv:1401.2143
Extended presentation for the conference website

ICFT'14, University of Glasgow
April 12, 2014

Yangians and Twisted Yangians

Yangians we first introduced in Faddeev's Leningrad school concerning quantum inverse scattering method in late 70s and early 80s. Named by V.G.Drinfeld to honour C.N.Yang [Drinfeld 85, 86]

Twisted Yangians appeared in the work of G.I.Olshanski in '91 and were generalized by Delius-MacKay-Short '01, MacKay '02 \& '03

Plan of the talk:

- Brief review
- Construction of Yangian in Drinfeld Basis (DI)
- Construction of Twisted Yangian in Drinfeld Basis (DI)

Drinfel'd Basis (DI) [Drinfeld'85,86]

- Yangian $Y(\mathfrak{g})$ is a flat deformation of $U(\mathfrak{g}[u])$. It is a Hopf algebra generated by $J(x), x \in \mathfrak{g}$ satisfying:

$$
\begin{aligned}
& {\left[x_{a}, x_{b}\right]=f_{a b}{ }^{c} x_{c}, \quad\left[x_{a}, J\left(x_{b}\right)\right]=J\left(\left[x_{a}, x_{b}\right]\right)=f_{a b}{ }^{c} J\left(x_{c}\right)} \\
& {\left[J\left(x_{a}\right), J\left(\left[x_{b}, x_{c}\right]\right)\right]+\left[J\left(x_{b}\right), J\left(\left[x_{c}, x_{a}\right]\right)\right]+\left[J\left(x_{c}\right), J\left(\left[x_{a}, x_{b}\right]\right)\right]=\hbar^{2} \beta_{a b c}^{i j k}\left\{x_{i}, x_{j}, x_{k}\right\}} \\
& {\left[\left[J\left(x_{a}\right), J\left(x_{b}\right)\right], J\left(\left[x_{c}, x_{d}\right]\right)\right]+\left[\left[J\left(x_{c}\right), J\left(x_{d}\right)\right], J\left(\left[x_{a}, x_{b}\right]\right)\right]=\hbar^{2} \gamma_{a b c d}^{i j k}\left\{x_{i}, x_{j}, J\left(x_{k}\right)\right\}}
\end{aligned}
$$

- Coalgebra structure is:

$$
\Delta(x)=x \otimes 1+1 \otimes x, \quad \Delta(J(x))=J(x) \otimes 1+1 \otimes J(x)+\frac{\hbar}{2}[x \otimes 1, \Omega]
$$

+ Minimal realization
+ Unique form for any simple \mathfrak{g}
+ Very simple presentation, often used in theoretical physics
+ Simple evaluation modules for $Y\left(\mathfrak{s l}_{N}\right)$
- Non-trivial higher level generators
- Complicated higher-order relations
- Not well suitable for representation theory

Drinfel'd New presentation (DII) [Drinfeld'88]

- The Yangian $Y(\mathfrak{g})$ is isomorphic to the algebra generated by the elements $x_{i r}^{ \pm}, h_{\text {ir }}$ for $i \in I, r \in \mathbf{Z}_{\geq 0}$ subject to the relations

$$
\begin{gathered}
{\left[h_{i r}, h_{j s}\right]=0, \quad\left[h_{i 0}, x_{j r}^{ \pm}\right]= \pm\left(\alpha_{i}, \alpha_{j}\right) x_{j r}^{ \pm}, \quad\left[x_{i r}^{+}, x_{j s}^{-}\right]=\delta_{i j} h_{i, r+s}} \\
{\left[h_{i, r+1}, x_{j s}^{ \pm}\right]-\left[h_{i r}^{ \pm}, x_{j, s+1}^{ \pm}\right]= \pm \frac{\hbar\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(h_{i r}^{ \pm} x_{j s}^{ \pm}+x_{j s}^{ \pm} h_{i r}^{ \pm}\right)} \\
{\left[x_{i, r+1}^{ \pm}, x_{j s}^{ \pm}\right]-\left[x_{i r}^{ \pm}, x_{j, s+1}^{ \pm}\right]= \pm \frac{\hbar\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(x_{i r}^{ \pm} x_{j s}^{ \pm}+x_{j s}^{ \pm} x_{i r}^{ \pm}\right)} \\
\sum_{\sigma \in S_{n}}\left[x_{i r_{\sigma(1)}}^{ \pm},\left[\cdots,\left[x_{i r_{\sigma(n)}}^{ \pm}, x_{j s}^{ \pm}\right] \cdots\right]\right]=0 \quad \text { for } \quad i \neq j \quad \text { and } \quad n=1-a_{i j}
\end{gathered}
$$

+ Well suited for representation theory
+ Well defined generators and relations for any simple \mathfrak{g}
+ Loved by mathematicians
- No explicit form of coproduct $\Delta\left(x_{i, r}^{ \pm}\right)=\ldots \quad \Delta\left(h_{i, r}\right)=\ldots$
- Has complicated form of non-simple root vectors

RTT-presentation (FRT) [Fadeev-Reshetikhin-Takhtajan'89]

- The Yangian $Y(\mathfrak{g})$ is isomorphic to the algebra generated by the elements $t_{i j}^{(r)}$ for $0 \leq i, j \leq N$ and $r \in \mathbf{Z}_{\geq 0}$, satisfying:

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

where

$$
\begin{gathered}
T_{1}(u)=\sum_{i, j=-n}^{n} E_{i j} \otimes 1 \otimes t_{i j}(u), \quad T_{2}(u)=\sum_{i, j=-n}^{n} 1 \otimes E_{i j} \otimes t_{i j}(u), \\
t_{i j}(u)=\sum_{r=0}^{\infty} t_{i j}^{(r)} u^{-r} \in Y(\mathfrak{g})\left[\left[u^{-1}\right]\right], \quad t_{i j}^{(0)}=\delta_{i j}
\end{gathered}
$$

- Coalgebra structure is

$$
\Delta\left(t_{i j}(u)\right)=\sum_{k=0}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

+ Well suited for representation theory
+ Well defined generators and relations
+ Good to treat central elements
- Coproduct has complicated concrete realization*
- Concrete realization of $Y(\mathfrak{g})$ depends on R-matrix $R(u)$
- Lots of technical difficulties*

Twisted Yangian

- Twisted Yangian $Y(\mathfrak{g}, \mathfrak{h})$ is a flat deformation of $U\left(\mathfrak{g}[u]^{\rho}\right)$
- It is a coideal subalgebra of $Y(\mathfrak{g})$ introduced by G.I.Olshanski in '92 for $\mathfrak{s l}_{N}$ and generalized to any simple \mathfrak{g} by Delius-MacKay-Short in '01 playing a major role in quantum integrable models with open boundaries

$$
\Delta(Y(\mathfrak{g}, \mathfrak{h}))=Y(\mathfrak{g}) \otimes Y(\mathfrak{g}, \mathfrak{h})
$$

- There is a huge family of $Y(\mathfrak{g}, \mathfrak{h})$ that is in a 1-to-1 correspondence with symmetric pairs $(\mathfrak{g}, \mathfrak{h})$ of simple complex Lie algebras $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ satifying

$$
[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}, \quad[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}, \quad[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}
$$

- RTT-type presentation for symmetric pairs of simple complex Lie algebras:

$$
\begin{aligned}
& \text { AI : }\left(\mathfrak{s l}_{N}, \mathfrak{s o}_{N}\right), \text { All : }\left(\mathfrak{s l}_{N}, \mathfrak{s p}_{N / 2}\right) \\
& \text { Alll : }\left(\mathfrak{s l}_{N}, \mathfrak{s l}_{k} \oplus \mathfrak{s l}_{l}\right) \quad \text { Molev-Ragoucy'02 } \\
& \mathrm{CI}:\left(\mathfrak{s p}_{N}, \mathfrak{g l}_{N}\right), \mathrm{ClI}:\left(\mathfrak{s p}_{N}, \mathfrak{s p}_{p} \oplus \mathfrak{s p}_{q}\right), \text { DIII : }\left(\mathfrak{s o}_{N}, \mathfrak{g l}_{N / 2}\right) \\
& B D I:\left(\mathfrak{s o}_{N}, \mathfrak{s o}_{p} \oplus \mathfrak{s o}_{q}\right), C 0:\left(\mathfrak{s p}_{N}, \mathfrak{s p}_{N}\right), B D O:\left(\mathfrak{s o}_{N}, \mathfrak{s o}_{N}\right) \quad \text { [Guay-VR'14: to appear] }
\end{aligned}
$$

- Generic twisted Yangians $Y(\mathfrak{g}, \mathfrak{h})$ for any $(\mathfrak{g}, \mathfrak{h})$

RA-presentation (RTT)

- Twisted Yangian $Y(\mathfrak{g}, \mathfrak{h})$ is isomorphic to the algebra generated by the elements $s_{i j}^{(r)}$ for $0 \leq i, j \leq N$ and $r \in \mathbf{Z}_{\geq 0}$, satisfying:

$$
R(u-v) S_{1}(u) R(u+v) S_{2}(v)=S_{2}(v) R(u+v) S_{1}(u) R(u-v)
$$

and some additional symmetry relations $S(U)=f(S(U))$, where

$$
S(u)=\sum_{i, j=0}^{N} E_{i j} \otimes s_{i j}(u), \quad s_{i j}(u)=\sum_{r=0}^{\infty} s_{i j}^{(r)} u^{-r}, \quad s_{i j}^{(0)}=b_{i j}
$$

- Coideal structure is

$$
\Delta\left(s_{i j}(u)\right)=\sum_{k, l=0}^{N} t_{i k}(u) \theta\left(t_{j l}(u)\right) \otimes s_{k l}(u)
$$

+ Well suited for representation theory
+ Well defined generators and relations
+ Good to treat central elements
- Coproduct has complicated concrete realization
- Requires additional symmetry relations for each ($\mathfrak{g}, \mathfrak{h}$)
- Defining relations depend on the type of symmetric pair, R-matrix $R(u)$ and $b_{i j}$

Drinfeld Basis (DI)

- Twisted Yangian $Y(\mathfrak{g}, \mathfrak{h})$ is isomorphic to the algebra generated by elements $x \in \mathfrak{h}$ and $B(y)$ for $y \in \mathfrak{m}$, satisfying:

$$
\begin{aligned}
& {\left[x_{\alpha}, x_{\beta}\right]=f_{\alpha \beta}^{\gamma} x_{\gamma}, \quad\left[x_{\alpha}, B\left(y_{p}\right)\right]=B\left(\left[x_{\alpha}, y_{p}\right]\right)=g_{\alpha p}^{q} B\left(y_{q}\right)} \\
& {\left[B\left(y_{p}\right), B\left(y_{q}\right)\right]+\frac{1}{\overline{\mathfrak{c}}_{(\alpha)}} w_{p q}^{\alpha} w_{\alpha}^{r s}\left[B\left(y_{r}\right), B\left(y_{s}\right)\right]=\hbar^{2} \Lambda_{p q}^{\lambda \mu \nu}\left\{x_{\lambda}, x_{\mu}, x_{\nu}\right\}} \\
& {\left[\left[B\left(y_{p}\right), B\left(y_{q}\right)\right], B\left(y_{r}\right)\right]+\frac{2}{\mathfrak{c}_{\mathfrak{g}}} \kappa_{\mathfrak{m}}^{t u} w_{p q}^{\alpha} g_{r \alpha}^{s}\left[\left[B\left(y_{s}\right), B\left(y_{t}\right)\right], B\left(y_{u}\right)\right]=\hbar^{2} \Upsilon_{p q r}^{\lambda \mu u}\left\{x_{\lambda}, x_{\mu}, B\left(y_{u}\right)\right\}}
\end{aligned}
$$

- Twisted Yangian $Y(\mathfrak{g}, \mathfrak{g})$ is isomorphic to the algebra generated by elements $G(x), x \in \mathfrak{g}$ satisfying:

$$
\begin{aligned}
& {\left[x_{a}, x_{b}\right]=\alpha_{a b}^{c} x_{c}, \quad\left[x_{a}, G\left(x_{b}\right)\right]=G\left(\left[x_{a}, x_{b}\right]\right)=\alpha_{a b}^{c} G\left(x_{c}\right)} \\
& {\left[G\left(x_{a}\right), G\left(\left[x_{b}, x_{c}\right]\right)\right]+\left[G\left(x_{b}\right), G\left(\left[x_{c}, x_{a}\right]\right)\right]+\left[G\left(x_{c}\right), G\left(\left[x_{a}, x_{b}\right]\right)\right]} \\
& \quad=\hbar^{2} \Psi_{a b c}^{i j k}\left\{x_{i}, x_{j}, G\left(x_{k}\right)\right\}+\hbar^{4}\left(\Phi_{a b c}^{i j k}\left\{x_{i}, x_{j}, x_{k}\right\}+\bar{\Phi}_{a b c}^{i j k l m}\left\{x_{i}, x_{j}, x_{k}, x_{l}, x_{m}\right\}\right)
\end{aligned}
$$

+ Minimal realization
+ Unique form for any simple \mathfrak{g}
+ Very simple presentation, good for theoretical physics
- Non-trivial higher level generators and relations
- Not well suitable for representation theory

Yangian $Y(\mathfrak{g})$

Preliminaries: Lie algebra and Lie bi-algebra

- Let \mathfrak{g} be a complex simple Lie algebra of $\operatorname{dim}(\mathfrak{g})=n$ with a basis $\left\{x_{a}\right\}$ and a Lie bracket

$$
[,]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}, \quad\left[x_{a}, x_{b}\right]=\alpha_{a b}^{c} x_{c}
$$

Let $\eta_{a b}$ be the Killing form and $\eta^{a b}$ its inverse:

$$
\left(x_{a}, x_{b}\right)_{\mathfrak{g}}=\eta_{a b}=\alpha_{a c}{ }^{d} \alpha_{b d}{ }^{c}, \quad \alpha_{a b}{ }^{d} \eta_{d c}=\alpha_{a b c}, \quad \eta_{a b} \eta^{b c}=\delta_{a}^{c}
$$

Let $C_{\mathfrak{g}}=\eta^{a b} x_{a} x_{b}$ be the Casimir operator and $\mathfrak{c}_{\mathfrak{g}}$ be its eigenvalue in the adjoint representation, then

$$
\mathfrak{c}_{\mathfrak{g}} \delta_{c}^{d}=\eta^{a b} \alpha_{a c}{ }^{e} \alpha_{b e}{ }^{d}=\alpha_{c}^{e b} \alpha_{b e}{ }^{d}, \quad \alpha_{a}^{b c}\left[x_{c}, x_{b}\right]=\mathfrak{c}_{\mathfrak{g}} x_{a}
$$

- A Lie bi-algebra structure on \mathfrak{g} is a skew-symmetric linear map

$$
\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}
$$

the cocommutator, such that $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a Lie bracket on \mathfrak{g}^{*} and δ is a 1-cocycle

$$
\delta([x, y])=x \cdot \delta(y)-y \cdot \delta(x)
$$

where dot denotes the adjoint action on $\mathfrak{g}^{*} \otimes \mathfrak{g}^{*}$.

Preliminaries: Half-loop Lie algebra

- Let \mathcal{L}^{+}be a half-loop Lie algebra generated by elements $\left\{x_{a}^{(k)}\right\}$ with $k \in \mathbb{Z}_{\geq 0}$. It is a graded algebra with $\operatorname{deg}\left(x_{a}^{(k)}\right)=k$ and the defining relations

$$
\left[x_{a}^{(k)}, x_{b}^{(l)}\right]=\alpha_{a b}^{c} x_{c}^{(k+l)}
$$

This algebra can be identified with the set of polynomial maps $f: \mathbb{C} \rightarrow \mathfrak{g}$ using the Lie algebra isomorphism $\mathcal{L}^{+} \cong \mathfrak{g}[u]=\mathfrak{g} \otimes \mathbb{C}[u]$ with $x_{a}^{(k)} \cong x_{a} \otimes u^{k}$.

- \mathcal{L}^{+}is isomorphic to an algebra generated by $x_{a}, J\left(x_{b}\right)$ satisfying ($\mu, \nu \in \mathbb{C}$)

$$
\begin{aligned}
{\left[x_{a}, x_{b}\right]=\alpha_{a b}^{c} x_{c}, \quad J\left(\mu x_{a}+\nu x_{b}\right)=\mu J\left(x_{a}\right)+\nu J\left(x_{b}\right), \quad\left[x_{a}, J\left(x_{b}\right)\right] } & =\alpha_{a b}{ }^{c} J\left(x_{c}\right) \\
{\left[J\left(x_{a}\right), J\left(\left[x_{b}, x_{c}\right]\right)\right]+\left[J\left(x_{b}\right), J\left(\left[x_{c}, x_{a}\right]\right)\right]+\left[J\left(x_{c}\right), J\left(\left[x_{a}, x_{b}\right]\right)\right] } & =0 \\
{\left[\left[J\left(x_{a}\right), J\left(x_{b}\right)\right], J\left(\left[x_{c}, x_{d}\right]\right)\right]+\left[\left[J\left(x_{c}\right), J\left(x_{d}\right)\right], J\left(\left[x_{a}, x_{b}\right]\right)\right] } & =0
\end{aligned}
$$

- The isomorphism with the standard loop basis is given by the map

$$
x_{a} \mapsto x_{a}^{(0)}, \quad J\left(x_{a}\right) \mapsto x_{a}^{(1)}
$$

- Next step: we want to construct a Lie bi-algebra structure $\delta: \mathfrak{L}^{+} \rightarrow \mathfrak{L}^{+} \otimes \mathfrak{L}^{+}$.

Preliminaries: Manin triple

- A Manin triple is a triple of Lie bi-algebras ($\mathfrak{p}, \mathfrak{p}^{+}, \mathfrak{p}^{-}$) such that
- \mathfrak{p}^{+}and \mathfrak{p}^{-}are Lie subalgebras of \mathfrak{p}
- $\mathfrak{p}=\mathfrak{p}^{+} \oplus \mathfrak{p}^{-}$as a vector space
- $(,)_{\mathfrak{p}}$ is isotopic for $\mathfrak{p}^{ \pm}\left(\right.$i.e. $\left.\left(\mathfrak{p}^{ \pm}, \mathfrak{p}^{ \pm}\right)_{\mathfrak{p}}=0\right)$
- $\left(\mathfrak{p}^{+}\right)^{*} \cong \mathfrak{p}^{-}$
- For any \mathfrak{g} the is a 1-to-1 correspondence between Lie bi-algebra structures on \mathfrak{g} and the Manin triple $\left(\mathfrak{p}, \mathfrak{p}^{+}, \mathfrak{p}^{-}\right)$such that $\mathfrak{p}^{+}=\mathfrak{g}$.
- Let $\mathcal{L}=\mathfrak{g}\left[\left[u^{ \pm 1}\right]\right]$ and $\mathcal{L}^{-}=\mathfrak{g}\left[\left[u^{-1}\right]\right]$. Then $\left(\mathcal{L}, \mathcal{L}^{+}, \mathcal{L}^{-}\right)$is a Manin triple.
- The cocomutator δ on \mathcal{L}^{+}is deduced from the duality relation

$$
(\delta(x), y \otimes z)_{\mathcal{L}}=(x,[y, z])_{\mathcal{L}} \quad \text { where } \quad(x, y)_{\mathcal{L}}=(x, y)_{\mathfrak{g}} \delta_{\operatorname{deg}(x)+\operatorname{deg}(y)+1,0}
$$

For $x_{a} \in \mathcal{L}^{+}, \operatorname{deg}\left(x_{a}\right)=0$ we find

$$
\left(\delta\left(x_{a}\right), y \otimes z\right)_{\mathcal{L}}=0 \quad \Longrightarrow \quad \delta\left(x_{a}\right)=0
$$

since $\operatorname{deg}(y \otimes z)<1$ for any $y, z \in \mathcal{L}^{-}$, and for $J\left(x_{a}\right) \in \mathcal{L}^{+}, \operatorname{deg}\left(J\left(x_{a}\right)\right)=1$ we have

$$
\left(\delta\left(J\left(x_{a}\right)\right), \alpha_{b}^{c d} x_{d}^{(-1)} \otimes x_{c}^{(-1)}\right)_{\mathcal{L}}=\mathfrak{c}_{\mathfrak{g}} \eta_{a b}
$$

$$
\Longrightarrow
$$

$$
\delta\left(J\left(x_{a}\right)\right)=\alpha_{a}^{l k} x_{k} \otimes x_{I}=\left[x_{a} \otimes 1, \Omega_{\mathfrak{g}}\right], \quad \Omega_{\mathfrak{g}}=\eta^{a b} x_{a} \otimes x_{b}
$$

Preliminaries: Quantization [Drinfeld'85 '86]

- A Hopf algebra is a sextuple $(A, \mu, \imath, \Delta, \varepsilon, S)$ where

product	$\mu: A \otimes A \rightarrow A$	unit	$\imath: \mathbb{C} \rightarrow A$
coproduct	$\Delta: A \rightarrow A \otimes A$	couint	$\varepsilon: A \rightarrow \mathbb{C}$
antipode	$S: A \rightarrow A$		

such that (A, μ, \imath) is an algebra and (A, Δ, ε) is a coalgebra.

- Let $\left(\mathcal{L}^{+}, \delta\right)$ be a Lie bi-algebra. We say that a quantized universal enveloping algebra $\left(\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right), \Delta_{\hbar}\right)$ is a quantization of $\left(\mathcal{L}^{+}, \delta\right)$, or that $\left(\mathcal{L}^{+}, \delta\right)$ is the quasi-classical limit of $\left(\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right), \Delta_{\hbar}\right)$, if it is a free $\mathbb{C}[[\hbar]]$ module and
- $\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right) / \hbar \mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right)$is isomorphic to $\mathcal{U}\left(\mathcal{L}^{+}\right)$as a Hopf algebra
- for any $x \in \mathcal{L}^{+}$and any $X \in \mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right)$equal to $x(\bmod \hbar)$ one has

$$
\left(\Delta_{\hbar}(X)-\sigma \circ \Delta_{\hbar}(X)\right) / \hbar \sim \delta(x) \quad(\bmod \hbar)
$$

with σ the permutation map $\sigma(a \otimes b)=b \otimes a$.

- The simplest solution of the quantization conditions for $x_{a}, \mathcal{J}\left(x_{a}\right) \in \mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right)$ satisfying co-associativity property $(\Delta \otimes i d) \circ \Delta=(i d \otimes \Delta) \circ \Delta$ is:

$$
\begin{aligned}
\Delta_{h}\left(x_{a}\right) & =x_{a} \otimes 1+1 \otimes x_{a} \\
\Delta_{h}\left(\mathcal{J}\left(x_{a}\right)\right) & =\mathcal{J}\left(x_{a}\right) \otimes 1+1 \otimes \mathcal{J}\left(x_{a}\right)+\frac{\hbar}{2}\left[x_{a} \otimes 1, \Omega_{\mathfrak{g}}\right]
\end{aligned}
$$

Yangian [Drinfeld'85 '86]

Let \mathfrak{g} be a finite dimensional complex simple Lie algebra. There is, up to isomorphism, a unique homogeneous quantization $\mathcal{Y}(\mathfrak{g}):=\mathcal{U}_{\hbar}(\mathfrak{g}[u])$ of $(\mathfrak{g}[u], \delta)$ generated by elements $x_{a}, \mathcal{J}\left(x_{a}\right)$ satisfying:

$$
\begin{gathered}
{\left[x_{a}, x_{b}\right]=\alpha_{a b}{ }^{c} x_{c}, \quad\left[x_{a}, \mathcal{J}\left(x_{b}\right)\right]=\alpha_{a b}{ }^{c} \mathcal{J}\left(x_{c}\right)} \\
{\left[\mathcal{J}\left(x_{a}\right), \mathcal{J}\left(\left[x_{b}, x_{c}\right]\right)\right]+\left[\mathcal{J}\left(x_{b}\right), \mathcal{J}\left(\left[x_{c}, x_{a}\right]\right)\right]+\left[\mathcal{J}\left(x_{c}\right), \mathcal{J}\left(\left[x_{a}, x_{b}\right]\right)\right]} \\
\\
=\frac{1}{4} \hbar^{2} \beta_{a b c}^{i j k}\left\{x_{i}, x_{j}, x_{k}\right\} \\
{\left[\left[\mathcal{J}\left(x_{a}\right), \mathcal{J}\left(x_{b}\right)\right], \mathcal{J}\left(\left[x_{c}, x_{d}\right]\right)\right]+\left[\left[\mathcal{J}\left(x_{c}\right), \mathcal{J}\left(x_{d}\right)\right], \mathcal{J}\left(\left[x_{a}, x_{b}\right]\right)\right]} \\
\\
=\frac{1}{4} \hbar^{2} \gamma_{a b c d}^{i j k}\left\{x_{i}, x_{j}, \mathcal{J}\left(x_{k}\right)\right\}
\end{gathered}
$$

where

$$
\beta_{a b c}^{i j k}=\alpha_{a}^{i l} \alpha_{b}^{j m} \alpha_{c}^{k n} \alpha_{l m n}, \quad \gamma_{a b c d}^{i j k}=\alpha_{c d}{ }^{e} \beta_{a b e}^{i j k}+\alpha_{a b}^{e} \beta_{c d e}^{i j k}
$$

for all $x_{a} \in \mathfrak{g}$ and $\lambda, \mu \in \mathbb{C}$. The antipode is

$$
S\left(x_{a}\right)=-x_{a}, \quad S\left(\mathcal{J}\left(x_{a}\right)\right)=-\mathcal{J}\left(x_{a}\right)+\frac{1}{4} \hbar \mathfrak{c}_{\mathfrak{g}} x_{a}
$$

The counit is given by $\varepsilon_{\hbar}\left(x_{a}\right)=\varepsilon_{\hbar}\left(\mathcal{J}\left(x_{a}\right)\right)=0$.

Twisted Yangian $Y(\mathfrak{g}, \mathfrak{h})$

Preliminaries: Symmetric pair decomposition

- Let θ be an involution of \mathfrak{g}. Then \mathfrak{g} can be decomposed as $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ with $\theta(\mathfrak{h})=\mathfrak{h}$ and $\theta(\mathfrak{m})=-\mathfrak{m}$ satisfying

$$
[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}, \quad[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}, \quad[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}
$$

here \mathfrak{h} is a (semi) simple Lie algebra, such that (at most) $\mathfrak{h}=\mathfrak{a} \oplus \mathfrak{b} \oplus \mathfrak{k}$.

- The pair $(\mathfrak{g}, \mathfrak{h})$ is called a symmetric pair
- Let $X_{\alpha} \in \mathfrak{h}, Y_{p} \in \mathfrak{m}$, and set $\left(f_{\alpha \beta}{ }^{\gamma}=0\right.$ for $\left.\alpha \neq \beta\right)$

$$
\left[X_{\alpha}, X_{\beta}\right]=f_{\alpha \beta}^{\gamma} X_{\gamma}, \quad\left[X_{\alpha}, Y_{p}\right]=g_{\alpha p}^{q} Y_{q}, \quad\left[Y_{p}, Y_{q}\right]=w_{p q}{ }^{\alpha} X_{\alpha}
$$

- The Casimir operator $C_{\mathfrak{g}}$ in this basis decomposes as $\left(\mathfrak{c}_{\mathfrak{g}}=\mathfrak{c}_{\mathfrak{a}}+\mathfrak{c}_{\mathfrak{b}}+\mathfrak{c}_{\mathfrak{m}}+\mathfrak{c}_{z}\right)$

$$
\begin{aligned}
& C_{\mathfrak{g}}=C_{X}+C_{Y}=\kappa^{\alpha \beta} X_{\alpha} X_{\beta}+\left(\kappa_{\mathfrak{m}}\right)^{p q} Y_{p} Y_{q} \\
& C_{X}=C+C^{\prime}+C_{z}=\left(\kappa_{\mathfrak{a}}\right)^{i j} X_{i} X_{j}+\left(\kappa_{\mathfrak{b}}\right)^{i^{\prime} j^{\prime}} X_{i^{\prime}} X_{j^{\prime}}+\left(\kappa_{\mathfrak{k}}\right)^{z z} X_{z} X_{z}
\end{aligned}
$$

- The following relations hold

$$
\begin{aligned}
& f_{\alpha}{ }^{\beta \nu}\left[X_{\nu}, X_{\beta}\right]=\mathfrak{c}_{(\alpha)} X_{\alpha}, \quad g_{q}{ }^{p \alpha}\left[X_{\alpha}, Y_{p}\right]=\frac{\mathfrak{c}_{\mathfrak{g}}}{2} Y_{q}, \quad w_{\gamma}{ }^{q p}\left[Y_{p}, Y_{q}\right]=\overline{\mathfrak{c}}_{(\gamma)} X_{\gamma} \\
& f_{\alpha}{ }^{\mu \nu} f_{\nu \mu}{ }^{\beta}=\mathfrak{c}_{(\alpha)} \delta_{\alpha}^{\beta}, \quad \quad g_{p}{ }^{r \alpha} g_{\alpha r}{ }^{q}=\frac{\mathfrak{c}_{\mathfrak{g}}}{2} \delta_{p}^{q}, \quad \quad w_{\alpha}^{q p} w_{p q}{ }^{\beta}=\overline{\mathfrak{c}}_{(\alpha)} \delta_{\alpha}^{\beta}
\end{aligned}
$$

Preliminaries: Twisted half-loop Lie algebra I

- Let us extend the involution θ of \mathfrak{g} to the whole of $\mathcal{L}^{+} \simeq \mathfrak{g}[u]$ as follows

$$
\theta\left(x_{a}^{(k)}\right)=(-1)^{k} \theta_{a}^{b} x_{b}^{(k)}
$$

- We write \mathcal{L}^{+}in terms of the elements $\left\{X_{\alpha}^{(k)}, Y_{q}^{(k)}\right\}$ satisfying

$$
\left[X_{\alpha}^{(k)}, X_{\beta}^{(1)}\right]=f_{\alpha \beta}^{\gamma} X_{\gamma}^{(k+1)} \quad\left[X_{\alpha}^{(k)}, Y_{p}^{(1)}\right]=g_{\alpha \rho}{ }^{q} Y_{q}^{(k+1)} \quad\left[Y_{p}^{(k)}, Y_{q}^{(1)}\right]=w_{p q}{ }^{\alpha} X_{\alpha}^{(k+1)}
$$

- The twisted half-loop Lie algebra $\mathcal{H}^{+} \cong \mathfrak{g}[u]^{\theta}$ is a subalgebra of \mathcal{L}^{+}invariant under θ, namely $\mathcal{H}^{+}=\left\{x \in \mathcal{L}^{+} \mid \theta(x)=x\right\}$. We have:

$$
\mathcal{L}^{+}=\mathcal{H}^{+} \oplus \mathcal{M}^{+}, \quad \mathcal{H}^{+}=\left\{X_{\alpha}^{(2 k)}, Y_{q}^{(2 k+1)}\right\}, \quad \mathcal{M}^{+}=\left\{X_{\alpha}^{(2 k+1)}, Y_{q}^{(2 k)}\right\}
$$

Preliminaries: Twisted half-loop Lie algebra II

- Let $\operatorname{rank}(\mathfrak{g}) \geq 2$. Then $\mathcal{H}^{+} \simeq \mathfrak{g}[u]^{\theta}$ is isomorphic to an algebra generated by elements $\left\{X_{\alpha}, B\left(Y_{p}\right)\right\}$ satisfying

$$
\begin{aligned}
{\left[X_{\alpha}, X_{\beta}\right]=f_{\alpha \beta}{ }^{\gamma} X_{\gamma}, \quad\left[X_{\alpha}, B\left(Y_{p}\right)\right] } & =g_{\alpha}{ }^{q} B\left(Y_{q}\right) \\
{\left[B\left(Y_{p}\right), B\left(Y_{q}\right)\right]+\frac{1}{\overline{\mathfrak{c}}_{(\alpha)}} w_{p q}{ }^{\alpha} w_{\alpha}^{r s}\left[B\left(Y_{r}\right), B\left(Y_{s}\right)\right] } & =0 \\
{\left[\left[B\left(Y_{p}\right), B\left(Y_{q}\right)\right], B\left(Y_{r}\right)\right]+\frac{2}{\mathfrak{c}_{\mathfrak{g}}} \kappa_{\mathrm{m}}^{t u} w_{p q}{ }^{\alpha} g_{r \alpha}{ }^{5}\left[\left[B\left(Y_{s}\right), B\left(Y_{t}\right)\right], B\left(Y_{u}\right)\right] } & =0
\end{aligned}
$$

The isomorphism with the standard twisted half-loop basis is given by the map

$$
X_{\alpha} \mapsto X_{\alpha}^{(0)}, \quad B\left(Y_{p}\right) \mapsto Y_{p}^{(1)}
$$

- Let $\operatorname{rank}(\mathfrak{g}) \geq 2$ and $\mathfrak{m}=\{0\}$. Then $\mathcal{H}^{+} \simeq \mathfrak{g}\left[u^{2}\right]$ is isomorphic to an algebra generated by elements $\left\{x_{i}, G\left(x_{j}\right)\right\}$ satisfying

$$
\begin{aligned}
{\left[x_{i}, x_{j}\right]=\alpha_{i j}{ }^{k} x_{k}, } & {\left[x_{i}, G\left(x_{j}\right)\right] } & =\alpha_{i j}^{k} G\left(x_{k}\right) \\
{\left[G\left(x_{i}\right), G\left(\left[x_{j}, x_{k}\right]\right)\right]+\left[G\left(x_{j}\right), G\left(\left[x_{k}, x_{i}\right]\right)\right]+\left[G\left(x_{k}\right),\right.} & \left.G\left(\left[x_{i}, x_{j}\right]\right)\right] & =0
\end{aligned}
$$

The isomorphism with the standard half-loop basis is given by the map

$$
x_{i} \mapsto x_{i}^{(0)}, \quad G\left(x_{i}\right) \mapsto x_{i}^{(2)}
$$

Preliminaries: Lie bi-ideal and twisted Manin triple I [Belliard-Crampe'12]

- The anti-invariant Manin triple twist ϕ of $\left(\mathcal{L}, \mathcal{L}^{+}, \mathcal{L}^{-}\right)$is an automorphism of \mathcal{L} satisfying:
- ϕ is an involution;
- $\phi\left(\mathcal{L}^{ \pm}\right)=\mathcal{L}^{ \pm}$;
- $(\phi(x), y)_{\mathcal{L}}=-(x, \phi(y))_{\mathcal{L}}$ for all $x, y \in \mathcal{L}^{+}$.
- The twist ϕ gives symmetric pair decomposition of the Manin triple $\left(\mathcal{L}, \mathcal{L}^{+}, \mathcal{L}^{-}\right)$ $\mathcal{L}=\mathcal{H} \oplus \mathcal{M}, \quad \mathcal{L}^{ \pm}=\mathcal{H}^{ \pm} \oplus \mathcal{M}^{ \pm} \quad$ with $\quad \phi\left(\mathcal{H}^{ \pm}\right)=\mathcal{H}^{ \pm}, \quad \phi\left(\mathcal{M}^{ \pm}\right)=-\mathcal{M}^{ \pm}$

From the anti-invariance of ϕ for $(,)_{\mathcal{L}}$ it follows

$$
\left(\mathcal{H}^{-}, \mathcal{H}^{+}\right)_{\mathcal{L}}=\left(\mathcal{M}^{-}, \mathcal{M}^{+}\right)_{\mathcal{L}}=0 \quad \text { and } \quad\left(\mathcal{H}^{ \pm}\right)^{*} \cong \mathcal{M}^{\mp}
$$

- The linear map $\tau: \mathcal{H}^{+} \rightarrow \mathcal{M}^{+} \otimes \mathcal{H}^{+}$is a left Lie bi-ideal structure for the couple $\left(\mathcal{H}^{+}, \mathcal{M}^{+}\right)$if it is the dual of the following action of \mathcal{H}^{-}on \mathcal{M}^{-},

$$
\begin{align*}
\tau^{*}: \mathcal{H}^{-} \otimes \mathcal{M}^{-} & \rightarrow \mathcal{M}_{-} \tag{1}\\
x \otimes y & \mapsto[x, y]_{\mathcal{L}_{-}}
\end{align*}
$$

for all $x \in \mathcal{H}^{-}$and $y \in \mathcal{M}^{-}$.

Preliminaries: Lie bi-ideal and twisted Manin triple II [Belliard-Crampe'12]

- The Lie bi-ideal structure of $\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right), \tau: \mathcal{H}^{+} \rightarrow \mathcal{M}^{+} \otimes \mathcal{H}^{+}$is given by

$$
\begin{array}{lll}
\theta \neq \text { id }: \tau\left(X_{\alpha}\right)=0, & \tau\left(B\left(Y_{p}\right)\right)=\left[Y_{p} \otimes 1, \Omega_{\mathfrak{h}}\right], & \Omega_{\mathfrak{h}}=\kappa^{\alpha \beta} X_{\alpha} \otimes X_{\beta} \\
\theta=\text { id }: \tau\left(x_{a}\right)=0, & \tau\left(G\left(x_{a}\right)\right)=\left[J\left(x_{a}\right) \otimes 1, \Omega_{\mathfrak{g}}\right] &
\end{array}
$$

- Let $\theta \neq i d$. For $X_{\alpha}^{(0)}=X_{\alpha}$ we have $\left(X_{\alpha},[y, z]\right) \mathcal{L}=0$ for all $y \in \mathcal{H}^{-}, z \in \mathcal{M}^{-}$ giving

$$
\tau\left(X_{\alpha}\right)=0 .
$$

For $Y_{p}^{(1)}=B\left(Y_{p}\right)$ we have

$$
\left(B\left(Y_{p}\right), Y_{q}^{(-2)}\right)_{\mathcal{L}}=\left(\kappa_{\mathfrak{m}}\right)_{p q}, \quad Y_{q}^{(-2)}=2 \mathfrak{c}_{\mathfrak{g}}^{-1} g_{q}^{\alpha p}\left[Y_{p}^{(-1)}, X_{\alpha}^{(-1)}\right]
$$

Then

$$
\left.\left(\tau\left(B\left(Y_{p}\right)\right), g_{q}^{r \alpha} Y_{r}^{(-1)} \otimes X_{\alpha}^{(-1)}\right)\right)_{\mathcal{L}}=\frac{\mathfrak{c}_{\mathfrak{g}}}{2}\left(\kappa_{\mathrm{m}}\right)_{p q} .
$$

Consider an ansatz $\tau\left(B\left(Y_{p}\right)\right)=v_{p}^{\beta s} Y_{s} \otimes X_{\beta}$. Then we must have

$$
v_{p}^{\alpha s} g_{q s \alpha}=\frac{\mathfrak{c}_{\mathfrak{g}}}{2}\left(\kappa_{\mathfrak{m}}\right)_{p q} \quad \text { giving } \quad \tau\left(B\left(Y_{p}\right)\right)=g_{p}^{\alpha s} Y_{s} \otimes X_{\alpha}=\left[Y_{p} \otimes 1, \Omega_{\mathfrak{h}}\right] .
$$

- The Lie bi-ideal structure for the $\theta=i d$ case follows from the pairing $\left(G\left(x_{a}\right), x_{b}^{(-3)}\right)_{\mathcal{L}}=\left(\kappa_{\mathfrak{g}}\right)_{a b}$ and using similar arguments as above

Preliminaries: Co-ideal subalgebra

- Let $\mathcal{A}=(A, \mu, \eta, \Delta, \varepsilon)$ be a bi-algebra. Then $\mathcal{B}=(B, m, i, \Delta, \epsilon)$ is a left coideal subalgebra of \mathcal{A} if:

1. the triple (B, m, i), where m is the multiplication and i is the unit, is an algebra;
2. B is a subalgebra of A, i.e. there exists an injective homomorphism $\varphi: B \rightarrow A$;
3. coaction Δ is a coideal map $\Delta: B \rightarrow A \otimes B$
4. the following identities hold

$$
\begin{gathered}
(\Delta \otimes i d) \circ \Delta=(i d \otimes \Delta) \circ \Delta \\
(i d \otimes \varphi) \circ \Delta=\Delta \circ \varphi
\end{gathered}
$$

5. $\epsilon: B \rightarrow \mathbb{C}$ is the counit.

- The identities above are called coideal-coassoctivity, it is an analogue of coassociativity for coideal algebras, and coideal-compatibility

Preliminaries: Quantization

- Let $\left(\mathcal{L}^{+}, \delta\right)$ be a Lie bi-algebra and $\left(\mathcal{H}^{+}, \tau\right)$ be a left Lie bi-ideal of $\left(\mathcal{L}^{+}, \delta\right)$. We say that a left coideal subalgebra $\left(\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right), \Delta_{\hbar}\right)$ is a quantization of $\left(\mathcal{H}^{+}, \tau\right)$, or that $\left(\mathcal{H}^{+}, \tau\right)$ is the quasi-classical limit of $\left(\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right), \Delta_{\hbar}\right)$, if it is a free $\mathbb{C}[[\hbar]]$ module and:

1. $\left(\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right), \Delta_{\hbar}\right)$ is a quantization of $\left(\mathcal{L}^{+}, \delta\right)$
2. $\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right) / \hbar \mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right)$is isomorphic to $\mathcal{U}\left(\mathcal{H}^{+}\right)$as a Lie algebra
3. $\left(\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right), \Delta_{\hbar}\right)$ is a left coideal subalgebra of $\left(\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right), \Delta_{\hbar}\right)$
4. for any $x \in \mathcal{H}^{+}$and any $X \in \mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right)$equal to $x(\bmod \hbar)$ one has

$$
\left(\Delta_{\hbar}(X)-(\varphi(X) \otimes 1+1 \otimes X)\right) / \hbar \sim \tau(x) \quad(\bmod \hbar)
$$

with φ the natural embedding $\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right) \hookrightarrow \mathcal{U}_{\hbar}\left(\mathcal{L}^{+}\right)$

Preliminaries: Coideal map

- Let $\theta \neq i d$ ($\mathfrak{m} \neq\{0\}$). The simplest solution of the quantization conditions satisfying properties of a co-ideal subalgebra are

$$
\begin{aligned}
\Delta_{\hbar}\left(X_{\alpha}\right) & =X_{\alpha} \otimes 1+1 \otimes X_{\alpha} \\
\Delta_{\hbar}\left(\mathcal{B}\left(Y_{p}\right)\right) & =\varphi\left(\mathcal{B}\left(Y_{p}\right)\right) \otimes 1+1 \otimes \mathcal{B}\left(Y_{p}\right)+\hbar\left[Y_{p} \otimes 1, \Omega_{X}\right] \\
\varphi\left(\mathcal{B}\left(Y_{p}\right)\right) & =\mathcal{J}\left(Y_{p}\right)+\frac{1}{4} \hbar\left[Y_{p}, C_{X}\right]
\end{aligned}
$$

The grading is $\operatorname{deg}\left(X_{\alpha}\right)=0, \operatorname{deg}\left(\mathcal{B}\left(Y_{p}\right)\right)=1$ and $\operatorname{deg}(\hbar)=1$.

- The embedding $\varphi\left(\mathcal{B}\left(Y_{p}\right)\right)$ is usually reffered to as the MacKay twisted Yangian formula.
- Let $\theta=i d(\mathfrak{m}=\{0\})$. In this case we find

$$
\begin{aligned}
\Delta_{\hbar}\left(x_{a}\right) & =x_{a} \otimes 1+1 \otimes x_{a}, \\
\Delta_{\hbar}\left(\mathcal{G}\left(x_{a}\right)\right) & =\varphi\left(\mathcal{G}\left(x_{a}\right)\right) \otimes 1+1 \otimes \mathcal{G}\left(x_{a}\right)+\hbar\left[\mathcal{J}\left(x_{a}\right) \otimes 1, \Omega_{\mathfrak{g}}\right] \\
& +\frac{1}{4} \hbar^{2}\left(\left[\left[x_{a} \otimes 1, \Omega_{\mathfrak{g}}\right], \Omega_{\mathfrak{g}}\right]+\mathfrak{c}_{\mathfrak{g}}^{-1} \alpha_{\mathfrak{a}}^{b c}\left[\left[x_{c} \otimes 1, \Omega_{\mathfrak{g}}\right],\left[x_{b} \otimes 1, \Omega_{\mathfrak{g}}\right]\right]\right), \\
\varphi\left(\mathcal{G}\left(x_{a}\right)\right) & =\mathfrak{c}_{\mathfrak{g}}^{-1} \alpha_{a}^{b c}\left[\mathcal{J}\left(x_{c}\right), \mathcal{J}\left(x_{b}\right)\right]+\frac{1}{4} \hbar\left[\mathcal{J}\left(x_{a}\right), C_{\mathfrak{g}}\right]
\end{aligned}
$$

The grading is $\operatorname{deg}\left(x_{a}\right)=0, \operatorname{deg}(\hbar)=1$ and $\operatorname{deg}\left(\mathcal{G}\left(x_{a}\right)\right)=2$.

Twisted Yangian $Y(\mathfrak{g}, \mathfrak{h})$ [Belliard-VR'14]

- There is, up to isomorphism, a unique homogeneous quantization $\mathcal{Y}(\mathfrak{g}, \mathfrak{h}):=\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right)$of $\left(\mathcal{L}^{+}, \mathcal{H}^{+}, \tau\right)$. It is generated by $X_{\alpha}, \mathcal{B}\left(Y_{p}\right)$ satisfying:

$$
\begin{aligned}
& {\left[X_{\alpha}, X_{\beta}\right]=f_{\alpha \beta}{ }^{\gamma} X_{\gamma}, \quad\left[X_{\alpha}, \mathcal{B}\left(Y_{p}\right)\right] }=g_{\alpha p}{ }^{q} \mathcal{B}\left(Y_{q}\right) \\
& {\left[\mathcal{B}\left(Y_{p}\right), \mathcal{B}\left(Y_{q}\right)\right]+\frac{1}{\overline{\mathfrak{c}}_{(\alpha)}} w_{p q}{ }^{\alpha} w_{\alpha}^{r s}\left[\mathcal{B}\left(Y_{r}\right), \mathcal{B}\left(Y_{s}\right)\right] }=\hbar^{2} \Lambda_{p q}^{\lambda \mu \nu}\left\{X_{\lambda}, X_{\mu}, X_{\nu}\right\} \\
& {\left[\left[\mathcal{B}\left(Y_{p}\right), \mathcal{B}\left(Y_{q}\right)\right], \mathcal{B}\left(Y_{r}\right)\right]+\frac{2}{\mathfrak{c}_{\mathfrak{g}}} \kappa_{\mathfrak{m}}^{t u} w_{p q}{ }^{\alpha} g_{r \alpha}{ }^{s}\left[\left[\mathcal{B}\left(Y_{s}\right), \mathcal{B}\left(Y_{t}\right)\right], \mathcal{B}\left(Y_{u}\right)\right] } \\
&=\hbar^{2} \Upsilon_{p q r}^{\lambda \mu u}\left\{X_{\lambda}, X_{\mu}, \mathcal{B}\left(Y_{u}\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
\Lambda_{p q}^{\lambda \mu \nu} & =\frac{1}{3}\left(g_{p}^{\mu t} g_{q}^{\lambda u}+\sum_{\alpha}\left(\overline{\mathfrak{c}}_{(\alpha)}\right)^{-1} w_{p q}{ }^{\alpha} w_{\alpha}^{r s} g_{r}^{\mu t} g^{\lambda u}\right) w_{t u}{ }^{\nu} \\
\Upsilon_{p q r}^{\lambda \mu u} & =\frac{1}{4} \sum_{\alpha}\left(w_{s t}{ }^{\alpha} g_{p}{ }^{\lambda s} g_{q}{ }^{\mu t} g_{\alpha r}^{u}+\sum_{\beta} w_{p q}{ }^{\alpha} f_{\alpha}^{\lambda \beta} g_{r}{ }^{\mu s} g_{\beta s}{ }^{u}\right) \\
& +\frac{1}{2 \mathfrak{c}_{\mathfrak{g}}} \sum_{\alpha, \gamma} \kappa_{\mathfrak{m}}^{v x} w_{p q}{ }^{\gamma} g_{r \gamma}{ }^{y}\left(w_{s t}{ }^{\alpha} g_{y}{ }^{\lambda s} g_{v}{ }^{\mu t} g_{\alpha x}{ }^{u}+\sum_{\beta} w_{y v}{ }^{\alpha} f_{\alpha}{ }^{\lambda \beta} g_{x}{ }^{\mu s} g_{\beta s}{ }^{u}\right)
\end{aligned}
$$

The counit is $\epsilon_{\hbar}\left(X_{\alpha}\right)=\epsilon_{\hbar}\left(\mathcal{B}\left(Y_{p}\right)\right)=0$ for all non-central X_{α}, and $\epsilon_{\hbar}\left(X_{z}\right)=c$ with $c \in \mathbb{C}$ for X_{z} central in \mathfrak{h}.

Twisted Yangian $Y(\mathfrak{g}, \mathfrak{g})$ [Belliard-VR'14]

- There is, up to isomorphism, a unique homogeneous quantization $\mathcal{Y}(\mathfrak{g}, \mathfrak{g}):=\mathcal{U}_{\hbar}\left(\mathcal{L}^{+}, \mathcal{H}^{+}\right)$of $\left(\mathcal{L}^{+}, \mathcal{H}^{+}, \tau\right)$. It is generated by $x_{i}, \mathcal{G}\left(x_{i}\right)$ satisfying:

$$
\begin{aligned}
& {\left[x_{a}, x_{b}\right]=\alpha_{a b}{ }^{c} x_{c}, \quad\left[x_{a}, \mathcal{G}\left(x_{b}\right)\right]=\alpha_{a b}{ }^{c} \mathcal{G}\left(x_{c}\right)} \\
& {\left[\mathcal{G}\left(x_{a}\right), \mathcal{G}\left(\left[x_{b}, x_{c}\right]\right)\right]+\left[\mathcal{G}\left(x_{b}\right), \mathcal{G}\left(\left[x_{c}, x_{a}\right]\right)\right]+\left[\mathcal{G}\left(x_{c}\right), \mathcal{G}\left(\left[x_{a}, x_{b}\right]\right)\right]} \\
& \quad=\hbar^{2} \Psi_{a b c}^{i j k}\left\{x_{i}, x_{j}, \mathcal{G}\left(x_{k}\right)\right\}+\hbar^{4}\left(\Phi_{a b c}^{i j k}\left\{x_{i}, x_{j}, x_{k}\right\}+\bar{\Phi}_{a b c}^{i j k l m}\left\{x_{i}, x_{j}, x_{k}, x_{I}, x_{m}\right\}\right)
\end{aligned}
$$

The co-unit is $\epsilon_{\hbar}\left(x_{i}\right)=\epsilon_{\hbar}\left(\mathcal{G}\left(x_{i}\right)\right)=0$.

- Coefficients $\Psi_{a b c}^{i j k}, \Phi_{a b c}^{i j k}, \bar{\Phi}_{a b c}^{i j k l m}$ have a very large generic form, which can be simplified for \mathfrak{g} or low rank. For example, for $\mathfrak{g}=\mathfrak{s l}_{3}$ they are

$$
\begin{aligned}
\Psi_{a b c}^{i j k} & =\frac{1}{3} \beta_{(a b c)}^{i j k}+\alpha_{(a b}{ }^{d} \alpha_{c)}{ }^{k} \phi_{d}^{l i j}-\alpha_{d l}{ }^{k} \alpha_{(a b}{ }^{d} \phi_{c)}^{l i j} \\
\Phi_{a b c}^{i j k} & =-\frac{1}{6} \beta_{a b c}^{i j k} \quad \Phi_{a b c}^{i j k / n}=\frac{1}{36} \alpha_{(a}{ }^{i r} \alpha_{b}^{j s} \beta_{c) r s}^{k l m} \\
\phi_{a}^{b c d} & =\frac{1}{24 \mathfrak{c}_{\mathfrak{g}}} \sum_{\pi}\left(\alpha_{a}^{j k} \alpha_{j}^{\pi(d) r} \alpha_{k}^{\pi(b) s} \alpha_{s r}{ }^{\pi(c)}\right), \quad \beta_{a b c}^{i j k}=\alpha_{a}^{i l} \alpha_{b}^{j m} \alpha_{c}^{k n} \alpha_{l m n}
\end{aligned}
$$

Example I: $\mathcal{Y}\left(\mathfrak{s l}_{3}, \mathfrak{g l}_{2}\right)$

Twisted Yangian $\mathcal{Y}\left(\mathfrak{s l}_{3}, \mathfrak{g l}_{2}\right)$ is generated by

$$
h, e, f, k \quad \text { and } \quad E_{2}, F_{2}, E_{3}, F_{3}
$$

satisfying level-0 relations (of the $\mathfrak{g l}_{2}$ Lie algebra)

$$
[\mathrm{e}, \mathrm{f}]=\mathrm{h}, \quad[\mathrm{~h}, \mathrm{e}]=2 \mathrm{e}, \quad[\mathrm{~h}, \mathrm{f}]=-2 \mathrm{f}, \quad[\mathrm{e}, \mathrm{k}]=[\mathrm{f}, \mathrm{k}]=[\mathrm{h}, \mathrm{k}]=0,
$$

level-1 Lie relations

$$
\begin{array}{lll}
{\left[e, E_{2}\right]=E_{3},} & {\left[f, F_{2}\right]=F_{3},} & {\left[e, F_{2}\right]=\left[f, E_{2}\right]=0,} \\
{\left[e, F_{3}\right]=F_{2},} & {\left[f, E_{3}\right]=E_{2},} & {\left[e, E_{3}\right]=\left[f, F_{3}\right]=0,} \\
{\left[h, E_{2}\right]=-E_{2},} & {\left[h, F_{2}\right]=F_{2},} & {\left[k, E_{i}\right]=3 E_{i},} \\
{\left[h, E_{3}\right]=E_{3},} & {\left[h, F_{3}\right]=-F_{3},} & {\left[k, F_{i}\right]=-3 F_{i},}
\end{array}
$$

level-2 horrific relations

$$
\left[E_{2}, E_{3}\right]=0, \quad\left[F_{2}, F_{3}\right]=0,
$$

level-3 horrific relations

$$
\left[\mathrm{E}_{2},\left[\mathrm{E}_{2}, \mathrm{~F}_{3}\right]\right]=-2 \hbar^{2}\left\{\mathrm{E}_{2}, \mathrm{f}, \mathrm{k}\right\}, \quad\left[\mathrm{F}_{2},\left[\mathrm{E}_{3}, \mathrm{~F}_{2}\right]\right]=-2 \hbar^{2}\left\{\mathrm{~F}_{2}, \mathrm{f}, \mathrm{k}\right\}
$$

Example II: $\mathcal{Y}\left(\mathfrak{s l}_{3}, \mathfrak{s o}_{3}\right)$

Twisted Yangian $\mathcal{Y}\left(\mathfrak{s l}_{3}, \mathfrak{s o}_{3}\right)$ is generated by elements

$$
h, e, f \text { and } H, E, F, E_{2}, F_{2}
$$

satisfying level-0 relations (of the $\mathfrak{5 0}_{3}$ Lie algebra)

$$
[e, f]=h, \quad[h, e]=e, \quad[h, f]=-f
$$

level-1 Lie relations

$$
\begin{aligned}
& {[\mathrm{e}, \mathrm{~F}]=[\mathrm{E}, \mathrm{f}]=\mathrm{H}, \quad[\mathrm{~h}, \mathrm{E}]=\mathrm{E}, \quad[\mathrm{~h}, \mathrm{~F}]=-\mathrm{F},} \\
& {[\mathrm{e}, \mathrm{E}]=2 \mathrm{E}_{2}, \quad[\mathrm{f}, \mathrm{~F}]=2 \mathrm{~F}_{2}, \quad\left[\mathrm{e}, \mathrm{E}_{2}\right]=\left[\mathrm{f}, \mathrm{~F}_{2}\right]=0,} \\
& {\left[\mathrm{e}, \mathrm{~F}_{2}\right]=\mathrm{F}, \quad\left[\mathrm{f}, \mathrm{E}_{2}\right]=\mathrm{E}, \quad\left[\mathrm{~h}, \mathrm{~F}_{2}\right]=-2 \mathrm{~F}_{2}, \quad\left[\mathrm{~h}, \mathrm{E}_{2}\right]=2 \mathrm{E}_{2},} \\
& {[\mathrm{H}, \mathrm{e}]=3 \mathrm{E}, \quad[\mathrm{H}, \mathrm{f}]=-3 F, \quad[H, h]=0,}
\end{aligned}
$$

level-2 horrific relation

$$
[\mathrm{E}, \mathrm{~F}]+\left[\mathrm{E}_{2}, \mathrm{~F}_{2}\right]=\frac{1}{4} \hbar^{2}(\{\mathrm{~h}, \mathrm{~h}, \mathrm{~h}\}-3\{\mathrm{e}, \mathrm{f}, \mathrm{~h}\})
$$

level-3 horrific relation

$$
[[E, F], H]=\frac{3}{2} \hbar^{2}\left(\left\{E_{2}, f, f\right\}+\left\{F_{2}, e, e\right\}\right)+\frac{15}{4} \hbar^{2}(\{E, f, h\}-\{F, e, h\})
$$

Thank $Y(\mathfrak{o}) u$

arXiv : 1401.2143

