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Abstract. We consider smooth actions of totally disconnected groups on sim-
plicial complexes and compare different equivariant cohomology groups asso-

ciated to such actions. Our main result is that the bivariant equivariant co-

homology theory introduced by Baum and Schneider can be described using
equivariant periodic cyclic homology. This provides a new approach to the

construction of Baum and Schneider as well as a computation of equivari-

ant periodic cyclic homology for a natural class of examples. In addition we
discuss the relation between cosheaf homology and equivariant Bredon homol-

ogy. Since the theory of Baum and Schneider generalizes cosheaf homology

we finally see that all these approaches to equivariant cohomology for totally
disconnected groups are closely related.

1. Introduction

In this paper we compare different cohomology theories defined for smooth proper
actions of totally disconnected groups on appropriate topological spaces. More pre-
cisely, we consider bivariant equivariant cohomology in the sense of Baum and
Schneider [4], equivariant periodic cyclic homology [19], cosheaf homology [3] and
equivariant Bredon homology [7], [13]. Our main result explains the relation be-
tween the first two theories. Moreover, by the work of Baum and Schneider, cosheaf
homology can be viewed as a special case of bivariant equivariant cohomology. We
complete the picture by showing that equivariant Bredon homology is naturally
isomorphic to cosheaf homology for proper actions on simplicial complexes.
The approach of Baum and Schneider is based on sheaf theory and unifies several
constructions which appeared previously in the literature. As already mentioned,
it contains as a special case the cosheaf homology groups considered by Baum,
Connes and Higson in connection with the Baum-Connes conjecture [3]. Moreover
it covers a construction of Baum and Connes for discrete groups [2]. Equivariant
Bredon homology is an equivariant generalization of cellular homology. It has been
used by Lück to describe the rationalized left hand side of the assembly maps in K-
and L-theory for discrete groups [13]. Finally, equivariant cyclic homology can be
viewed as a noncommutative generalization of the equivariant de Rham cohomology
of manifolds.
The latter theory is different in nature to the previous ones since it is defined not
only for spaces but also for possibly noncommutative algebras equipped with a
group action. Its construction is based on an extension of the Cuntz-Quillen ap-
proach to cyclic homology. However, computations tend to be more difficult than
in ordinary cyclic homology due to the fact that the basic ingredient in the theory
is not a complex in the usual sense of homological algebra. In fact, our original
motivation was to calculate equivariant periodic cyclic homology for some basic
examples.
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Let us now describe in more detail the contents of this paper. In section 2 we review
some facts about totally disconnected groups and smooth representations. We recall
the concept of a covariant module which plays a central role in equivariant cyclic
homology. In particular we discuss the decomposition of a covariant module into an
elliptic part and a hyperbolic part in the case of totally disconnected groups. In sec-
tion 3 we review the general construction of equivariant cyclic homology. Bivariant
equivariant periodic cyclic homology HPG∗ (A,B) is defined for pairs of G-algebras
A and B. We are interested in the case of certain algebras of smooth functions on
simplicial complexes acted upon by a totally disconnected group G. The appropri-
ate notion of a smooth function on a simplicial complex X is introduced in section
4 where we also study some properties of the resulting algebra C∞c (X) of smooth
functions with compact support. Let us point out that simplicial complexes are
a convenient choice of spaces for two reasons. On the one hand they are special
enough to have a nice de Rham-theoretic description of their cohomology. On the
other hand they are general enough to cover natural examples, most notably in
connection with the Baum-Connes conjecture. In section 5 we review the definition
of bivariant equivariant cohomology in the sense of Baum and Schneider. We study
in particular the case of group actions on simplicial complexes and introduce the
notion of a G-simplicial complex. Section 6 contains an equivariant version of the
Hochschild-Kostant-Rosenberg theorem. This theorem is an important ingredient
in our main result which is formulated and proved in section 7. We show that there
exists a natural isomorphism

HPG∗ (C∞c (X), C∞c (Y )) ∼=
⊕
j∈Z

H∗+2j
G (X,Y )

if X and Y are finite dimensional locally finite G-simplicial complexes and X is
proper. Here H∗G denotes the theory of Baum and Schneider. A small variant of
this result in the case of discrete groups acting on manifolds yields a description of
the theory of Baum and Connes [2] in terms of equivariant cyclic homology. Finally,
in section 8 we review the definitions of equivariant Bredon homology and cosheaf
homology and show that these theories are naturally isomorphic on the category of
G-simplicial complexes. This fact is certainly well-known, but we could not find a
reference.
In a subsequent paper the results obtained here will be used to construct an equi-
variant Chern character for totally disconnected groups [20].
This paper is based on the last chapter of my thesis [18]. I would like to thank J.
Cuntz for his constant support and P. Schneider and H. Glöckner for some helpful
comments.

2. Totally disconnected groups

Let G be locally compact and totally disconnected group. We call an element
t ∈ G elliptic if it is contained in a compact subgroup. The set of all elliptic elements
of G is denoted by Gell. It is known that Gell is a closed subset of G [22]. In contrast
we shall say that an element t ∈ G is hyperbolic if it is not elliptic. Let Ghyp be
the set of all hyperbolic elements of G. Hence, according to these definitions, we
obtain a disjoint union decomposition

G = Gell ∪Ghyp

of the space G. Moreover it follows from the structure theory developped in [22]
that Gell is the union of all compact open subgroups of G. Consequently the set
Ghyp is again open and closed.
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In connection with equivariant cyclic homology we work with smooth representa-
tions of totally disconnected groups on bornological vector spaces. Roughly speak-
ing, a bornological vector space is a vector space V together with a collection of
subsets of V satisfying some axioms modelled on the properties of bounded subsets
in a locally convex vector space. In particular, every locally convex vector space
can be viewed as a bornological vector space with the bounded bornology consisting
of its bounded subsets. In fact, even in the context of locally convex vector spaces,
the bornological approach has several advantages which make it very convenient to
work with. For more information we refer to [14], [15], [19].
Let us recall some basic facts concerning smooth representations and fix our nota-
tion. All bornological vector spaces in this paper are assumed to be convex and
complete. A representation of a totally disconnected group G on a bornological
vector space V is called smooth if the the stabilizers of small subsets in V are open
subgroups of G. To avoid confusion we point out that t ∈ G is in the stabilizer of
a subset S ⊂ V iff t · v = v for all v ∈ S. For instance, the trivial representation of
G on any bornological vector space is a smooth representation. We will frequently
also speak of G-modules instead of smooth representations. A bounded linear map
f : M → N between G-modules is called equivariant if it commutes with the action
of G.
If G is a totally disconnected group we denote by D(G) the space of locally constant
functions on G with compact support. This space is equipped with the fine bornol-
ogy, that is, the smallest possible bornology. Elements of D(G) are also referred to
as smooth functions on G with compact support. The left regular representation
of G on D(G) given by

(s · f)(t) = f(s−1t)

is a basic example of a smooth representation.

Lemma 2.1. Let G be a totally disconnected group and let t ∈ G be hyperbolic.
Then there are no fixed points in the left regular representation D(G) for the action
of t.

Proof. Assume f ∈ D(G) is a nonzero element satisfying t · f = f . It suffices to
consider the case that f is the characteristic function of some nonempty compact
open subset K of G. In this case t · f = f just means t ·K = K. After possibly
translating K from the right we may assume that the identity element e is con-
tained in K. It follows that the closed subgroup generated by t is contained in K
and hence compact. This contradicts the assumption that t is hyperbolic. �
A bornological algebra is a bornological vector space A with an associative multi-
plication given as a bounded linear map A⊗̂A→ A where ⊗̂ denotes the completed
bornological tensor product. Remark that we do not require the existence of a unit
in a bornological algebra. A basic example of a bornological algebra is the Hecke
algebra of a totally disconnected group G. It is obtained by equipping the space
D(G) with the convolution product

(f ∗ g)(t) =

∫
f(s)g(s−1t)ds

where ds is a fixed left Haar measure on G. This algebra is unital iff the group G
is discrete. We will denote the Hecke algebra of G again by D(G).
A module M over a bornological algebra A is called nondegenerate if the module
action A⊗̂M →M is a bornological quotient map. We remark that the category of
smooth representations of G is isomorphic to the category of nondegenerate D(G)-
modules.
A G-algebra is a bornological algebra A which is at the same time a G-module such
that the multiplication A⊗̂A→ A is equivariant. Here the tensor product A⊗̂A is
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equipped with the diagonal action as usual. A particular example of a G-algebra is
the algebra KG which is defined as follows. As a bornological vector space we have
KG = D(G)⊗̂D(G) = D(G×G). The multiplication in KG is given by

(k · l)(s, t) =

∫
G

k(s, r)l(r, t)dr

and the G-action is defined by

(r · k)(s, t) = k(r−1s, r−1t).

This algebra can be viewed as a dense subalgebra of the algebra of compact oper-
ators K(L2(G)) on the Hilbert space L2(G).
Next we recall the definition of a covariant module. For more details we refer to
[19]. Let OG be the space D(G) equipped with pointwise multiplication and the
action of G by conjugation. A covariant module M is a smooth representation of
G which is at the same time a nondegenerate OG-module. The G-module structure
and the OG-module structure are required to be compatible in the sense that

s · (f ·m) = (s · f) · (f ·m)

for all s ∈ G, f ∈ OG and m ∈ M . A bounded linear map f : M → N between
covariant modules is called covariant if it isOG-linear and equivariant. The category
of covariant modules is denoted by G-Mod.
Covariant modules are closely related to equivariant sheaves over the space G-space
G with the adjoint action.

Proposition 2.2. Let G be a totally disconnected group. The functor of taking
global sections with compact support induces an equivalence between the category
ShG(G) of equivariant sheaves over the G-space G with the adjoint action and the
category of G-covariant modules whose underlying bornology is fine.

In other words, covariant modules can be viewed as equivariant sheaves except
that we include a bornology as extra information. The proof of of proposition 2.2
is sketched in [4].
The category of covariant modules is isomorphic to the category of nondegenerate
Cov(G)-modules where Cov(G) = OG o G is the smooth crossed product of OG
with respect to the adjoint action. In particular Cov(G) itself is a covariant module
in a natural way.
Every covariant module M is equipped with a natural automorphism T : M →M .
For M = Cov(G) this automorphism is defined by

T (f)(s, t) = f(s, st)

where we view an element of Cov(G) as a smooth function with compact sup-
port on G × G, the first variable corresponding to OG. To define the opera-
tor T for an arbitrary covariant module M one uses the canonical isomorphism
Cov(G)⊗̂Cov(G)M ∼= M and applies the map T : Cov(G) → Cov(G) from above to

the first tensor factor in Cov(G)⊗̂Cov(G)M .
In some situations we will have to look at the stalks of the sheaf underlying a co-
variant module. Let t ∈ G be a point and consider the ideal It in OG of functions
vanishing at t. Clearly It is a prime ideal and hence we may consider the localisation
Mt of a covariant module M at It. Since G is totally disconnected the space Mt

can be identified with M/ItM in a natural way. The localisation Mt is no longer
a covariant module in general, in addition to the natural OG-module structure we
only have an action of the centralizer Gt of the element t on Mt. A basic observa-
tion is that a sequence 0 → K → E → Q → 0 of (fine) covariant modules is exact
iff the localized sequences 0→ Kt → Et → Qt → 0 are exact for all t ∈ G.
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Recall from [15] that the multiplier algebra M(A) of a bornological algebra A con-
sists of all two-sided multipliers of A. That is, an element (L,R) of M(A) consists
of a bounded right A-module map L : A → A and a bounded left A-module map
R : A→ A such that a(Lb) = (aR)b for all a, b ∈ A.
Since the group G is a disjoint union of the open sets of elliptic and hyperbolic
elements we can define two elements Pell and Phyp in the multiplier algebra M(OG)
of OG as follows. The multiplier Pell is the characteristic function of the set Gell

whereas Phyp = 1 − Pell is the characteristic function of Ghyp. For every covari-
ant module M we obtain a natural direct sum decomposition of covariant modules
M = Mell ⊕Mhyp where Mell = Pell ·M and Mhyp = Phyp ·M .
We conclude this section with the construction of a canonical projection on the
elliptic part Mell of an arbitrary covariant module M . Consider the operator
T : Mell → Mell and let m ∈ Mell. By the definition of Gell and since Mell is
a smooth representation there exists a natural number n such that Tn(m) = m.
We can thus write Mell as direct limit of the spaces M(n) consisting of all elements
m such that Tn(m) = m. Here the direct limit is taken over the natural numbers
where by definition k ≤ l iff k divides l. We define a covariant map E : M(n)→M
by

E(m) =
1

n

n−1∑
j=0

T j(m).

This definition is compatible with the structure maps in the inductive limit and
yields a covariant map E : Mell → Mell. Moreover the relation E2 = E holds by
construction. The map E is the natural projection onto the T -invariant elements
in Mell.

3. Equivariant periodic cyclic homology

In this section we recall the definition of bivariant equivariant periodic cyclic
homology HPG∗ (A,B) given in [19]. An important property of the construction is
that the fundamental object in the theory, the equivariant Hodge tower θΩG(A)
of a G-algebra A is not a complex in the usual sense. In fact, the differential ∂ in
θΩG(A) fails to satisfy ∂2 = 0.
First we have to discuss noncommutative equivariant differential forms. Let A be
a G-algebra. The equivariant n-forms of A are defined by ΩnG(A) = OG⊗̂Ωn(A)

where Ωn(A) = A+⊗̂A⊗̂n and A+ denotes the unitarization of A. The group G
acts diagonally on ΩnG(A) and we have an obvious OG-module structure. In this
way ΩnG(A) becomes a covariant module.

The equivariant Hochschild boundary b : ΩnG(A)→ Ωn−1G (A) is defined by

b(f(t)⊗x0dx1 · · · dxn) = f(t)⊗ x0x1dx2 · · · dxn

+

n−1∑
j=1

(−1)jf(t)⊗ x0dx1 · · · d(xjxj+1) · · · dxn

+ (−1)nf(t)⊗ (t−1 · xn)x0dx1 · · · dxn−1.

Moreover we have the equivariant Connes operator B : ΩnG(A) → Ωn+1
G (A) which

is given by

B(f(t)⊗ x0dx1 · · · dxn) =

n∑
i=0

(−1)nif(t)⊗ t−1 · (dxn+1−i · · · dxn)dx0 · · · dxn−i.

It is straightforward to check that b and B are covariant maps. The natural sym-
metry operator T for covariant modules is of the form

T (f(t)⊗ ω) = f(t)⊗ t−1 · ω
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on ΩnG(A). One easily obtains the relations b2 = 0, B2 = 0 and Bb+bB = id−T for
these operators. This shows that ΩG(A) is a paramixed complex in the following
sense.

Definition 3.1. A paramixed complex M of covariant modules is a sequence of
covariant modules Mn together with differentials b of degree −1 and B of degree +1
satisfying b2 = 0, B2 = 0 and

[b, B] = bB +Bb = id−T.

The most important examples of paramixed complexes are bounded below in the
sense that Mn = 0 if n < N for some fixed N ∈ Z. In particular, the equivariant
differential forms ΩG(A) of a G-algebra A satisfy this condition for N = 0.
The Hodge filtration of a paramixed complex M of covariant modules is defined by

FnM = bMn+1 ⊕
⊕
j>n

Mj .

Clearly FnM is closed under the operators b and B. We write

LnM = Fn−1M/FnM

for the nth layer of the Hodge filtration. If M is bounded below such that Mn = 0
for n < 0 we define the nth level θnM of the Hodge tower of M by

θnM =

n−1⊕
j=0

Mj ⊕Mn/bMn+1.

By definition, the Hodge tower of M is the projective system θM = (θnM)n∈N.
We remark that the image of the Hochschild operator b is not closed in general. In
this case the spaces FnM are possibly incomplete and LnM and θnM may fail to
be separated. However, in the examples that we will study the image of b is always
closed and hence these problems do not show up.
The spaces θnM are equipped with the grading into even and odd forms and the
differential ∂ = B + b. In this way the Hodge tower becomes a projective system
of paracomplexes in the following sense.

Definition 3.2. A paracomplex of covariant modules is a Z2-graded covariant mod-
ule C with a boundary operator ∂ : C → C of degree one such that ∂2 = id−T .

Chain maps of paracomplexes and homotopy equivalences are defined by the
usual formulas.
We will work with the following definition of equivariant periodic cyclic homology
which is equivalent to the one given in [19] using X-complexes.

Definition 3.3. Let G be a totally disconnected group and let A and B be G-
algebras. The bivariant equivariant periodic cyclic homology of A and B is

HPG∗ (A,B) = H∗(HomG(θΩG(A⊗̂KG), θΩG(B⊗̂KG))).

To explain this definition we first remark that the G-algebra KG was defined in
section 2. Secondly, the definition involves covariant maps between projective sys-
tems of covariant modules. Maps between projective systems are always understood
in the sense

Hom((Mi)i∈I , (Nj)j∈J) = lim←−
j∈J

lim−→
i∈I

Hom(Mi, Nj)

of pro-categories. Finally, we consider the usual differential for a Hom-complex
given by

∂(φ) = φ∂A − (−1)|φ|∂Bφ
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for a homogeneous element φ in order to define homology. This makes sense since
the failure of the individual differentials in θΩG(A⊗̂KG) and θΩG(B⊗̂KG) to satisfy
∂2 = 0 is cancelled out by naturality of the operator T .
According to the decomposition of a covariant module into an elliptic and a hyper-
bolic part discussed in section 2 we obtain a decomposition

HPG∗ (A,B) = HPG∗ (A,B)ell ⊕HPG∗ (A,B)hyp

of equivariant periodic cyclic homology where by definition

HPG∗ (A,B)ell = H∗(HomG(θΩG(A⊗̂KG)ell, θΩG(B⊗̂KG)ell))

and accordingly for HPG∗ (A,B)hyp. As we shall see, and as is familiar from the
computation of the cyclic homology of group algebras, the elliptic and hyperbolic
parts of equivariant cyclic homology behave differently.
Let us have a closer look at the elliptic part and recall the definition of the projection
E from section 2. Since the map E : θΩG(A)ell → θΩG(A)ell commutes with the
boundary operators b and B we get a direct sum decomposition

θΩG(A)ell = EθΩG(A)ell ⊕ (1− E)θΩG(A)ell

of paracomplexes. Actually, EθΩG(A)ell is an ordinary complex since T = id on
this space.

Proposition 3.4. Let A be a G-algebra. The paracomplex (1 − E)θΩG(A)ell is
covariantly contractible. Hence the canonical projection θΩG(A)ell → EθΩG(A)ell
is a covariant homotopy equivalence.

Proof. The covariant map id−T : θΩG(A)ell → θΩG(A)ell is diagonal with respect
to the direct sum decomposition EθΩG(A)ell⊕(1−E)θΩG(A)ell. It follows from the
definitions that id−T is injective on (1−E)θΩG(A)ell and id−T = 0 on EθΩG(A)ell.
Now consider an element (1−E)m ∈ (1−E)θnΩG(A)ell with m ∈ θnΩG(A)ell. We
find k ∈ N such that T k(m) = id and hence

(1− E)(m) = (id−T )

k−1∑
j=0

k − j
k

T j(m)

is in the image of id−T . It follows that the map id−T : (1 − E)θΩG(A)ell →
(1−E)θΩG(A)ell is an isomorphism. Since id−T is homotopic to zero we conclude
that (1− E)θΩG(A)ell is covariantly contractible. �

4. Smooth functions on simplicial complexes

In this section we study smooth functions and smooth differential forms on sim-
plicial complexes.
First we have to fix some notation. We denote by ∆k the k-dimensional standard
simplex

∆k = {(x0, . . . , xk) ∈ Rk+1| 0 ≤ xj ≤ 1,

k∑
j=0

xj = 1}

in Rk+1. By construction ∆k is contained in a unique k-dimensional affine subspace
of Rk+1 which will be denoted by Ak. A function f : ∆k → C is called smooth if it
is the restriction of a smooth function on the affine space Ak.
To obtain an appropriate class of functions for our purposes we have to require
conditions on the behaviour of such smooth functions near the boundary ∂∆k of
the simplex ∆k. Roughly speaking, we shall consider only those functions which are
constant in the direction orthogonal to the boundary in a neighborhood of ∂∆k.
Let us explain this precisely. We denote by ∂i∆k the i-th face of the standard
simplex consisting of all points (x0, · · · , xk) ∈ ∆k satisfying xi = 0. Then ∂i∆k
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defines a hyperplane Aki ⊂ Ak in a natural way. To this hyperplane we associate
the vector space Vi which contains all vectors in Rk that are orthogonal to Aki . For
v ∈ Rk denote by ∂v(f) the partial derivative of a smooth function f on Ak in
direction v. We say that a smooth function f : ∆k → C is i-regular if there exists a
neighborhood Ui of ∂i∆k such that ∂v(f)(x) = 0 for all x ∈ Ui and all v ∈ Vi. If we
want to emphasize the particular neighborhood Ui we also say that f is i-regular
on Ui. The function f is called regular if it is i-regular for all i = 0, . . . , k. We
denote by C∞(∆k) the algebra of regular smooth functions on ∆k.
The idea behind these definitions is as follows. Let us denote by C∞(∆k, ∂∆k) ⊂
C∞(∆k) the subalgebra consisting of those functions that vanish on the boundary
∂∆k of ∆k. It is not hard to check that C∞(∆k, ∂∆k) can be identified with the
algebra C∞c (∆k \ ∂∆k) of smooth functions with compact support on the open set
∆k \ ∂∆k. Moreover the inclusion ∂i : ∂i∆k → ∆k of a face induces a homo-
morphism C∞(∆k) → C∞(∂i∆k). Our definition yields a natural class of smooth
functions satisfying these properties.
If we identify ∆1 with the unit interval [0, 1] the algebra C∞(∆1) corresponds to
the algebra of smooth functions on [0, 1] which are constant around the endpoints.
Moreover C∞(∆1, ∂∆1) can be identified with the algebra C∞c (0, 1) of smooth func-
tions with compact support on the open interval (0, 1).
We want to extend the definition of regular smooth functions to arbitrary simplicial
complexes. A regular smooth function on a simplicial complex X is given by a fam-
ily (fσ)σ⊂X of regular smooth functions on the simplices of X which is compatible
with restriction to faces in the obvious way. The function f is said to have com-
pact support if only finitely many fσ in the corresponding family are different from
zero. We denote by C∞c (X) the algebra of regular smooth functions with compact
support on X. If the simplicial complex X is finite we simply write C∞(X) instead
of C∞c (X).
Let us now describe the natural locally convex topology on the algebra C∞c (X)
of regular smooth functions on the simplicial complex X. First we consider again
the case X = ∆k. Let U = (U0, · · · , Uk) be a family of open subsets of ∆k where
each Ui is a neighborhood of ∂i∆k. The collection of all such families is partially
ordered where U ≺ V iff Vj ⊂ Uj for all j in the corresponding families. For a fam-
ily U = (U0, · · · , Uk) we let C∞(∆k,U) ⊂ C∞(∆k) be the subalgebra of smooth
functions which are i-regular on Ui for all i. We equip C∞(∆k,U) with the natural
Fréchet topology of uniform convergence of all derivatives on ∆k. For U ≺ V we
have an obvious inclusion C∞(∆k,U) ⊂ C∞(∆k,V) which is compatible with the
topologies. Moreover C∞(∆k) is obtained as the union of the algebras C∞(∆k,U).
We equip C∞(∆k) with the resulting inductive limit topology. In this way the
algebra C∞(∆k) becomes a nuclear LF-algebra and the natural restriction homo-
morphism C∞(∆k)→ C∞(∂i∆k) associated to the inclusion of a face is continuous.
In order to introduce a topology on C∞c (X) for arbitrary X let K ⊂ X be a finite
subcomplex. A function f = (fσ)σ⊂X ∈ C∞c (X) is said to have support in K if
fσ = 0 for all simplices σ ⊂ X not contained in K. We let C∞K (X) ⊂ C∞c (X) be
the algebra of regular smooth functions with support in K. The algebra C∞K (X)
is equipped with the subspace topology from the finite direct sum of algebras
C∞(σ) for σ ⊂ K. If K ⊂ L are finite subcomplexes the obvious inclusion
C∞K (X) → C∞L (X) is compatible with the topologies. Moreover C∞c (X) is the
union over all finite subcomplexes K of the algebras C∞K (X). Hence we obtain a
natural inductive limit topology on C∞c (X). We equip the algebra C∞c (X) with
the associated precompact bornology (which is equal to the bounded bornology).
In this way C∞c (X) becomes a complete bornological algebra.
Let us have a closer look at the natural restriction homomorphism C∞(∆k) →
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C∞(∂∆k). As above we denote by C∞(∆k, ∂∆k) ⊂ C∞(∆k) the kernel of this
homomorphism which consists of all regular smooth functions on ∆k that have
compact support in the interior ∆k \ ∂∆k.

Proposition 4.1. For all k the restriction homomorphism C∞(∆k) → C∞(∂∆k)
has a continuous linear splitting. Hence we obtain a linearly split extension

C∞(∆k, ∂∆k) // // C∞(∆k) // //// C∞(∂∆k)

of complete bornological algebras.

Proof. By definition we have C∞(∂∆0) = 0 and hence the case k = 0 is trivial.
For k = 1 we identify ∆1 with the unit interval [0, 1]. Choose a smooth function
h : [0, 1] → [0, 1] such that h = 1 on [0, 1/3] and h = 0 on [2/3, 1]. We set
e0 = h, e1 = 1 − h and define σ1 : C∞(∂∆1) = C ⊕ C → C∞(∆1) by σ1(f0, f1) =
f0e0 + f1e1. It is clear that σ1 is a continuous linear splitting for the restriction
map.
In order to treat the case k = 2 we first consider the corresponding lifting problem
for a corner of ∆2 which can be formulated as follows. Let us write R+ for the set
of nonnegative real numbers. A corner of ∆2 can be viewed as a neighborhood of
the point (0, 0) in R+×R+. Given smooth functions f1, f2 : R+ → C that are both
constant in a neighborhood of 0 and satisfy f1(0) = f2(0) we want to construct a
smooth function f : R+ × R+ → C such that

a) f(x1, 0) = f1(x1) and f(0, x2) = f2(x2) for all x1, x2 ∈ R+,
b) the function f is constant in the transversal direction in a neighborhood of the

boundary (R+ × {0}) ∪ ({0} × R+),
c) f depends linearly and continuously on f1 and f2.

In order to construct such a function we first extend f1 and f2 to smooth functions
F1 and F2 on R+ × R+ by setting

F1(x1, x2) = f1(x1), F2(x1, x2) = f2(x2).

Then we use polar coordinates (r, θ) in (R+ × R+) \ {(0, 0)} to define a smooth
function g1 by

g1(r, θ) = h

(
2θ

π

)
where h is the function from above. We extend g1 to R+×R+ by setting g1(0, 0) = 0.
Moreover we define g2 by g2 = 1 − g1 on (R+ × R+) \ {(0, 0)} and g2(0, 0) = 0.
Remark that g1 and g2 are not continuous in (0, 0). We can now define the desired
function f : R+ × R+ → C by

f = f1(0)δ + F1g1 + F2g2 = f2(0)δ + F1g1 + F2g2

where δ is the characteristic function of the point (0, 0). The function f is smooth
in (0, 0) since the assumptions on f1 and f2 imply that f is constant in a neighbor-
hood of this point. Moreover it is easy to verify that f satisfies the conditions a),
b) and c) above. Hence this construction solves the lifting problem for a corner of
∆2.
Now we want to show that the restriction map C∞(∆2)→ C∞(∂∆2) has a contin-
uous linear splitting. One can combine the functions g0 and g1 constructed above
for the corners of ∆2 to obtain functions ej on ∆2 for j = 0, 1, 2 such that

a) each ej is a regular smooth function on ∆2 except in the vertices where ej is
zero,

b) ej = 1 in the interior of ∂j∆2 and ej = 0 in the interior of ∂i∆2 for i 6= j,
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c) for each j there exists a neighborhood Uj of the j-th vertex vj of ∆2 such that∑
i 6=j

ei = 1

holds on Uj except in vj .

Now assume that a regular smooth function f = (f0, f1, f2) on ∂∆2 is given where
fi is defined on the face ∂i∆2. The functions fi can be extended to i-regular smooth
functions Fi on ∆2 by

F0(x0, x1, x2) = f0

(
x1 +

x0
2
, x2 +

x0
2

)
F1(x0, x1, x2) = f1

(
x0 +

x1
2
, x2 +

x1
2

)
F2(x0, x1, x2) = f2

(
x0 +

x2
2
, x1 +

x2
2

)
.

Moreover let χ : ∆2 → C be the characteristic function of the set {v0, v1, v2}
consisting of the three vertices of ∆2. Using these functions we define σ2(f) : ∆2 →
C by

σ2(f) = fχ+ F0e0 + F1e1 + F2e2.

To avoid confusion we point out that fχ is the function which is equal to f in
the vertices of ∆2 and extended by zero to the whole simplex. It is easy to see
that the restriction of σ2(f) to the boundary of ∆2 is equal to f . Using the fact
that Fi is i-regular one checks that σ2(f) is a regular smooth function on ∆2. Our
construction yields a continuous linear map σ2 : C∞(∂∆2)→ C∞(∆2) which splits
the natural restriction homomorphism.
To prove the assertion for k > 2 one proceeds in a similar way as in the case k = 2.
Essentially one has to combine the functions constructed above in an appropriate
way. First we consider again the lifting problem for a corner of ∆k. Such a corner
can be viewed as a neighborhood of (0, . . . , 0) in (R+)k. We are given smooth
functions f1, . . . , fk : (R+)k−1 which are transversally constant in a neighborhood
of the boundary and satisfy certain compatibility conditions. The function fj is
extended to a smooth function Fj : (R+)k → C by setting

Fj(x1, . . . , xk) = fj(x1, . . . , xj−1, xj+1, . . . , xk).

For 1 ≤ i < j ≤ k we define

gij(x1, . . . , xk) = g1(xi, xj), gji(x1, . . . , xk) = g2(xi, xj)

where g1 and g2 are the functions from above. Each function gij is smooth except
in some k−2-dimensional subspace inside the boundary and transversally constant
in a neighborhood of the boundary. If we expand the product∏

0≤i<j≤k

(gij + gji)

we obtain a sum of functions which are smooth except in the boundary and transver-
sally constant in a neighborhood of the boundary. Moreover these functions vanish
in the interior of all faces except possibly one. Using the functions Fj constructed
before we can proceed as in the case k = 2 to solve the lifting problem for the
k-dimensional corner. Since this is a straightforward but lengthy verification we
omit the details.
To treat the simplex ∆k we construct functions ej for j = 0, . . . , k such that

a) ej is regular smooth except in the (k − 2)-skeleton of ∆k where ej = 0,
b) ej = 1 in the interior of ∂j∆k and ej = 0 in the interior of ∂i∆k for i 6= j,
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c) for each point x ∈ ∂∆k there exists a neighborhood Ux of x such that∑
j∈S(x)

ej = 1

in Ux except the (k− 2)-skeleton of ∆k where S(x) is the collection of all i such
that x ∈ ∂i∆k.

Assume that a regular smooth function f = (f0, . . . , fk) on ∂∆k is given where fi is
defined on the face ∂i∆k. The function fi can be extended to an i-regular smooth
function Fi on ∆k by

Fi(x0, . . . , xk) = fi

(
x0 +

xi
k
, . . . , xi−1 +

xi
k
, xi+1 +

xi
k
, . . . , xk +

xi
k

)
.

Moreover let χ : ∆k → C be the characteristic function of the k− 2-skeleton of ∆k.
We define σk(f) : ∆k → C by

σk(f) = fχ+

k∑
j=0

Fj ej .

Using the properties of the functions ej and the fact that Fj is j-regular one checks
that σk(f) is a regular smooth function. The restriction of σk(f) to ∂∆k is equal
to f . In this way we obtain a continuous linear splitting σk : C∞(∂∆k)→ C∞(∆k)
for the natural restriction homomorphism. �
For a simplicial complex X let Xk denote its k-skeleton. Consider the natural
continuous restriction homomorphism C∞c (Xk) → C∞c (Xk−1). This homomor-
phism is surjective provided X is locally finite and its kernel will be denoted by
C∞c (Xk, Xk−1).

Proposition 4.2. Let X be a locally finite simplicial complex. For all k the re-
striction homomorphism C∞c (Xk) → C∞c (Xk−1) has a continuous linear splitting.
Hence we obtain a linearly split extension

C∞(Xk, Xk−1) // // C∞c (Xk) // // C∞c (Xk−1)

of complete bornological algebras.

Proof. We construct a retraction ρ : C∞c (Xk) → C∞c (Xk, Xk−1) for the natu-
ral inclusion. The algebra C∞c (Xk, Xk−1) can be identified with a direct sum⊕

i∈I C
∞(∆k, ∂∆k). Recall that the elements f ∈ C∞c (Xk) are families (fσ)σ⊂Xk .

For each k-simplex η ∈ Xk we define a map

ρη : C∞c (Xk)→ C∞(∆k, ∂∆k), ρη((fσ)) = ρk(fη)

where ρk : C∞(∆k)→ C∞(∆k, ∂∆k) is the retraction obtained in proposition 4.1.
It is easy to check that ρη is continuous. The maps ρσ assemble to yield a map

ρ : C∞c (Xk)→
⊕
i∈I

C∞(∆k, ∂∆k) = C∞(Xk, Xk−1)

which is again continuous. Moreover by construction ρ is a retraction for the inclu-
sion C∞(Xk, Xk−1)→ C∞(Xk). �
We say that a complete bornological algebra K has local units if for every small
subset S ⊂ K there exists an element e ∈ K such that ex = xe = x for all x ∈ S.
Clearly every unital complete bornological algebra has local units. In the bornolog-
ical context the existence of local units has similar consequences as H-unitality
[23], [24] in the algebraic setting. Clearly a complete bornological algebra which
has local units is in particular H-unital in the purely algebraic sense. The proof of
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excision in (algebraic) Hochschild homology for H-unital algebras can immediately
be adapted to show that every extension

K // // E // //// Q

of complete bornological algebras with bounded linear splitting induces a long exact
sequence in (bornological) Hochschild homology provided K has local units. A
similar assertion holds for the homology with respect to the equivariant Hochschild
boundary in the equivariant context.

Proposition 4.3. Let X be a locally finite simplicial complex. For every finite
subcomplex K ⊂ X there exists a positive function e ∈ C∞c (X) such that e = 1 on
K. In particular C∞c (X) has local units.

Proof. First recall that a simplicial complex X is called locally finite if every vertex
of X is contained in only finitely many simplices of X. A simplicial complex is
locally finite iff it is a locally compact space in the weak topology.
The desired function e will be constructed inductively. On X0 we define e(x) = 1 if
x ∈ K0 and e(x) = 0 otherwise. Assuming that e is constructed on Xk−1 we essen-
tially have to extend functions which are defined on the boundary of k-dimensional
simplices to the whole simplices. If e is constant on the boundary we extend it to the
whole simplex as a constant function. In general the extension can be done using
the liftings for the restriction map C∞(∆k)→ C∞(∂∆k) constructed in proposition
4.1. It is clear that the resulting regular smooth function e is equal to 1 on K. The
fact that X is locally finite guarantees that e has compact support. Since every
small subset of C∞c (X) is contained in C∞K (X) for some finite subcomplex K ⊂ X
the previous discussion shows that C∞c (X) has local units. �
Apart from smooth functions we also have to consider differential forms on simpli-
cial complexes. A smooth differential form on the standard simplex ∆k is defined
as the restriction of a smooth differential form on the k-dimensional affine space
Ak to ∆k. Again we have to impose some conditions on the behaviour near the
boundary. Let us consider forms of a fixed degree p. For v ∈ Rk we denote by Lv
the Lie derivative in direction v and by ιv the interior product with the vector field
associated to v. Using the notation established in the beginning of this section we
say that a smooth p-form ω on ∆k is i-regular if there exist a neighborhood Ui of
∂i∆k such that Lv(ω)(x) = 0 and ιv(ω)(x) = 0 for all x ∈ Ui and all v ∈ Vi. The
form ω is called regular if it is i-regular for all i = 0, . . . , k.
Given a simplicial complex X a regular smooth p-form ω on X is a family (ωσ)σ⊂X
of regular smooth p-forms on the simplices of X which is compatible with the nat-
ural restriction maps. A form ω = (ωσ)σ⊂X is said to have compact support if only
finitely many ωσ in the corresponding family are nonzero. We denote by Apc(X) the
space of regular smooth p-forms on X with compact support. The exterior differen-
tial d can be defined on Ac(X) in the obvious way and turns it into a complex. Also
the exterior product of differential forms extends naturally. Note that A0

c(X) can
be identified with the algebra C∞c (X) of regular smooth functions defined above.
As in the case of functions there is a natural topology on the space Apc(X) of regular
smooth p-forms. Let us start with X = ∆k and consider a family U = (U0, · · · , Uk)
of open subsets of ∆k where each Ui is a neighborhood of ∂i∆k. We let Ap(∆k,U) ⊂
C∞(∆k) be the space of smooth p-forms which are i-regular on Ui for all i and equip
this space with the natural Fréchet topology. We obtain a corresponding inductive
limit topology on Ap(∆k). Since one proceeds for an arbitrary simplicial complex
X as in the case of functions we shall not work out the details. Most of the time
we will not have to take into account the resulting bornology on Apc(X) in our
considerations anyway.
We will have to consider differential forms not only as globally defined objects but
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also from the point of view of sheaf theory. The regularity conditions for smooth
differential forms on a simplicial complex X obviously make sense also for an open
subset U of X. Hence we obtain in a natural way sheaves ApX on X by letting
Γ(U,ApX) be the space of regular smooth p-forms on the open set U ⊂ X. We also
write C∞X for the sheaf A0

X . The sheaf C∞X is a sheaf of rings and the sheaves ApX
are sheaves of modules for C∞X . Clearly the space Γc(X,ApX) of global sections with
compact support of ApX can be identified with Apc(X).

Proposition 4.4. Let X be a locally finite simplicial complex. The sheaves ApX
are c-soft for all p and

CX // A0
X

d // A1
X

d // A2
X

d // · · ·

is a resolution of the constant sheaf CX on X.

Proof. In this proof we will tacitly use some results from sheaf theory which can
be found in [8]. Let us first show that the sheaves ApX are c-soft. Since the sheaves
ApX are sheaves of modules for the sheaf of rings C∞X it suffices to show that C∞X
is c-soft. Using the fact that a sheaf F on X is c-soft iff the restrictions F|K are
soft for all compact subsets K ⊂ X we may assume that X is a finite complex.
We have to show that the restriction map Γ(X,C∞X ) → Γ(K,C∞X ) is surjective
for all closed subsets K ⊂ X. Given a regular smooth function f on K we shall
construct a regular smooth function F : X → C which extends f . For x ∈ X0

we put F (x) = f(x) if x ∈ K and F (x) = 0 otherwise. Now assume that F has
been constructed on Xk−1. In order to extend F to Xk we can consider each
k-simplex of X separately. If σ is a k-simplex then F is already given on ∂σ by
induction hypothesis and on the closed subset σ ∩K by assumption. The resulting
function can be extended to a smooth regular function in a small neigborhood U of
∂σ ∪ (σ ∩K). We find a regular smooth function h on σ such that the support of h
is contained in U and h = 1 on ∂σ ∪ (σ ∩K). Using the function h we can extend
F to the whole simplex σ.
To show that the complex of sheaves A•X is a resolution of the constant sheaf on
X we have to prove that the stalks (A•X)x of this complex are resolutions of C for
all x ∈ X. Each point x ∈ X is contained in Xk \ Xk−1 for some k and we find
a k-dimensional simplex σ in X such that x is an element in the interior σ \ ∂σ of
σ. >From the definition of regular smooth differential forms we see that the stalks
(A•X)x depend only on the coordinates of σ. Hence we can identify these stalks
in a natural way with stalks of the sheaves A•Rk of smooth differential forms on
k-dimensional Euclidean space. The Poincaré lemma yields the assertion. �
For technical reasons we need a slightly more general class of spaces in the sequel.
Namely, we will consider closed subspaces of spaces of the form T × K where
T is locally compact and totally disconnected and K is a locally finite simplicial
complex. By definition, a regular smooth function f on the space T×K is a function
which can be written locally around any point as f(t, x) = F (x) for some regular
smooth function F on K. This condition clearly makes sense also for open subsets
of T × K. Now let X ⊂ T × K be a closed subspace. By definition, a regular
smooth function on an open subset U ⊂ X is a function which can be extended to
a regular smooth function in an open neighborhood of U in T × K. This defines
a sheaf C∞X of regular smooth functions on X in a natural way. Similarly one can
consider differential forms and one obtains corresponding sheaves ApX .

Proposition 4.5. Let T be a locally compact totally disconnected space and let
K be a locally finite simplicial complex. For any closed subspace X ⊂ T × K the
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sheaves ApX are c-soft and

CX // A0
X

d // A1
X

d // A2
X

d // · · ·

is a resolution of the constant sheaf CX on X.

Proof. The assertion concerning exactness can be proved as in proposition 4.4. It
suffices to show that C∞T×K is c-soft. Let A ⊂ T ×K be a compact subset and let f
be a regular smooth function on A. We have to construct a regular smooth function
F on T ×K which extends f . First choose open subsets U1, . . . , Un covering A with
Ui = Vi×Wi where Vi ⊂ T is compact open and Wi ⊂ K is open such that f can be
extended to a regular smooth function on U =

⋃n
i=1 Ui which depends only on the

K-variable on each Uj . In order to extend f to T ×K we proceed as follows. If we
set V =

⋃n
i=1 Vi we find compact open subsets Ti ⊂ V such that the restriction of

the extended function f to Ti×K∩U does not depend on the T -variable. Since the
set Tj ×K ∩A is compact the same is true for its projection Kj = πK(Tj ×K ∩A)
to K. By hypothesis gj(x) = f(t, x) for (t, x) ∈ Tj ×K ∩ A yields a well-defined
regular smooth function on Kj . We use proposition 4.4 to extend gj to a regular
smooth function Gj on K. Setting F (t, x) = Gj(x) for (t, x) ∈ Tj ×K we obtain
a regular smooth function F on Tj ×K which restricts to f on Tj ×K ∩ A. Since
T \V ⊂ T is an open and closed subset we may set in addition F = 0 on (T \V )×K
to obtain the desired extension of f to a regular smooth function on T ×K. �

5. Bivariant equivariant cohomology

In this section we review the definition of bivariant equivariant cohomology given
by Baum and Schneider [4].
Let G be a totally disconnected group. A locally compact G-space is a locally
compact space X with a continuous action of G. To every locally compact G-space
X we associate the Brylinski space

X̂ = {(t, x) ∈ G×X| t is elliptic and t · x = x} ⊂ G×X
and the extended Brylinski space

X̄ = {(t, x) ∈ G×X| t · x = x} ⊂ G×X.

Note that we have X̂ = X̄ if the action of G on X is proper. If G is discrete we
may view X̂ as the disjoint union of the fixed point sets Xt = {x ∈ X| t · x = x} of
elements t ∈ G of finite order. Similarly, X̄ is the disjoint union of the fixed point
sets Xt of arbitrary elements t ∈ G in this case.

Lemma 5.1. Let G be a totally disconnected group and let X be a locally compact
G-space. Then X̂ and X̄ are closed subspaces of G×X.

Proof. Let µ : G × X → X × X be the map defined by µ(t, x) = (t · x, x). Then
X̄ = µ−1(∆) is the preimage of the diagonal ∆ ⊂ X ×X and hence closed. Since

Gell is a closed subspace of G and X̂ = X̄∩(Gell×X) it follows that X̂ is closed. �
There is a G-action on the (extended) Brylinski space of a locally compact G-space
X given by the formula

s · (t, x) = (sts−1, s · x).

In this way X̂ and X̄ become locally compact G-spaces.
The space X̄ will appear in the equivariant Hochschild-Kostant-Rosenberg theorem
in section 6. For the remaining part of this section we will work only with the or-
dinary Brylinksi space X̂.
Since the category ShG(X̂) has enough injectives we can choose an injective reso-
lution

CX̂ // I0 // I1 // I2 // · · ·
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of the constant sheaf CX̂ in the category of equivariant sheaves on X̂. Consider

the complex C•c (X̂) obtained by taking global sections with compact support in I•.

Since the sheaves Ij are equivariant there is a natural G-action on Cjc (X̂) for all j.

Moreover we have an OG-module structure on Cjc (X̂) given by

(fσ)(s, x) = f(s)σ(s, x)

for f ∈ OG and σ ∈ Cjc (X̂). Observe that only the elliptic part of OG acts

nontrivially on Cjc (X̂). It is easy to check that this OG-module structure and

the natural G-action combine to give each Cjc (X̂) the structure of a fine covariant
module.
With these preparations the definition of bivariant equivariant cohomology given
by Baum and Schneider can be formulated as follows.

Definition 5.2. Let G be a totally disconnected group and let X and Y be locally
compact G-spaces. The (delocalized) bivariant equivariant cohomology of X and Y
is

Hn
G(X,Y ) = ExtnG(C•c (X̂), C•c (Ŷ ))

where ExtG denotes the hyperext functor in the category of fine covariant modules.

The functor ExtG can be viewed as the Hom-functor in the derived category of
fine covariant modules. In order to compute the right-hand side in definition 5.2
choose a complex I•(Ŷ ) consisting of injective fine covariant modules together with

a quasiisomorphism C•c (Ŷ )→ I•(Ŷ ). Then

ExtnG(C•c (X̂), C•c (Ŷ )) = Hn(HomG(C•c (X̂), I•(Ŷ )),

hence in order to calculate ExtG we have to compute the homology of a certain
Hom-complex.
Let us now specialize to group actions on simplicial complexes and give some more
definitions.
Recall that a simplicial map between simplicial complexes X and Y is a continuous
map f : X → Y such that the restriction of f to any simplex of X is an affine map
into a simplex of Y . We say that the group G acts simplicially on X if every t ∈ G
acts as a simplicial map.
Let G be a totally disconnected group. Assume that G acts simplicially on a
simplicial complex X. The action is called type-preserving if for each simplex σ of
X the stabilizer Gσ fixes the vertices of σ. In other words, an element of G which
fixes a simplex actually acts trivially on this simplex. Passing to the barycentric
subdivision one may always achieve that G acts type-preserving. The action of G
is called smooth if all isotropy groups are open.
Let us now specify the class of G-spaces we are mainly interested in.

Definition 5.3. Let G be a totally disconnected group. A G-simplicial complex is
a simplicial complex X with a type-preserving smooth simplicial action of G. A
morphism of G-simplicial complexes is an equivariant simplicial map f : X → Y .

Note that every G-simplicial complex is a G-CW -complex. For the definition of
a G-CW -complex we refer to [12]. If X is a G-simplicial complex the space XH of
invariants with respect to a subgroup H ⊂ G is a subcomplex of X. The action of
G on X is proper iff the stabilizer of every point is a compact open subgroup of G.
Let X and Y be locally finite G-simplicial complexes. Our goal is to obtain a
description of Hn

G(X,Y ) which is closer to the definition of equivariant cyclic ho-
mology.
Due to lemma 5.1 the Brylinski space X̂ associated to a locally finite G-simplicial
complex X is a closed subspace of G×X. Hence the formalism of regular smooth
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differential developped in section 4 may be applied to X̂. According to proposition
4.5 we obtain a c-soft resolution

CX̂ // A0
X̂

d // A1
X̂

d // A2
X̂

d // · · ·

of the constant sheaf CX̂ by regular smooth differential forms. This is a resolution

in the category ShG(X̂) of equivariant sheaves on X̂. We equip the spaces Apc(X̂)
of global sections with the fine bornology.

Proposition 5.4. Let X and Y be locally finite G-simplicial complexes. Then we
have a natural isomorphism

Hn
G(X,Y ) = ExtnG(A•c(X̂),A•c(Ŷ )).

Proof. This isomorphism follows from proposition 4.5 and the fact that ExtG does
not distinguish between quasiisomorphic complexes. �
Now assume in addition that X is finite dimensional. Then the complex A•c(X̂)
is not only bounded below but also bounded above. This means that in order to
compute ExtnG(A•c(X̂),A•c(Ŷ )) we may use a complex P •(X̂) consisting of projective

fine covariant modules together with a quasiisomorphism p : P •(X̂)→ A•c(X̂) and
obtain

ExtnG(A•c(X̂),A•c(Ŷ )) = Hn(HomG(P •(X̂),A•c(Ŷ ))).

If D = dim(X̂) is the dimension of X̂ we can construct a natural projective resolu-

tion P •(X̂) of A•c(X̂) in such a way that we obtain a commutative diagram of the
form

· · · δ // PD−2(X̂)
δ //

p

��

PD−1(X̂)
δ //

p

��

PD(X̂) //

p

��

0

· · · d // AD−2c (X̂)
d // AD−1c (X̂)

d // ADc (X̂) // 0

We may require in addition that P j(X̂) = EP j(X̂) for all j where E is the canonical
projection on the elliptic part of a covariant module. This means in particular that
the hyperbolic part of P j(X̂) is zero. In this case we call the projective resolution

P •(X̂) regular. Remark that T = id for the natural operator T on a regular

projective resolution P •(X̂).

Let us view A•c(X̂) as a mixed complex by setting the Hochschild boundary equal
to zero and letting B = d be the exterior differential. To this mixed complex we
associate a tower of supercomplexes Ac(X̂) = (Ac(X̂)k) as follows. We define

Ac(X̂)k =

k⊕
j=0

Ajc(X̂)

and equip this space with the ordinary grading into even and odd forms and differ-
ential B + b = d. Observe that Ac(X̂)k = Ac(X̂)D for k ≥ D = dim(X̂). Hence

the tower of supercomplexes Ac(X̂) is isomorphic to the constant supercomplex

Ac(X̂) ∼=
D⊕
j=0

Ajc(X̂).

In a similar way a regular projective resolution P •(X̂) of A•c(X̂) satisfies the axioms

of a mixed complex. Let us define a tower of supercomplexes P (X̂) = (P (X̂)k) as
follows. We set

P (X̂)k = P−(k+1)(X̂)/δ(P−(k+2)(X̂))⊕
k⊕

j=−k

P j(X̂)⊕ δ(P k(X̂))
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Remark that for k ≥ D this becomes

P (X̂)k = P−(k+1)(X̂)/δ(P−(k+2)(X̂))⊕
D⊕

j=−k

P j(X̂).

Clearly we consider the grading into even and odd components on P (X̂)k and
equip these spaces with the differential δ. Recall from [19] that a a covariant pro-
module is called relatively projective if it has the lifting property with respect to
covariant maps between covariant pro-modules having a pro-linear section. Since
the covariant modules P j(X̂) are projective for all j it is easy to see that the inverse

system P (X̂) is relatively projective. The chain map p : P •(X̂) → A•c(X̂) induces

a covariant chain map of supercomplexes p : P (X̂)→ Ac(X̂).

Proposition 5.5. Let X and Y be finite dimensional locally finite G-simplicial
complexes. Then⊕

j∈Z
H∗+2j
G (X,Y ) = H∗(lim−→

k

HomG(P (X̂)k,Ac(Ŷ )))

= H∗(HomG(P (X̂),Ac(Ŷ )))

where in the last expression we take homomorphisms in the pro-category pro(G-Mod)
of covariant modules.

Proof. The component of degree n in HomG(P •(X̂),A•c(Ŷ )) is⊕
i∈Z

HomG(P i(X̂),Ai+nc (Ŷ )),

here a direct sum occurs because A•c(Ŷ ) is a bounded complex. We deduce⊕
j∈Z

Hom∗+2j
G (P •(X̂),A•c(Ŷ )) =

⊕
j∈Z

⊕
i∈Z

HomG(P i(X̂),Ai+2j+∗
c (Ŷ ))

and obtain natural maps

λk : HomG(P (X̂)k,Ac(Ŷ ))→
⊕
j∈Z

Hom∗+2j
G (P •(X̂),A•c(Ŷ ))

for all k ≥ dim(X̂). It is easy to check that each λk is a chain map. Moreover the
maps λk are compatible with the projections in the first variable. The resulting
map

λ : lim−→
k

HomG(P (X̂)k,Ac(Ŷ ))→
⊕
j∈Z

Hom∗+2j
G (P •(X̂),A•c(Ŷ ))

is an isomorphism of complexes. �

6. The equivariant Hochschild-Kostant-Rosenberg theorem

The algebra C∞c (X) of regular smooth functions on a G-simplicial complex X is a
G-algebra in a natural way. In this section we identify the homology of ΩG(C∞c (X))
with respect to the equivariant Hochschild boundary. This will be an important
ingredient in the proof of theorem 7.1 below.
Recall from section 5 the definition of the extended Brylinski space X̄. Let us view
Ac(X̄) as a (para-) mixed complex with b-boundary equal to zero and B-boundary
equal to the exterior differential d. We define the equivariant Hochschild-Kostant-
Rosenberg map α : ΩG(C∞c (X))→ Ac(X̄) by

α(f(t)⊗ a0da1 · · · dan) =
1

n!
f(t) a0da1 ∧ · · · ∧ dan|Xt

where we recall that Xt denotes the set of fixed points under the action of t.
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Theorem 6.1. Let G be a totally disconnected group and let X be a locally finite
G-simplicial complex. The equivariant Hochschild-Kostant-Rosenberg map

α : ΩG(C∞c (X))→ Ac(X̄)

is a map of paramixed complexes and induces an isomorphism on the homology with
respect to the Hochschild boundary.

Proof. Let us first show that α is a map of paramixed complexes. We compute

αb(f(t)⊗ a0da1 · · · dan) =

n−1∑
j=0

(−1)jα(f(t)⊗ a0da1 · · · d(ajaj+1) · · · dan)

+ (−1)nα(f(t)⊗ (t−1 · an)a0da1 · · · dan−1)

=
1

(n− 1)!

( n−1∑
j=0

(−1)jf(t) a0da1 ∧ · · · ∧ d(ajaj+1) · · · ∧ dan|Xt

+ (−1)nf(t)ana0da1 ∧ · · · ∧ dan−1|Xt
)

= 0

where we use (t−1 · an)(x) = an(t · x) = an(x) for all x ∈ Xt. Moreover we have

αB(f(t)⊗ a0da1 · · · dan) =

n∑
j=0

(−1)njα(f(t)⊗ t−1 · (dan−j+1 · · · dan)da0 · · · dan−j)

=
1

(n+ 1)!

n∑
j=0

(−1)njf(t) dan−j+1 ∧ · · · ∧ dan ∧ da0 ∧ · · · ∧ dan−j|Xt

=
1

n!
f(t) da0 ∧ · · · ∧ dan|Xt = dα(f(t)⊗ a0da1 · · · dan)

and hence α commutes with the boundary operators as claimed.
In order to show that α induces an isomorphism in homology it suffices to prove
that the localized maps

αt : ΩG(C∞c (X))t → Ac(X̄)t = Ac(Xt)

are quasiisomorphisms for all t ∈ G. Let us consider the case that X is an equi-
variant simplex. By definition, an equivariant simplex is a space of the form
X = G/H × ∆k where H is an open subgroup of G and the action on G/H is
given by translation. The boundary ∂X of X is defined by ∂X = G/H × ∂∆k.
Recall from section 4 that C∞c (X, ∂X) denotes the kernel the restriction map
C∞c (X) → C∞(∂X). Similarly, Ac(Xt, ∂Xt) is the kernel of the natural map
Ac(Xt)→ Ac(∂Xt). The localized equivariant Hochschild-Kostant-Rosenberg map
restricts to a chain map

αt : ΩG(C∞c (X, ∂X))t → Ac(Xt, ∂Xt).

Let us specialize further to the case G = Z and t = 1. We write ∆k[n] for the
Z-equivariant simplex Z/nZ×∆k. Remark that the fixed point set ∆k[n]1 for the
action of 1 ∈ Z is empty for n = 0 or n > 1.

Proposition 6.2. With the notation as above we have for every k ≥ 0:

a) The localized equivariant Hochschild-Kostant-Rosenberg map

α1 : ΩZ(C∞(∆k[1], ∂∆k[1]))1 → A(∆k[1]1, ∂∆k[1]1)

is a quasiisomorphism.
b) For n = 0 and n > 1 the homology of ΩZ(C∞c (∆k[n], ∂∆k[n]))1 with respect to

the equivariant Hochschild boundary is trivial.
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Proof. a) By definition we have ∆k[1] = ∆k and the action is trivial. The algebra
C∞(∆k[1], ∂∆k[1]) can be identified with the algebra C∞c (∆k\∂∆k) of smooth func-
tions with compact support on ∆k \ ∂∆k. Moreover the space A(∆k[1]1, ∂∆k[1]1)
consists of differential forms with compact support on ∆k \ ∂∆k. Hence the asser-
tion follows from the ordinary Hochschild-Kostant-Rosenberg theorem [9], [17].
b) Let n = 0 or n > 1 and let B be any unital complete bornological algebra. We
equip B with the trivial Z-action and consider the Z-algebra Cc(Z/nZ)⊗̂B. An el-
ement of this algebra can be written as a linear combination of elements x[i] where
x[i] ∈ Cc(Z/nZ)⊗̂B for i ∈ Z/nZ denotes the characteristic function located in i
with value x ∈ B.
We view the localized Hochschild complex ΩZ(Cc(Z/nZ)⊗̂B)1 as a double complex
with two columns. This corresponds to the natural decomposition

ΩnG(C) = OG⊗̂C⊗̂n+1 ⊕OG⊗̂C⊗̂n

of the space of equivariant differential forms of a G-algebra C. Since B is unital the
algebra Cc(Z/nZ)⊗̂B has local units. Consequently, the natural inclusion of the
first column of ΩZ(Cc(Z/nZ)⊗̂B)1 into the total complex induces an isomorphism
in homology. Let us construct a contracting homotopy h for the first column of
ΩZ(Cc(Z/nZ)⊗̂B)1 as follows. We define

h(x0[i0]dx1[i1] · · · dxp[ip]) = (−1)l+1x0[i0]dx1[i1] · · · d1[il+1]dxl+1[il+1] · · · dxp[ip]

if 0 ≤ l ≤ p− 1 is the smallest number such that il 6= il+1 and

h(x0[i0]dx1[i1] · · · dxp[ip]) = 1[i0]dx0[i0] · · · dxp[ip]

if ij = ij+1 for 0 ≤ j ≤ p − 1. An easy calculation shows that h is indeed a
contracting homotopy. Hence the complexes ΩZ(Cc(Z/nZ)⊗̂B)1 are acyclic for
n = 0 or n > 1.
Due to proposition 4.2 we have an extension of Z-algebras with bounded linear
splitting

C∞c (∆k[n], ∂∆k[n]) // // C∞c (∆k[n]) // //// C∞c (∂∆k[n])

The algebras C∞c (∆k[n]) and C∞c (∂∆k[n]) are of the form Cc(Z/nZ)⊗̂B described
above. Hence the complexes ΩZ(C∞c (∆k[n]))1 and ΩZ(C∞c (∂∆k[n]))1 are acyclic.
Since the algebra C∞c (∆k[n], ∂∆k[n]) has local units we obtain a long exact sequence
in homology showing that ΩZ(C∞c (∆k[n], ∂∆k[n])1 is acyclic as well. This yields
the claim. �
Let us come back to the localized Hochschild-Kostant-Rosenberg map for arbitrary
G and t and an equivariant simplex X = G/H ×∆k. We extend proposition 6.2 to
this situation as follows. There is a canonical group homomorphism Z→ G which
maps 1 to t and we may view X = G/H × ∆k as a Z-space in this way. Clearly
the localized complexes ΩG(C∞c (X, ∂X))t and ΩZ(C∞c (X, ∂X))1 are isomorphic
since the equivariant Hochschild boundary in ΩG(C∞c (X, ∂X))t only depends on
the action of t. Viewed as a Z-space, X can be written as disjoint union

X =
⋃
j∈J

∆k[nj ]

for some index set J where ∆k[n] = Z/nZ × ∆k as before. In this decomposi-
tion the spaces ∆k[n] may appear with multiplicity. Let us determine how αt :
ΩZ(C∞c (X, ∂X))t → Ac(Xt, ∂Xt) can be described in terms of the spaces ∆k[nj ].
On the right hand side the decomposition of X induces a direct sum decomposition

Ac(Xt, ∂Xt) =
⊕
j∈J
Ac(∆k[nj ]

1, ∂∆k[nj ]
1).
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Moreover we have an isomorphism

C∞c (X) =
⊕
j∈J

C∞c (∆k[nj ])

of Z-algebras and a natural inclusion of complexes

ι :
⊕
j∈J

ΩZ(C∞c (∆k[nj ], ∂∆k[nj ]))1 → ΩZ

(⊕
j∈J

C∞c (∆k[nj ], ∂∆k[nj ])
)
1

on the left hand side. It follows from the existence of local units and an inductive
limit argument that the map ι is a quasiisomorphism with respect to the Hochschild
boundary.
Hence, up to quasiisomorphism, the map αt can be decomposed as a direct sum of
maps α1 : ΩZ(C∞c (∆k[nj ], ∂∆k[nj ]))1 → Ac(∆k[nj ]

1, ∂∆k[nj ]
1). We apply propo-

sition 6.2 and obtain the following statement.

Proposition 6.3. Let G be a totally disconnected group and let X = G/H × ∆k

be an equivariant simplex. For every t ∈ G the localized equivariant Hochschild-
Kostant-Rosenberg map

αt : ΩG(C∞c (X, ∂X))t → Ac(Xt, ∂Xt)

is a quasiisomorphism.

Let us now finish the proof of theorem 6.1. First we assume that the G-simplicial
complex X is finite dimensional and use induction on the dimension of X. If
dim(X) = 0 the space X is a disjoint union of homogenous spaces G/H. As
above it suffices to consider a single equivariant simplex X = G/H. Since we
have C∞c (X) = C∞c (X, ∂X) in this case the assertion follows from proposition
6.3. Assume that dim(X) = k and that the assertion is proved for all G-simplicial
complexes of dimension k − 1. We consider the commutative diagram

ΩG(C∞c (X,Xk−1))t //

αt

��

ΩG(C∞c (X))t //

αt

��

ΩG(C∞c (Xk−1))t

αt

��
Ac(Xt, (Xk−1)t) // Ac(Xt) // Ac((Xk−1)t)

where Xk−1 denotes the k− 1-skeleton of X. The algebra C∞c (X,Xk−1) is a direct
sum of algebras of the form C∞c (σ, ∂σ) where σ = G/H × ∆k is an equivariant
simplex. In particular C∞c (Xk, Xk−1) has local units. Hence the upper horizontal
sequence induces a long exact sequence in homology. Proposition 6.3 implies that
the left vertical map is a quasiisomorphism. The right vertical map is a quasi-
isomorphism by induction hypothesis. Hence αt : ΩG(C∞c (X))t → Ac(Xt) is a
quasiisomorphism as well.
For an arbitrary G-simplicial complex X we take the inductive limit over all finite
dimensional subcomplexes in order to obtain the assertion. This completes the
proof of theorem 6.1.

7. The comparison theorem

In this section we prove the following theorem which describes the relation be-
tween equivariant periodic cyclic homology and bivariant equivariant cohomology
in the sense of Baum and Schneider.

Theorem 7.1. Let G be a totally disconnected group and let X and Y be finite
dimensional locally finite G-simplicial complexes. If the action of G on X is proper
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there exists a natural isomorphism

HPG∗ (C∞c (X), C∞c (Y )) ∼=
⊕
j∈Z

H∗+2j
G (X,Y ).

Even if the action on X is not proper the elliptic part of HPG∗ (C∞c (X), C∞c (Y )) is

naturally isomorphic to
⊕

j∈ZH
∗+2j
G (X,Y ).

It follows immediately from the definitions that the theory defined by Baum and
Schneider a priori only has an elliptic part. Hence theorem 7.1 states in particular
that the hyperbolic part of HPG∗ (C∞c (X), C∞c (Y )) is zero provided the action of
G on X is proper. In general the hyperbolic part of HPG∗ (C∞c (X), C∞c (Y )) might
be different from zero, however, this cannot be detected using the theory of Baum
and Schneider.
The proof of theorem 7.1 is divided into several steps. First we shall identify HPG∗
with an auxiliary bivariant theory hG∗ under the assumptions of the theorem. We
denote by Fine the natural forgetful functor on covariant modules which changes
the bornology to the fine bornology. The functor Fine is extended to the category
pro(G-Mod) in the obvious way. With this notation we define the bivariant theory
hG∗ (A,B) for G-algebras A and B by

hG∗ (A,B) = H∗(HomG(Fine(θΩG(A⊗̂KG)),Fine(θΩG(B⊗̂KG)))).

This definition is identical to the definition of HPG∗ except that we do not require
the covariant maps in the Hom-complex to be bounded. Evidently hG∗ shares many
properties with HPG∗ . For our purposes it is important that hG∗ satisfies excision in
both variables. This follows immediately from the generalized excision theorem in
equivariant periodic cyclic homology [19]. Moreover there is an obvious composition
product for hG∗ and a natural transformation

v : HPG∗ (A,B)→ hG∗ (A,B)

which is obtained by forgetting the bornology. It is clear that v is compatible with
the composition product.

Proposition 7.2. Let X be a finite dimensional locally finite G-simplicial complex
and let B be an arbitrary G-algebra. Then the natural map

v : HPG∗ (C∞c (X), B)→ hG∗ (C∞c (X), B)

is an isomorphism.

Proof. We use induction on the dimension of X. For dim(X) = 0 the algebra
C∞c (X) is equipped with the fine bornology and θΩG(C∞c (X)⊗̂KG) is a projective
system of fine spaces. Hence the complexes used in the definition of HPG∗ and
hG∗ are equal and v is clearly an isomorphism in this case. Now assume that the
assertion is true for all G-simplicial complexes of dimension smaller than k and that
dim(X) = k. Due to proposition 4.2 we have a linearly split extension of G-algebras
of the form ⊕

j∈J C
∞
c (σj , ∂σj) // // C∞c (X) // //// C∞c (Xk−1)

where each σj = G/Hj × ∆k is an equivariant simplex. Using the six-term exact
sequences for HPG∗ and hG∗ obtained from the excision theorem it suffices to show
that

v : HPG∗

(⊕
j∈J

C∞c (σj , ∂σj), B
)
→ hG∗

(⊕
j∈J

C∞c (σj , ∂σj), B
)

is an isomorphism. Applying excision again we see that in both theories HPG∗ and
hG∗ the G-algebras

⊕
j∈J C

∞
c (σj , ∂σj) and

⊕
j∈J Cc(G/Hj) are equivalent. Since v
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is compatible with products the assertion follows now from the case dim(X) = 0
which we have already proved. �

Corollary 7.3. For all finite dimensional locally finite G-simplicial complexes X
and Y we have a natural isomorphism

HPG∗ (C∞c (X), C∞c (Y )) ∼= hG∗ (C∞c (X), C∞c (Y )).

We come to the next ingredient in the proof of theorem 7.1. For an arbitrary
G-algebra B one defines a map tr : ΩG(B⊗̂KG)→ ΩG(B) by

tr(f(t)⊗ (x0 ⊗ k0)d(x1 ⊗ k1) · · · d(xn ⊗ kn))

= f(t)⊗ x0dx1 · · · dxn
∫
k0(r0, r1)k1(r1, r2) · · · kn(rn, tr0)dr0 · · · drn

and

tr(f(t)⊗ d(x1 ⊗ k1) · · · d(xn ⊗ kn))

= f(t)⊗ dx1 · · · dxn
∫
k1(r1, r2) · · · kn(rn, tr1)dr1 · · · drn.

It is straightforward to check that tr is a map of paramixed complexes.

Proposition 7.4. Let X be a locally finite G-simplicial complex. Then the map
tr : ΩG(C∞c (X)⊗̂KG) → ΩG(C∞c (X)) induces an isomorphism on the homology
with respect to the equivariant Hochschild boundary.

Proof. Consider the natural commutative diagram

ΩG(C∞c (X)⊗̂KG) //

tr

��

ΩG(C∞c (X)+⊗̂KG) //

tr

��

ΩG(C⊗̂KG)

tr

��
ΩG(C∞c (X)) // ΩG(C∞c (X)+) // ΩG(C)

of complexes. According to proposition 4.3 the algebra C∞c (X) has local units.
The same is true for C∞c (X)⊗̂KG. Hence the horizontal maps induce long exact se-
quences in homology. Proposition 16.2 in [19] shows that tr : ΩG(B⊗̂KG)→ ΩG(B)
is a linear homotopy equivalence for every unital G-algebra B. We deduce that the
middle and right vertical arrows induce isomorphisms in homology. Consequently,
the left vertical arrow induces an isomorphism in homology as well. �
Let X be a G-simplicial complex. In section 6 we have studied the equivariant
Hochschild-Kostant-Rosenberg map ΩG(C∞c (X))→ Ac(X̄). We compose this map
with the projection onto the elliptic part of Ac(X̄) to obtain a map

α : ΩG(C∞c (X))→ Ac(X̄)ell = Ac(X̂).

By construction, the hyperbolic part of ΩG(C∞c (X)) is mapped to zero under this

map. Let us define a covariant map q : Fine(θΩG(C∞c (X)⊗̂KG)) → Ac(X̂) by
composing tr : ΩG(C∞c (X)⊗̂KG)→ ΩG(C∞c (X)) with the map α.
Now let Q be any relatively projective paracomplex of fine covariant pro-modules.
Composition with q yields a map

f : H∗(HomG(Q,Fine(θΩG(C∞c (X)⊗̂KG))))→ H∗(HomG(Q,Ac(X̂))).

Moreover, as explained in section 5, we choose a regular projective resolution P •(X̂)

of A•c(X̂) as above and let P (X̂) be the associated supercomplex. Composition with

the chain map p : P (X̂)→ Ac(X̂) yields a map

g : H∗(HomG(Q,P (X̂)))→ H∗(HomG(Q,Ac(X̂)))

Remark that the Hom-complexes occuring in the definition of f and g are in fact
complexes since all entries are paracomplexes of covariant pro-modules.
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Proposition 7.5. Let X be a finite dimensional locally finite G-simplicial complex.
If the action of G on X is proper the map f is an isomorphism.

Proof. We shall treat the elliptic and the hyperbolic parts separately. Let us ab-
breviate ΩG(X) = ΩG(C∞c (X)⊗̂KG).
First we consider the elliptic part. According to proposition 7.4 and theorem 6.1
the restriction to the elliptic part of the map q defined above induces a quasiisomor-
phism ΩG(X)ell → Ac(X̂) on the homology with respect to the Hochschild bound-
ary. Moreover the natural projection E on the elliptic part of covariant modules
introduced in section 2 preserves linearly split exact sequences of covariant modules.
In particular we obtain a quasiisomorphism EΩG(X)ell → EAc(X̂) = Ac(X̂) which

will be denoted by q again. Since T = id on EΩG(X)ell and Ac(X̂) the map q is in
fact a map between ordinary mixed complexes. Recall from section 3 that we write
Lj(M) = F j−1(M)/F j(M) for the subquotients of the Hodge filtration of a (para-)

mixed complex M . The map q induces chain maps LjEΩG(X)ell → LjAc(X̂) for
all j. Since q is a quasiisomorphism with respect to the Hochschild boundary it fol-
lows easily that these maps are quasiisomorphism of supercomplexes. In particular
the corresponding mapping cones are acyclic.
We need the following two auxiliary results.

Lemma 7.6. Let φ : D → E be a morphism of supercomplexes of covariant mod-
ules. Assume that ∂0 : D0 → D1 is zero and that ∂1 : E1 → E0 is surjective. Then
in the mapping cone Cφ we have im(∂1) = E0. Consequently the image of ∂1 is a

direct summand in Cφ0 = D1 ⊕ E0.

Proof. By assumption the differential ∂1 in Cφ has the form(
0 0
−f ∂1

)
.

Since ∂1 : E1 → E0 is surjective the image of ∂1 in Cφ is precisely E0. �

Lemma 7.7. Let Q be a relatively projective paracomplex of fine covariant pro-
modules and let φ : Q → C be a covariant chain map where C is a constant and
acyclic supercomplex. Moreover assume that C0 admits a direct sum decomposi-
tion C0 = K ⊕ R where K = im(∂1) = ker(∂0). Then φ is homotopic to zero.
Consequently we have H∗(HomG(Q,C)) = 0.

Proof. The map φ0 : Q0 → C0 = K ⊕ R may be written as φ0 = k ⊕ r. Since
∂1 : C1 → K is a surjection we find a covariant map s : Q0 → C1 such that ∂1s = k.
Hence we may assume without loss of generality that k = 0. Now since φ is a chain
map and the image of ∂1φ1 is contained in K we deduce ∂1φ1 = 0. Since C is exact
we have im(φ1) ⊂ ker(∂1) = im(∂0). We may thus construct a map h : Q1 → C0

such that ∂0h = φ1. Furthermore we may assume that h factorizes over R, that is,
h : Q1 → R → C0. Hence, up to chain homotopy, the map φ satisfies φ1 = 0 and
k = 0 in φ0 = k ⊕ r. Since φ is a chain map we now have 0 = ∂0φ0 = ∂0r. But ∂0
restricted to R is an injection since ker(∂0) = K. This implies φ0 = 0 and hence
our original map φ is homotopic to zero. Since we have explicitly shown that any
chain map φ : Q → C is homotopic to zero we obtain H0(HomG(Q,C)) = 0. By
reindexing Q we deduce in the same way that H1(HomG(Q,C)) = 0. This finishes
the proof. �
After possibly reindexing, the map

LjEΩG(X)ell → LjAc(X̂)
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satisfies the assumptions of lemma 7.6. It follows that its mapping cone Cj satisfies
the assumptions of lemma 7.7. The short exact sequence

LjAc(X̂) // // Cj // // LjEΩG(X)ell[1]

of supercomplexes has a covariant splitting and induces a short exact sequence

HomG(Qell, L
jAc(X̂)) // // HomG(Qell, C

j) // // HomG(Qell, L
jEΩG(X)ell[1])

of supercomplexes. From lemma 7.7 we deduce H∗(HomG(Qell, C
j)) = 0. Since the

boundary map in this long exact sequence is the map induced by q we obtain an
isomorphism

H∗(HomG(Qell, L
jEΩG(X)ell)) ∼= H∗(HomG(Qell, L

jAc(X̂)))

for all j.
Since Q is assumed to be relatively projective the Hodge filtrations of EθnΩG(X)ell
and θnAc(X̂) induce bounded filtrations of the complexes HomG(Qell, Eθ

nΩG(X)ell)

and HomG(Qell, θ
nAc(X̂)), respectively. Hence the corresponding spectral sequences

converge. The map q induces a map of spectral sequences which gives an isomor-
phism on the E1-terms according to the preceeding discussion. Hence we obtain

Proposition 7.8. With the notation as above the map q induces an isomorphism

H∗(HomG(Qell, Eθ
nΩG(X)ell)) ∼= H∗(HomG(Qell, θ

nAc(X̂)))

for all n.

Let M be a paramixed complex and set Mn = HomG(Qell, θ
nM). Since the

structure maps in θM are surjections and Qell is relatively projective the structure
maps in the inverse system (Mn)n∈N are surjective. This implies lim←−

1Mn = 0.
Therefore we obtain a short exact sequence

lim←−nM
n // // ∏

n∈NM
n id−σ// // ∏

n∈NM
n

of supercomplexes where σ denotes the structure maps in (Mn)n∈N. This induces
a long exact sequence

H0(HomG(Qell, θM)) //
OO

H0(
∏
n∈NM

n) // H0(
∏
n∈NM

n)

��
H1(

∏
n∈NM

n) oo H1(
∏
n∈NM

n) oo H1(HomG(Qell, θM))

in homology.
The map q induces a morphism between these exact sequences for M = EΩG(X)ell
and M = Ac(X̂). Hence we obtain an isomorphism

H∗(HomG(Qell, EθΩG(X)ell ∼= H∗(HomG(Qell,Ac(X̂))).

According to proposition 3.4 the canonical projection θΩG(X)ell → EθΩG(X)ell is
a covariant homotopy equivalence. Hence we finally conclude that the map

f : H∗(HomG(Qell,Fine(θΩG(C∞c (X)⊗̂KG))ell))→ H∗(HomG(Qell,Ac(X̂))ell))

is an isomorphism on the elliptic part.
It remains to treat the hyperbolic part. Since X is proper it follows from the
equivariant Hochschild-Kostant-Rosenberg theorem 6.1 and proposition 7.4 that
the hyperbolic part ΩG(X)hyp of ΩG(X) is acyclic with respect to the Hochschild
boundary. Hence the associated subquotients LjΩG(X)hyp of the Hodge filtration
are covariantly contractible paracomplexes. We can now proceed as above to obtain

H∗(HomG(Qhyp, θΩG(X)hyp)) = 0.
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It follows that the map

f : H∗(HomG(Qhyp,Fine(θΩG(X))hyp))→ H∗(HomG(Qhyp,Ac(X̂)hyp))

is an isomorphism because both sides are zero. This shows that f is an isomorphism
on the hyperbolic part. �
The assumption on X being proper was only used to prove the isomorphism of
the hyperbolic parts in proposition 7.5. Hence we obtain the following general
statement for the elliptic part.

Proposition 7.9. Let X be any finite dimensional locally finite G-simplicial com-
plex. Then the restriction of the map f to the elliptic part is an isomorphism.

Now we study the map g from above.

Proposition 7.10. The map g is an isomorphism for any finite dimensional locally
finite G-simplicial complex X.

Proof. Recall from section 5 that P (X̂) can be viewed as an unbounded mixed
complex with b-boundary equal to zero and B-boundary equal to the differential δ.
By definition, the supercomplex P (X̂) is the projective system of supercomplexes

ξP (X̂) = (ξnP (X̂)) given by

ξnP (X̂) = P (X̂)−(n+1)/BP (X̂)−(n+2) ⊕
n⊕

i=−n
P (X̂)i ⊕B(P (X̂)i).

Since P (X̂) is bounded above in the sense that P (X̂)n = 0 for n > D = dim(X̂)
we obtain

ξnP (X̂) = P (X̂)−(n+1)/BP (X̂)−(n+2) ⊕
D⊕

i=−n
P (X̂)i

for n > D. We define the Hodge filtration F j of ξnP (X̂) for n > D by

F jξnP (X̂) = P (X̂)−(n+1)/B(P (X̂)−(n+2))⊕
j⊕

i=−n
P (X̂)i ⊕B(P (X̂)j).

Hence F jξnP (X̂) is a finite increasing filtration such that F−(n+2)ξnP (X̂) = 0

and FnξnP (X̂) = ξnP (X̂). If we proceed in the same way for Ac(X̂) we see that

the map p : P •(X̂) → A•c(X̂) induces chain maps ξnP (X̂) → ξnAc(X̂) which are
compatible with the filtrations. By construction, the map p is a quasiisomorphism
with respect to the boundary B. If we denote again by Lj the subquotients of the
Hodge filtration it follows that p : LjξnP (X̂)→ LjξnAc(X̂) is a quasiisomorphism
for each j and n > D. Hence the corresponding mapping cone Cj is acyclic. Since
Q is relatively projective we see in the same way as in the proof of proposition 7.5
that the map

H∗(HomG(Q, ξnP (X̂)))→ H∗(HomG(Q, ξnAc(X̂)))

is an isomorphism for n > D.
For an unbounded mixed complex M we set Mn = HomG(Q, ξnM). Since for

M = P (X̂) and M = Ac(X̂) the projective system ξM = (ξnM)n∈N is isomorphic
to the projective systems (ξnM)n>D we obtain as in the proof of proposition 7.5
long exact sequences

H0(HomG(Qell, θM)) //
OO

H0(
∏
n∈NM

n) // H0(
∏
n∈NM

n)

��
H1(

∏
n∈NM

n) oo H1(
∏
n∈NM

n) oo H1(HomG(Qell, θM))

.
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Comparing these exact sequences for P (X̂) and Ac(X̂) proves the claim. �
Propositions 7.5, 7.9 and 7.10 yield the following theorem.

Theorem 7.11. Let X be a finite dimensional locally finite G-simplicial complex.
If the action of G on X is proper the paracomplexes Fine(θΩG(C∞c (X)⊗̂KG)) and

P (X̂) are covariantly homotopy equivalent.

The elliptic parts of Fine(θΩG(C∞c (X)⊗̂KG)) and P (X̂) are covariantly homotopy
equivalent even if the action of G on X is not necessarily proper.

Proof. We consider only the case that X is proper since the second assertion is
proved in the same way. Denote by f1 respectively f2 the isomorphism f for Q =
P (X̂) and Q = Fine(θΩG(C∞c (X)⊗̂KG)). Similarly, denote by g1 respectivly g2 the

isomorphism g for Q = Fine(θΩG(C∞c (X)⊗̂KG)) and Q = P (X̂). Now let x be the
preimage of [p] under the isomorphism f1 and let y be the preimage of [q] under the
isomorphism g1. Then we have f1(x) = x · [q] = [p] and g1(y) = y · [p] = [q]. Hence
g2(x·y) = x·y·[p] = [p] and f2(y·x) = y·x·[q] = [q]. Since g2 and f2 are isomorphisms
we obtain x · y = id and y · x = id. This implies that Fine(θΩG(C∞c (X)⊗̂KG)) and

P (X̂) are covariantly homotopy equivalent. �
Now we finish the proof of theorem 7.1. Again we will restrict ourselves to the case
that X is a proper G-simplicial complex.
Using proposition 5.5 and proposition 7.9 we obtain an isomorphism⊕

j∈Z
H∗+2j
G (X,Y ) ∼= H∗(HomG(P (X̂),Fine(θΩG(C∞c (Y )⊗̂KG)))).

Remark that the hyperbolic part of the Hom-complex vanishes independently of
the fact that the action of G on Y may not be proper. We apply theorem 7.11 to
deduce

H∗(HomG(P (X̂),Fine(θΩG(C∞c (Y )⊗̂KG))))

∼= H∗(HomG(Fine(θΩG(C∞c (X)⊗̂KG)),Fine(θΩG(C∞c (Y )⊗̂KG)))).

Consequently we have an isomorphism⊕
j∈Z

H∗+2j
G (X,Y ) ∼= hG∗ (C∞c (X), C∞c (Y ))

where hG∗ denotes the bivariant homology theory introduced before proposition 7.2.
Combining this with corollary 7.3 we obtain the desired identification of equivariant
periodic cyclic homology with the theory of Baum and Schneider. This finishes the
proof of theorem 7.1.
Remark that throughout this discussion we used frequently the assumption on X
being a simplicial complex. In contrast, it is mainly for convenience to require Y
to be a simplicial complex. As soon as an analogue of the equivariant Hochschild-
Kostant-Rosenberg theorem for Y is available, the proof presented above can be
easily adapted to other classes of spaces. We consider briefly the following situation.
Let G be a discrete group and let M be a G-manifold, that is, a smooth manifold
on which G acts by diffeomorphisms. Let Ac(M) be the space of smooth differen-
tial forms with compact supports on M in the usual sense. Then the equivariant
Hochschild-Kostant-Rosenberg map α : ΩG(C∞c (M))ell → Ac(M̂) can be defined
as in section 6 and one has the following result.

Theorem 7.12. Let G be a discrete group and let M be a G-manifold. The equi-
variant Hochschild-Kostant-Rosenberg map

α : ΩG(C∞c (M))ell → Ac(M̂)

induces an isomorphism on homology with respect to the Hochschild boundary.
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We obtain the following variant of theorem 7.1 in the case of discrete groups.

Theorem 7.13. Let G be a discrete group and let X be a proper finite dimensional
and locally finite G-simplicial complex. Moreover let M be a G-manifold. Then
there exists a natural isomorphism

HPG∗ (C∞c (X), C∞c (M)) ∼=
⊕
j∈Z

H∗+2j
G (X,M).

Let us define the equivariant cohomology with G-compact supports of a locally
compact G-space Y by

H∗(EG;Y ) = lim−→
K⊂EG

⊕
j∈Z

H∗+2j
G (K,Y )

where the limit is taken over all G-finite subcomplexes K of EG. Here EG is the
universal example for proper actions [3] which can be chosen to be a simplicial
complex. In [4] Baum and Schneider show that there is a canonical isomorphism⊕

j∈Z
H∗+2j(EG;M) ∼= H∗(M,G)

for all discrete groups G and G-manifolds M . Here

H∗(M,G) =
⊕
j∈Z

H2j+∗(EG×G TM̂, (EG×G TM̂) \ {0};C)

are the equivariant cohomology groups introduced by Baum and Connes [2]. Using
theorem 7.13 we see that the theory of Baum and Connes can be expressed in terms
of equivariant cyclic homology.

8. Bredon homology and cosheaf homology

In this section we review the definitions of equivariant Bredon homology [7], [13]
and cosheaf homology [3] and compare these theories. Throughout we work with
coefficients in the complex numbers.
Let us begin with Bredon homology. The smooth orbit category Or(G) of a totally
disconnected group G has as objects all homogenous spaces G/H where H is an
open subgroup of G. The morphisms in Or(G) are all G-equivariant maps. One can
also consider subcategories of Or(G) by restricting the class of subgroups. We are
interested in the class F of all compact open subgroups of G. The corresponding
full subcategory Or(G,F) of Or(G) consists of all homogeneous spaces G/H where
H is compact open.
If C is a small category a covariant (contravariant) C-vector space is a covariant
(contravariant) functor from C to the category of vector spaces. Morphisms of C-
vector spaces are natural transformations. More generally one defines covariant
and contravariant C-objects as functors with values in arbitrary target categories.
If G is a discrete group viewed as a category with one object then a G-vector space
is simply a complex representation of G. In the sequel we will have to work with
certain Or(G,F)-vector-spaces and Or(G,F)-chain complexes.
Given a contravariant C-vector space M and a covariant C-vector space N the ten-
sor product M ⊗CN is the direct sum of M(c)⊗N(c) over all objects c ∈ C divided
by all tensor relations mf ⊗ n −m ⊗ fn for m ∈ M(d), n ∈ N(c) and morphisms
f : c→ d in C.
A natural domain of definition for equivariant Bredon homology is the category
of G-CW -complexes. Throughout we will assume that all G-CW -complexes are
smooth in the sense that isotropy groups are open. The basic building blocks for
these spaces are equivariant cells G/H × Dk where H is an open subgroup of G.
For detailed information see [12].
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Let X be a proper G-CW -complex. If H ⊂ G is an open subgroup we have
a canonical identification XH = MapG(G/H,X) of the H-fixed point set where
MapG denotes the space of all equivariant continuous maps. Using this description
of fixed point sets we see that one obtains a contravariant functor from Or(G,F)
to the category of CW -complexes which associates to G/H the fixed point set XH .
Composition with the covariant functor from CW -complexes to chain complexes
which associates to a CW -complex Y the cellular chain complex C∗(Y ) with com-

plex coefficients yields a contravariant Or(G,F)-chain complex C
Or(G,F)
∗ (X).

Next we define a covariant Or(G,F)-vector space Rq as follows. For a compact
open subgroup H of G set

Rq(G/H) = Kq(C
∗(H))⊗Z C

where K∗ denotes topological K-theory and C∗(H) is the group C∗-algebra of H.
Note that K0(C∗(H)) = R(H) is the representation ring of H and K1(C∗(H)) =
0. For a compact totally disconnected group H the character map induces an
isomorphism

K0(C∗(H))⊗Z C ∼= R(H)

where R(H) is the ring of conjugation invariant smooth functions on H.

We define a chain complex C
Or(G,F)
∗ (X;R0) by equipping

C
Or(G,F)
∗ (X;R0) =

∞⊕
p=0

COr(G,F)
p (X)⊗Or(G,F) R0

with the differential induced from C
Or(G,F)
∗ (X). The Bredon homology of X with

coefficients in R0 is the homology

HOr(G,F)
n (X;R0) = Hn(C

Or(G,F)
∗ (X;R0))

for n inZ. Similarly, we define a Z2-graded chain complex C
Or(G,F)
∗ (X;R) by

considering

C
Or(G,F)
∗ (X;R) =

⊕
p+q=∗

COr(G,F)
p (X)⊗Or(G,F) Rq

again with the differential coming from C
Or(G,F)
∗ (X).

Definition 8.1. Let G be a totally disconnected group and let X be a proper G-
CW -complex. The equivariant Bredon homology of X (with coefficients in R) is

BHG
∗ (X) = H∗(C

Or(G,F)
∗ (X;R)).

Next we recall the definition of cosheaf homology. Let X be a simplicial complex.
We view X as a category whose objects are the simplices of X and whose morphisms
are inclusions of simplices. A cosheaf A on X is a contravariant functor from X
to the category of complex vector spaces. More concretely, a cosheaf A is specified
by vector spaces A(σ) for every simplex σ ⊂ X and linear maps αησ : A(σ)→ A(η)
for every inclusion η ⊂ σ. These maps are required to satisfy ατσ = ατηα

η
σ whenever

τ ⊂ η ⊂ σ and ασσ = id for every simplex σ.
Now let G be a totally disconnected group and let X be a proper G-simplicial
complex. We are interested in the following cosheaf RX on X. For a simplex
σ ⊂ X we define RX(σ) = R(Gσ) ⊗Z C ∼= R(Gσ) where Gσ denotes the stabilizer
of σ. If η ⊂ σ is a face the map ιησ : R(Gσ)→ R(Gη) is given by induction.
Let us define a complex S∗(X;RX) as follows. We set

Sn(X;RX) =

( ⊕
dim(σ)=n

RX(σ)

)
/(f [σ]− f [−σ] for f ∈ RX(σ))
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where the sum is taken over all oriented simplices of X and f [σ] is our notation
for f ∈ RX(σ) viewed as element in the summand corresponding to σ. Moreover
−σ denotes the oriented simplex σ equipped with the opposite orientation. The
boundary ∂ : Sn(X;RX)→ Sn−1(X;RX) is defined by

∂(f [σ]) =
∑
η⊂σ

dim(η)=dim(σ)−1

ιησ(f)[η].

The group G acts on S∗(X;RX) in a natural way. We let SG∗ (X;RX) denote the
complex of coinvariants obtained from S∗(X;RX).

Definition 8.2. Let G be a totally disconnected group and let X be a proper G-
simplicial complex. The cosheaf homology of X (with values in RX) is

CHG
∗ (X) = H∗(C

G
∗ (X;RX)).

Let X be a G-simplicial complex. Retaining the notation from above we define

a map φ : SG∗ (X;RX)→ C
Or(G,F)
∗ (X;R0) by

φ(f [σ]) = [σ](Gσ)⊗ f(Gσ)

where we indicate by the brackets on the right hand side of this equation that the

tensor is viewed as an element in C
Or(G,F)
∗ (XGσ )⊗R(Gσ) which maps canonically

into the target of φ.

Proposition 8.3. Let G be a totally disconnected group and let X be a proper

G-simplicial complex. The map φ : SG∗ (X;RX) → C
Or(G,F)
∗ (X;R0) defined above

is an isomorphism of chain complexes.

Proof. First of all one checks that φ vanishes on coinvariants and hence yields a
well-defined map. We compute

φ∂(f [σ]) = φ

(∑
η⊂σ

ιησ(f)

)
=
∑
η⊂σ

η(Gη)⊗ ιησ(f)(Gη)

=
∑
η⊂σ

η(Gσ)⊗ f(Gσ) = ∂([σ](Gσ)⊗ f(Gσ)) = ∂φ(f [σ])

for a simplex σ ⊂ X and f ∈ R(Gσ). Here we use the fact that the simplicial and
the cellular chain complex of a simplicial complex can be identified. It follows that

φ is a chain map. Let us define a map ψ : C
Or(G,F)
∗ (X;R0)→ SG∗ (X;RX) by

ψ([σ](H)⊗ f(H)) = indGσH (f)[σ].

It is straightforward to check that ψ is well-defined and by definition we have
ψφ = id. We calculate

φψ([σ](H)⊗ f(H)) = [σ](Gσ)⊗ indG
σ

H (f)(Gσ) = [σ](H)⊗ f(H)

and conclude φψ = id. This finishes the proof. �

Corollary 8.4. Let G be a totally disconnected group and let X be a proper G-

simplicial complex. Then the Bredon homology H
Or(G,F)
∗ (X;R0) of X is naturally

isomorphic to the cosheaf homology CHG
∗ (X).

Combining this with theorem 7.1 and results from [4] we obtain the following
statement.

Theorem 8.5. Let X be a proper G-simplicial complex. Then there is a natural
isomorphism

lim−→
K⊂X

HPG∗ (C∞c (K),C) ∼=
⊕
j∈Z
CHG
∗+2j(X) ∼= BHG

∗ (X)
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where the limit on the left hand side is taken over all G-finite subcomplexes of X.
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