A NEW DESCRIPTION OF EQUIVARIANT COHOMOLOGY
FOR TOTALLY DISCONNECTED GROUPS
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ABSTRACT. We consider smooth actions of totally disconnected groups on sim-
plicial complexes and compare different equivariant cohomology groups asso-
ciated to such actions. Our main result is that the bivariant equivariant co-
homology theory introduced by Baum and Schneider can be described using
equivariant periodic cyclic homology. This provides a new approach to the
construction of Baum and Schneider as well as a computation of equivari-
ant periodic cyclic homology for a natural class of examples. In addition we
discuss the relation between cosheaf homology and equivariant Bredon homol-
ogy. Since the theory of Baum and Schneider generalizes cosheaf homology
we finally see that all these approaches to equivariant cohomology for totally
disconnected groups are closely related.

1. INTRODUCTION

In this paper we compare different cohomology theories defined for smooth proper
actions of totally disconnected groups on appropriate topological spaces. More pre-
cisely, we consider bivariant equivariant cohomology in the sense of Baum and
Schneider [4], equivariant periodic cyclic homology [19], cosheaf homology [3] and
equivariant Bredon homology [7], [13]. Our main result explains the relation be-
tween the first two theories. Moreover, by the work of Baum and Schneider, cosheaf
homology can be viewed as a special case of bivariant equivariant cohomology. We
complete the picture by showing that equivariant Bredon homology is naturally
isomorphic to cosheaf homology for proper actions on simplicial complexes.

The approach of Baum and Schneider is based on sheaf theory and unifies several
constructions which appeared previously in the literature. As already mentioned,
it contains as a special case the cosheaf homology groups considered by Baum,
Connes and Higson in connection with the Baum-Connes conjecture [3]. Moreover
it covers a construction of Baum and Connes for discrete groups [2]. Equivariant
Bredon homology is an equivariant generalization of cellular homology. It has been
used by Liick to describe the rationalized left hand side of the assembly maps in K-
and L-theory for discrete groups [13]. Finally, equivariant cyclic homology can be
viewed as a noncommutative generalization of the equivariant de Rham cohomology
of manifolds.

The latter theory is different in nature to the previous ones since it is defined not
only for spaces but also for possibly noncommutative algebras equipped with a
group action. Its construction is based on an extension of the Cuntz-Quillen ap-
proach to cyclic homology. However, computations tend to be more difficult than
in ordinary cyclic homology due to the fact that the basic ingredient in the theory
is not a complex in the usual sense of homological algebra. In fact, our original
motivation was to calculate equivariant periodic cyclic homology for some basic
examples.
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Let us now describe in more detail the contents of this paper. In section 2 we review
some facts about totally disconnected groups and smooth representations. We recall
the concept of a covariant module which plays a central role in equivariant cyclic
homology. In particular we discuss the decomposition of a covariant module into an
elliptic part and a hyperbolic part in the case of totally disconnected groups. In sec-
tion 3 we review the general construction of equivariant cyclic homology. Bivariant
equivariant periodic cyclic homology H P (A, B) is defined for pairs of G-algebras
A and B. We are interested in the case of certain algebras of smooth functions on
simplicial complexes acted upon by a totally disconnected group G. The appropri-
ate notion of a smooth function on a simplicial complex X is introduced in section
4 where we also study some properties of the resulting algebra C°(X) of smooth
functions with compact support. Let us point out that simplicial complexes are
a convenient choice of spaces for two reasons. On the one hand they are special
enough to have a nice de Rham-theoretic description of their cohomology. On the
other hand they are general enough to cover natural examples, most notably in
connection with the Baum-Connes conjecture. In section 5 we review the definition
of bivariant equivariant cohomology in the sense of Baum and Schneider. We study
in particular the case of group actions on simplicial complexes and introduce the
notion of a G-simplicial complex. Section 6 contains an equivariant version of the
Hochschild-Kostant-Rosenberg theorem. This theorem is an important ingredient
in our main result which is formulated and proved in section 7. We show that there
exists a natural isomorphism

HPE(C2(X),0(v)) = P HE ¥ (X, Y)
jez

if X and Y are finite dimensional locally finite G-simplicial complexes and X is
proper. Here H} denotes the theory of Baum and Schneider. A small variant of
this result in the case of discrete groups acting on manifolds yields a description of
the theory of Baum and Connes [2] in terms of equivariant cyclic homology. Finally,
in section 8 we review the definitions of equivariant Bredon homology and cosheaf
homology and show that these theories are naturally isomorphic on the category of
G-simplicial complexes. This fact is certainly well-known, but we could not find a
reference.
In a subsequent paper the results obtained here will be used to construct an equi-
variant Chern character for totally disconnected groups [20].
This paper is based on the last chapter of my thesis [18]. T would like to thank J.
Cuntz for his constant support and P. Schneider and H. Glockner for some helpful
comments.

2. TOTALLY DISCONNECTED GROUPS

Let G be locally compact and totally disconnected group. We call an element
t € G elliptic if it is contained in a compact subgroup. The set of all elliptic elements
of G is denoted by Gepp. It is known that Gy is a closed subset of G [22]. In contrast
we shall say that an element ¢ € G is hyperbolic if it is not elliptic. Let Gy, be
the set of all hyperbolic elements of G. Hence, according to these definitions, we
obtain a disjoint union decomposition

G = Gen U Ghyp

of the space G. Moreover it follows from the structure theory developped in [22]
that Gep is the union of all compact open subgroups of G. Consequently the set
Ghyp is again open and closed.
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In connection with equivariant cyclic homology we work with smooth representa-
tions of totally disconnected groups on bornological vector spaces. Roughly speak-
ing, a bornological vector space is a vector space V together with a collection of
subsets of V satisfying some axioms modelled on the properties of bounded subsets
in a locally convex vector space. In particular, every locally convex vector space
can be viewed as a bornological vector space with the bounded bornology consisting
of its bounded subsets. In fact, even in the context of locally convex vector spaces,
the bornological approach has several advantages which make it very convenient to
work with. For more information we refer to [14], [15], [19].
Let us recall some basic facts concerning smooth representations and fix our nota-
tion. All bornological vector spaces in this paper are assumed to be convex and
complete. A representation of a totally disconnected group G on a bornological
vector space V is called smooth if the the stabilizers of small subsets in V' are open
subgroups of G. To avoid confusion we point out that ¢ € G is in the stabilizer of
asubset S C Viff t- v =w for all v € S. For instance, the trivial representation of
G on any bornological vector space is a smooth representation. We will frequently
also speak of G-modules instead of smooth representations. A bounded linear map
f+ M — N between G-modules is called equivariant if it commutes with the action
of G.
If G is a totally disconnected group we denote by D(G) the space of locally constant
functions on G with compact support. This space is equipped with the fine bornol-
ogy, that is, the smallest possible bornology. Elements of D(G) are also referred to
as smooth functions on G with compact support. The left regular representation
of G on D(G) given by

(s 1)(t) = f(s~10)

is a basic example of a smooth representation.

Lemma 2.1. Let G be a totally disconnected group and let t € G be hyperbolic.
Then there are no fized points in the left regular representation D(G) for the action

of t.

Proof. Assume f € D(G) is a nonzero element satisfying ¢ - f = f. It suffices to
consider the case that f is the characteristic function of some nonempty compact
open subset K of G. In this case t - f = f just means ¢t - K = K. After possibly
translating K from the right we may assume that the identity element e is con-
tained in K. It follows that the closed subgroup generated by ¢ is contained in K
and hence compact. This contradicts the assumption that ¢ is hyperbolic. ]
A bornological algebra is a bornological vector space A with an associative multi-
plication given as a bounded linear map A®A — A where ® denotes the completed
bornological tensor product. Remark that we do not require the existence of a unit
in a bornological algebra. A basic example of a bornological algebra is the Hecke
algebra of a totally disconnected group G. It is obtained by equipping the space
D(G) with the convolution product

(f+g)(t) = / F(s)a(s~ )ds

where ds is a fixed left Haar measure on G. This algebra is unital iff the group G
is discrete. We will denote the Hecke algebra of G again by D(G).

A module M over a bornological algebra A is called nondegenerate if the module
action AQM — M is a bornological quotient map. We remark that the category of
smooth representations of G is isomorphic to the category of nondegenerate D(G)-
modules.

A G-algebra is a bornological algebra A which is at the same time a G-module such
that the multiplication AQA — A is equivariant. Here the tensor product A®A is
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equipped with the diagonal action as usual. A particular example of a G-algebra is
the algebra K¢ which is defined as follows. As a bornological vector space we have
Ke = D(G)®D(G) = D(G x G). The multiplication in K¢ is given by

(k-1)(s,t) = / k(s,r)l(r,t)dr
G
and the G-action is defined by
(r-k)(s,t) = k(r~ts,r~'t).

This algebra can be viewed as a dense subalgebra of the algebra of compact oper-
ators K(L?(G)) on the Hilbert space L?(G).

Next we recall the definition of a covariant module. For more details we refer to
[19]. Let Og be the space D(G) equipped with pointwise multiplication and the
action of G by conjugation. A covariant module M is a smooth representation of
G which is at the same time a nondegenerate Og-module. The G-module structure
and the Og-module structure are required to be compatible in the sense that

s-(f-m)=(s-f)-(f-m)

for all s € G, f € Og and m € M. A bounded linear map f : M — N between
covariant modules is called covariant if it is Og-linear and equivariant. The category
of covariant modules is denoted by G-9100.

Covariant modules are closely related to equivariant sheaves over the space G-space
G with the adjoint action.

Proposition 2.2. Let G be a totally disconnected group. The functor of taking
global sections with compact support induces an equivalence between the category
Sha(G) of equivariant sheaves over the G-space G with the adjoint action and the
category of G-covariant modules whose underlying bornology is fine.

In other words, covariant modules can be viewed as equivariant sheaves except
that we include a bornology as extra information. The proof of of proposition 2.2
is sketched in [4].

The category of covariant modules is isomorphic to the category of nondegenerate
Cov(G)-modules where €ov(G) = Og x G is the smooth crossed product of O¢
with respect to the adjoint action. In particular Cob(G) itself is a covariant module
in a natural way.

Every covariant module M is equipped with a natural automorphism 7" : M — M.
For M = €ou(G) this automorphism is defined by

T(f)(svt) = f(S’St)

where we view an element of €ov(G) as a smooth function with compact sup-
port on G X G, the first variable corresponding to Og. To define the opera-
tor T for an arbitrary covariant module M one uses the canonical isomorphism
Qﬁon(G)@)@w(G)M >~ M and applies the map T : Cov(G) — Cov(G) from above to
the first tensor factor in €ov(G)®¢op(c) M.

In some situations we will have to look at the stalks of the sheaf underlying a co-
variant module. Let ¢t € G be a point and consider the ideal I; in Og of functions
vanishing at t. Clearly I; is a prime ideal and hence we may consider the localisation
M; of a covariant module M at I;. Since G is totally disconnected the space M;
can be identified with M/I;M in a natural way. The localisation M; is no longer
a covariant module in general, in addition to the natural Og-module structure we
only have an action of the centralizer G; of the element ¢t on M;. A basic observa-
tion is that a sequence 0 = K — FE — @ — 0 of (fine) covariant modules is exact
iff the localized sequences 0 - K; — E; — Q; — 0 are exact for all t € G.
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Recall from [15] that the multiplier algebra M (A) of a bornological algebra A con-
sists of all two-sided multipliers of A. That is, an element (L, R) of M(A) consists
of a bounded right A-module map L : A — A and a bounded left A-module map
R: A — A such that a(Lb) = (aR)b for all a,b € A.

Since the group G is a disjoint union of the open sets of elliptic and hyperbolic
elements we can define two elements Pey and Py in the multiplier algebra M(O¢)
of Og as follows. The multiplier P, is the characteristic function of the set Gy
whereas P,yp = 1 — Py is the characteristic function of Gyyp,. For every covari-
ant module M we obtain a natural direct sum decomposition of covariant modules
M = Mg @ Mhyp where My = Py - M and Mhyp = Phyp - M.

We conclude this section with the construction of a canonical projection on the
elliptic part M of an arbitrary covariant module M. Consider the operator
T : Mgy — Mgy and let m € Mgy. By the definition of Gey and since My is
a smooth representation there exists a natural number n such that 7" (m) = m.
We can thus write M.y as direct limit of the spaces M (n) consisting of all elements
m such that 7"(m) = m. Here the direct limit is taken over the natural numbers
where by definition k& < [ iff k divides [. We define a covariant map E : M (n) — M
by

E(m) = % S T3 (m).
=0

This definition is compatible with the structure maps in the inductive limit and
yields a covariant map E : My — M. Moreover the relation E? = E holds by
construction. The map FE is the natural projection onto the T-invariant elements
in Mell-

3. EQUIVARIANT PERIODIC CYCLIC HOMOLOGY

In this section we recall the definition of bivariant equivariant periodic cyclic
homology HPS (A, B) given in [19]. An important property of the construction is
that the fundamental object in the theory, the equivariant Hodge tower 6 (A)
of a G-algebra A is not a complex in the usual sense. In fact, the differential 0 in
0Qc(A) fails to satisfy 9% = 0.

First we have to discuss noncommutative equivariant differential forms. Let A be
a G-algebra. The equivariant n-forms of A are defined by Q% (A) = Og&Q"(A)
where Q"(A) = AT®A®" and AT denotes the unitarization of A. The group G
acts diagonally on Q% (A) and we have an obvious Og-module structure. In this
way Q% (A) becomes a covariant module.

The equivariant Hochschild boundary b : Q% (A) — Q%' (A) is defined by

b(f(t)@xodxy - - - day,) = f(t) ® xoxidey - - - day,
n—1

+ Z(il)Jf(t) & xod‘rl s d(iL’jl‘j+1) N d(gn
j=1

+ (_l)nf(t) ® (til : $n)1'0d1'1 ceedTy .

Moreover we have the equivariant Connes operator B : Q%(A) — Q& (A) which
is given by
B(f(t) ® xodxy - - - day) = Z(—l)mf(t) @t (drpy1 - day)dzg - - da, .
i=0
It is straightforward to check that b and B are covariant maps. The natural sym-
metry operator T for covariant modules is of the form

T(ft)®w) = ft) @t " w
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on Q%(A). One easily obtains the relations 4> = 0, B2 = 0 and Bb+bB = id —T for
these operators. This shows that Qg (A) is a paramixed complex in the following
sense.

Definition 3.1. A paramized complex M of covariant modules is a sequence of
covariant modules M, together with differentials b of degree —1 and B of degree +1
satisfying b> =0, B2 =0 and

[b, B] = bB + Bb=id —T.

The most important examples of paramixed complexes are bounded below in the
sense that M,, = 0 if n < N for some fixed N € Z. In particular, the equivariant
differential forms Q¢ (A) of a G-algebra A satisfy this condition for N = 0.

The Hodge filtration of a paramixed complex M of covariant modules is defined by

F"M = bMy 41 & @ M;.
j>n
Clearly F"M is closed under the operators b and B. We write
L'"M = F" *M/F"M

for the nth layer of the Hodge filtration. If M is bounded below such that M,, =0
for n < 0 we define the nth level 87 M of the Hodge tower of M by

n—1

0" M = @ Mj b Mn/an+1

j=0
By definition, the Hodge tower of M is the projective system M = (6" M )en.
We remark that the image of the Hochschild operator b is not closed in general. In
this case the spaces F™" M are possibly incomplete and L™ M and 0™ M may fail to
be separated. However, in the examples that we will study the image of b is always
closed and hence these problems do not show up.
The spaces 8" M are equipped with the grading into even and odd forms and the
differential & = B + b. In this way the Hodge tower becomes a projective system
of paracomplexes in the following sense.

Definition 3.2. A paracomplez of covariant modules is a Zo-graded covariant mod-
ule C with a boundary operator O : C — C' of degree one such that 0°> =id —T.

Chain maps of paracomplexes and homotopy equivalences are defined by the
usual formulas.
We will work with the following definition of equivariant periodic cyclic homology
which is equivalent to the one given in [19] using X-complexes.

Definition 3.3. Let G be a totally disconnected group and let A and B be G-
algebras. The bivariant equivariant periodic cyclic homology of A and B is

HPE (A, B) = H.($omg(0Qc(ASKe), 00c(B&K:))).

To explain this definition we first remark that the G-algebra K was defined in
section 2. Secondly, the definition involves covariant maps between projective sys-
tems of covariant modules. Maps between projective systems are always understood
in the sense

Hom((M;)ier, (Nj)jes) = limlim Hom(M;, N;)
jeJiel
of pro-categories. Finally, we consider the usual differential for a Hom-complex
given by
0(¢) = $9a — (=)0



EQUIVARIANT COHOMOLOGY FOR TOTALLY DISCONNECTED GROUPS 7

for a homogeneous element ¢ in order to define homology. This makes sense since
the failure of the individual differentials in Q¢ (A®K ) and Qg (BRK ) to satisfy
0? = 0 is cancelled out by naturality of the operator T.

According to the decomposition of a covariant module into an elliptic and a hyper-
bolic part discussed in section 2 we obtain a decomposition

HPE (A, B) = HPZ (A, B)ey ® HPE (A, B)yyy
of equivariant periodic cyclic homology where by definition
HPE (A, B)en = Ho(Homg (026 (ASK)en, 026 (BEKG)en))

and accordingly for HPZ(A, B)nyp. As we shall see, and as is familiar from the
computation of the cyclic homology of group algebras, the elliptic and hyperbolic
parts of equivariant cyclic homology behave differently.

Let us have a closer look at the elliptic part and recall the definition of the projection
E from section 2. Since the map E : 0Qg(A)en — 0Qa(A)en commutes with the
boundary operators b and B we get a direct sum decomposition

0Qc(A)en = E0QG(A)en @ (1 — E)0Qc(A)en

of paracomplexes. Actually, E0Qg(A)en is an ordinary complex since T = id on
this space.

Proposition 3.4. Let A be a G-algebra. The paracomplex (1 — E)0Qq(A)en is
covariantly contractible. Hence the canonical projection 0Qc(A)en — E0Qc(A)en
is a covariant homotopy equivalence.

Proof. The covariant map id —T : 0Qg(A)en — 0Qc(A)en is diagonal with respect
to the direct sum decomposition F0Qg(A)en ®(1—E)0Qc(A)en. It follows from the
definitions that id —7T is injective on (1—E)0Qq(A)en and id =T = 0 on E0Qq(A)en.
Now consider an element (1 — E)m € (1 — E)0"Qq(A)en with m € 0"Qc(A)en. We
find k € N such that 7%(m) = id and hence

1-E i S h=d g

(1= B)m) = (1) 3 2 79 (m)

§=

i

is in the image of id —T. It follows that the map id—T : (1 — E)0Qg(A)en —
(1—-E)0Q¢(A)en is an isomorphism. Since id —T is homotopic to zero we conclude
that (1 — E)0Qa(A)en is covariantly contractible. O

4. SMOOTH FUNCTIONS ON SIMPLICIAL COMPLEXES

In this section we study smooth functions and smooth differential forms on sim-
plicial complexes.
First we have to fix some notation. We denote by A* the k-dimensional standard
simplex

k
AP ={(z0,...,z) eRFIO <y <1,y =1}
j=0

in R¥*+1. By construction A* is contained in a unique k-dimensional affine subspace
of R¥*! which will be denoted by A*. A function f : A¥ — C is called smooth if it
is the restriction of a smooth function on the affine space A*.
To obtain an appropriate class of functions for our purposes we have to require
conditions on the behaviour of such smooth functions near the boundary 0A* of
the simplex A*. Roughly speaking, we shall consider only those functions which are
constant in the direction orthogonal to the boundary in a neighborhood of OA*.
Let us explain this precisely. We denote by 9*A* the i-th face of the standard
simplex consisting of all points (xg,---,zx) € AF satisfying z; = 0. Then 9°A*
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defines a hyperplane A¥ C A* in a natural way. To this hyperplane we associate
the vector space V; which contains all vectors in R¥ that are orthogonal to Af. For
v € R* denote by 9,(f) the partial derivative of a smooth function f on A* in
direction v. We say that a smooth function f : AF — C is i-regular if there exists a
neighborhood U; of 9*A* such that d,(f)(z) = 0 for all x € U; and all v € V;. If we
want to emphasize the particular neighborhood U; we also say that f is i-regular
on U;. The function f is called regular if it is ¢-regular for all ¢ = 0,...,k. We
denote by C>°(AF) the algebra of regular smooth functions on A*.
The idea behind these definitions is as follows. Let us denote by C>=(A* 9AF)
C>(AF) the subalgebra consisting of those functions that vanish on the boundary
OAF of AF. Tt is not hard to check that C*°(AF, OA¥) can be identified with the
algebra C2°(AF \ OAF) of smooth functions with compact support on the open set
AR\ OAF. Moreover the inclusion 9° : 9°A* — AF of a face induces a homo-
morphism C*®(AF) — C*(9°AF). Our definition yields a natural class of smooth
functions satisfying these properties.
If we identify A! with the unit interval [0,1] the algebra C°°(A!) corresponds to
the algebra of smooth functions on [0, 1] which are constant around the endpoints.
Moreover C*°(A!, JA!) can be identified with the algebra C2°(0, 1) of smooth func-
tions with compact support on the open interval (0, 1).
We want to extend the definition of regular smooth functions to arbitrary simplicial
complexes. A regular smooth function on a simplicial complex X is given by a fam-
ily (fs)ocx of regular smooth functions on the simplices of X which is compatible
with restriction to faces in the obvious way. The function f is said to have com-
pact support if only finitely many f, in the corresponding family are different from
zero. We denote by C2°(X) the algebra of regular smooth functions with compact
support on X. If the simplicial complex X is finite we simply write C°°(X) instead
of C&°(X).
Let us now describe the natural locally convex topology on the algebra C°(X)
of regular smooth functions on the simplicial complex X. First we consider again
the case X = AF. Let U = (Uy,--- ,Ux) be a family of open subsets of A* where
each U; is a neighborhood of 9°A*. The collection of all such families is partially
ordered where U < V iff V; C U, for all j in the corresponding families. For a fam-
ily U = (Uy,---,Uy) we let C°(A* U) C C><(AF) be the subalgebra of smooth
functions which are i-regular on U; for all i. We equip C>°(A* 1{) with the natural
Fréchet topology of uniform convergence of all derivatives on A*¥. For U < V we
have an obvious inclusion C°(A* i) C C>°(AF,V) which is compatible with the
topologies. Moreover C°°(AF) is obtained as the union of the algebras C>°(A* Uf).
We equip C™(AF) with the resulting inductive limit topology. In this way the
algebra C>°(A*) becomes a nuclear LF-algebra and the natural restriction homo-
morphism C*(AF) — C°(9*A*) associated to the inclusion of a face is continuous.
In order to introduce a topology on C2°(X) for arbitrary X let K C X be a finite
subcomplex. A function f = (fs)ocx € CX(X) is said to have support in K if
» = 0 for all simplices ¢ C X not contained in K. We let CZ¥(X) C C*(X) be
the algebra of regular smooth functions with support in K. The algebra C3(X)
is equipped with the subspace topology from the finite direct sum of algebras
C®(o) for ¢ ¢ K. If K C L are finite subcomplexes the obvious inclusion
C¥(X) — C°(X) is compatible with the topologies. Moreover C2°(X) is the
union over all finite subcomplexes K of the algebras C%(X). Hence we obtain a
natural inductive limit topology on C°(X). We equip the algebra C°(X) with
the associated precompact bornology (which is equal to the bounded bornology).
In this way C2°(X) becomes a complete bornological algebra.
Let us have a closer look at the natural restriction homomorphism C*(AF) —



EQUIVARIANT COHOMOLOGY FOR TOTALLY DISCONNECTED GROUPS 9

C>(0AF). As above we denote by C>®(AF dAF) c C>(AF) the kernel of this
homomorphism which consists of all regular smooth functions on A* that have
compact support in the interior A* \ JAF.

Proposition 4.1. For all k the restriction homomorphism C>®(A*) — C>(9AF)
has a continuous linear splitting. Hence we obtain a linearly split extension

C®(A*, 0AF) = C®(AF) ——== C>®(0AF)
of complete bornological algebras.

Proof. By definition we have C*°(9A%) = 0 and hence the case k = 0 is trivial.

For k = 1 we identify A! with the unit interval [0,1]. Choose a smooth function

h :[0,1] — [0,1] such that h = 1 on [0,1/3] and h = 0 on [2/3,1]. We set

eg = h,e; = 1 — h and define o1 : C®°(9A!) = C®d C — C>®(AY) by o1(fo, f1) =

foeo + fie1. It is clear that oy is a continuous linear splitting for the restriction

map.

In order to treat the case k = 2 we first consider the corresponding lifting problem

for a corner of A? which can be formulated as follows. Let us write RT for the set

of nonnegative real numbers. A corner of A? can be viewed as a neighborhood of

the point (0,0) in R* x R*. Given smooth functions fi, fo : RT — C that are both

constant in a neighborhood of 0 and satisfy f1(0) = f2(0) we want to construct a

smooth function f : RT x RT™ — C such that

a) f(z1,0) = fi(z1) and f(0,x2) = fa(x2) for all z1, 25 € RT,

b) the function f is constant in the transversal direction in a neighborhood of the
boundary (R* x {0}) U ({0} x R™),

¢) f depends linearly and continuously on f; and f.

In order to construct such a function we first extend f; and fs to smooth functions
Fy and Fy on RT x RT by setting

Fi(z1,22) = fi(z1), Fy(z1,22) = fo(w2).
Then we use polar coordinates (r,0) in (RT x RT)\ {(0,0)} to define a smooth

function g; by
20
0)=h|—
g1 (Tv ) ( T )

where h is the function from above. We extend g; to RT™ xR™ by setting g1 (0, 0) = 0.
Moreover we define g by go = 1 — g1 on (RT x RT) \ {(0,0)} and g»(0,0) = 0.
Remark that g; and go are not continuous in (0,0). We can now define the desired
function f: RT x RT — C by

f=f1(0)0 + Fig1 + Fagz2 = f2(0)0 + F1g1 + Fago

where § is the characteristic function of the point (0,0). The function f is smooth
in (0,0) since the assumptions on f; and fo imply that f is constant in a neighbor-
hood of this point. Moreover it is easy to verify that f satisfies the conditions a),
b) and c) above. Hence this construction solves the lifting problem for a corner of
A2,

Now we want to show that the restriction map C°°(A?) — C*°(9A?) has a contin-
uous linear splitting. One can combine the functions go and g1 constructed above
for the corners of A? to obtain functions e; on A? for j = 0,1,2 such that

a) each e; is a regular smooth function on A? except in the vertices where e; is

zero,
b) e; =1 in the interior of 3’ A? and e; = 0 in the interior of 9°A? for i # j,
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c) for each j there exists a neighborhood U; of the j-th vertex v; of A? such that

Z €; = 1
i)
holds on U; except in v;.
Now assume that a regular smooth function f = (fo, f1, f2) on OA? is given where

f; is defined on the face 8°A2. The functions f; can be extended to i-regular smooth
functions F; on A% by

X X
Fo(xo,z1,22) = fo <331 + ?0,3?2 + 20>

X xXr
Fi(zg,z1,22) = f1 (330 + ?l,m + ;)

Fs(xo,z1,22) = fo (xo + %7% + x;)

Moreover let y : A? — C be the characteristic function of the set {vg, v, v}
consisting of the three vertices of A%, Using these functions we define oa(f) : A2 —
C by

oao(f) = fx + Foeo + Fre1 + Faes.
To avoid confusion we point out that fyx is the function which is equal to f in
the vertices of A? and extended by zero to the whole simplex. It is easy to see
that the restriction of oo(f) to the boundary of A? is equal to f. Using the fact
that F; is i-regular one checks that oo(f) is a regular smooth function on A2. Our
construction yields a continuous linear map oo : C*°(9A2%) — C>°(A2) which splits
the natural restriction homomorphism.
To prove the assertion for k > 2 one proceeds in a similar way as in the case k = 2.
Essentially one has to combine the functions constructed above in an appropriate
way. First we consider again the lifting problem for a corner of A*. Such a corner
can be viewed as a neighborhood of (0,...,0) in (RT)*. We are given smooth
functions f1,..., fx : (RT)*~! which are transversally constant in a neighborhood
of the boundary and satisfy certain compatibility conditions. The function f; is
extended to a smooth function F} : (R*)¥ — C by setting

Fj(ﬂfl,...,l‘k) = fj(]}l,...,xj_1,$j+1,...,$]€).

For 1 <i < j < k we define

Gij (@1, ..., xk) = g1(wi, 5), gji(x1, ..., xK) = ga(xs, ;)
where g; and g2 are the functions from above. Each function g;; is smooth except

in some k — 2-dimensional subspace inside the boundary and transversally constant
in a neighborhood of the boundary. If we expand the product

1T (o +a)
0<i<j<k

we obtain a sum of functions which are smooth except in the boundary and transver-
sally constant in a neighborhood of the boundary. Moreover these functions vanish
in the interior of all faces except possibly one. Using the functions F}; constructed
before we can proceed as in the case kK = 2 to solve the lifting problem for the
k-dimensional corner. Since this is a straightforward but lengthy verification we
omit the details.

To treat the simplex A* we construct functions e; for j =0,...,k such that

a) e; is regular smooth except in the (k — 2)-skeleton of A*¥ where e; = 0,
b) e; =1 in the interior of &’ AF and ej = 0 in the interior of D'AF for i # j,
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c) for each point x € DA there exists a neighborhood U, of z such that

in U, except the (k — 2)-skeleton of A* where S(z) is the collection of all i such
that = € 9*A*.

Assume that a regular smooth function f = (fo, ..., fx) on A is given where f; is
defined on the face 9'AF. The function f; can be extended to an i-regular smooth
function F; on AF by

L Z; L Z;
1(.130, 71"’6) fl<x0+ k7 , Ly 1+ kamz+1+ kv ,Z‘k—F ]C)
Moreover let x : A¥ — C be the characteristic function of the k — 2-skeleton of A*.
We define oy (f) : A¥F — C by

k
on(f) =fx+>_Fje;.
j=0
Using the properties of the functions e; and the fact that F} is j-regular one checks
that o (f) is a regular smooth function. The restriction of oy (f) to AF is equal
to f. In this way we obtain a continuous linear splitting o : C=(9AF) — C>(AF)
for the natural restriction homomorphism. (]
For a simplicial complex X let X* denote its k-skeleton. Consider the natural
continuous restriction homomorphism C°(X*) — C%(X*~1). This homomor-
phism is surjective provided X is locally finite and its kernel will be denoted by

O (Xk, X*-1),

Proposition 4.2. Let X be a locally finite simplicial complex. For all k the re-
striction homomorphism C°(X*) — C®(X*=1) has a continuous linear splitting.
Hence we obtain a linearly split extension

0% (X4, X51) e O (XF) e O (X5)
of complete bornological algebras.

Proof. We construct a retraction p : CX(X*) — C®(X* X*~1) for the natu-
ral inclusion. The algebra C°(X* X*~1) can be identified with a direct sum
@D,c; C(AF,0AF). Recall that the elements f € C°(X*) are families (f5),c x*-
For each k-simplex n € X* we define a map

py: CE(XF) = CX(AR00%),  py((fo)) = pre(fy)

where py, : C®(A*) — C>®(A*, 0AF) is the retraction obtained in proposition 4.1.
It is easy to check that p,, is continuous. The maps p, assemble to yield a map

p: CE(XF) = @ C=(AF, 0A%) = ¢ (X*, Xk
i€l
which is again continuous. Moreover by construction p is a retraction for the inclu-
sion C>(XFk, Xk=1) — C>(XF). O
We say that a complete bornological algebra K has local units if for every small
subset S C K there exists an element e € K such that ex = xe =z for all z € S.
Clearly every unital complete bornological algebra has local units. In the bornolog-
ical context the existence of local units has similar consequences as H-unitality
[23], [24] in the algebraic setting. Clearly a complete bornological algebra which
has local units is in particular H-unital in the purely algebraic sense. The proof of
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excision in (algebraic) Hochschild homology for H-unital algebras can immediately
be adapted to show that every extension

of complete bornological algebras with bounded linear splitting induces a long exact
sequence in (bornological) Hochschild homology provided K has local units. A
similar assertion holds for the homology with respect to the equivariant Hochschild
boundary in the equivariant context.

Proposition 4.3. Let X be a locally finite simplicial complex. For every finite
subcompler K C X there exists a positive function e € C(X) such that e =1 on
K. In particular C°(X) has local units.

Proof. First recall that a simplicial complex X is called locally finite if every vertex
of X is contained in only finitely many simplices of X. A simplicial complex is
locally finite iff it is a locally compact space in the weak topology.

The desired function e will be constructed inductively. On X° we define e(x) = 1 if
r € K% and e(z) = 0 otherwise. Assuming that e is constructed on X*~1 we essen-
tially have to extend functions which are defined on the boundary of k-dimensional
simplices to the whole simplices. If e is constant on the boundary we extend it to the
whole simplex as a constant function. In general the extension can be done using
the liftings for the restriction map C>°(A¥) — C>(9AF) constructed in proposition
4.1. Tt is clear that the resulting regular smooth function e is equal to 1 on K. The
fact that X is locally finite guarantees that e has compact support. Since every
small subset of C'¢°(X) is contained in C'§(X) for some finite subcomplex K C X
the previous discussion shows that C2°(X) has local units. g
Apart from smooth functions we also have to consider differential forms on simpli-
cial complexes. A smooth differential form on the standard simplex A is defined
as the restriction of a smooth differential form on the k-dimensional affine space
AF to A*. Again we have to impose some conditions on the behaviour near the
boundary. Let us consider forms of a fixed degree p. For v € R* we denote by L,
the Lie derivative in direction v and by ¢, the interior product with the vector field
associated to v. Using the notation established in the beginning of this section we
say that a smooth p-form w on AF is i-regular if there exist a neighborhood U; of
' A* such that £,(w)(z) = 0 and 1, (w)(x) = 0 for all x € U; and all v € V;. The
form w is called regular if it is i-regular for all : =0, ... k.

Given a simplicial complex X a regular smooth p-form w on X is a family (wy)ecx
of regular smooth p-forms on the simplices of X which is compatible with the nat-
ural restriction maps. A form w = (ws),cx is said to have compact support if only
finitely many w, in the corresponding family are nonzero. We denote by AP (X) the
space of regular smooth p-forms on X with compact support. The exterior differen-
tial d can be defined on A.(X) in the obvious way and turns it into a complex. Also
the exterior product of differential forms extends naturally. Note that A2(X) can
be identified with the algebra C2°(X) of regular smooth functions defined above.
As in the case of functions there is a natural topology on the space AZ(X) of regular
smooth p-forms. Let us start with X = A and consider a family U = (Uy, - -+, Uy)
of open subsets of A* where each Uj is a neighborhood of ' AF. We let AP(A* U) C
C>(AF) be the space of smooth p-forms which are i-regular on U; for all i and equip
this space with the natural Fréchet topology. We obtain a corresponding inductive
limit topology on AP(AF). Since one proceeds for an arbitrary simplicial complex
X as in the case of functions we shall not work out the details. Most of the time
we will not have to take into account the resulting bornology on AP(X) in our
considerations anyway.

We will have to consider differential forms not only as globally defined objects but
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also from the point of view of sheaf theory. The regularity conditions for smooth
differential forms on a simplicial complex X obviously make sense also for an open
subset U of X. Hence we obtain in a natural way sheaves A% on X by letting
I'(U, A% ) be the space of regular smooth p-forms on the open set U C X. We also
write CS¢ for the sheaf A%. The sheaf C¥ is a sheaf of rings and the sheaves A%
are sheaves of modules for C¥. Clearly the space I'.(X, A% ) of global sections with
compact support of A% can be identified with AZ(X).

Proposition 4.4. Let X be a locally finite simplicial complex. The sheaves A%
are c-soft for all p and

Cx A% Al A%
is a resolution of the constant sheaf Cx on X.

Proof. In this proof we will tacitly use some results from sheaf theory which can
be found in [8]. Let us first show that the sheaves A% are c-soft. Since the sheaves
. are sheaves of modules for the sheaf of rings C¥ it suffices to show that CF¥
is c-soft. Using the fact that a sheaf F on X is c-soft iff the restrictions F|x are
soft for all compact subsets K C X we may assume that X is a finite complex.
We have to show that the restriction map I'(X,C¥) — T'(K,CS) is surjective
for all closed subsets K C X. Given a regular smooth function f on K we shall
construct a regular smooth function F' : X — C which extends f. For z € X°
we put F(z) = f(z) if € K and F(x) = 0 otherwise. Now assume that F' has
been constructed on X*~!. In order to extend F' to X* we can consider each
k-simplex of X separately. If o is a k-simplex then F' is already given on do by
induction hypothesis and on the closed subset ¢ N K by assumption. The resulting
function can be extended to a smooth regular function in a small neigborhood U of
do U (ocNK). We find a regular smooth function h on ¢ such that the support of h
is contained in U and h = 1 on 9o U (0 N K). Using the function h we can extend
F to the whole simplex o.
To show that the complex of sheaves A% is a resolution of the constant sheaf on
X we have to prove that the stalks (A% ), of this complex are resolutions of C for
all z € X. Each point # € X is contained in X* \ X*~! for some k and we find
a k-dimensional simplex ¢ in X such that z is an element in the interior o \ 9o of
0. >From the definition of regular smooth differential forms we see that the stalks
(A% )z depend only on the coordinates of o. Hence we can identify these stalks
in a natural way with stalks of the sheaves AR, of smooth differential forms on
k-dimensional Euclidean space. The Poincaré lemma yields the assertion. [l
For technical reasons we need a slightly more general class of spaces in the sequel.
Namely, we will consider closed subspaces of spaces of the form T x K where
T is locally compact and totally disconnected and K is a locally finite simplicial
complex. By definition, a regular smooth function f on the space T'x K is a function
which can be written locally around any point as f(t,z) = F(z) for some regular
smooth function F' on K. This condition clearly makes sense also for open subsets
of T'x K. Now let X C T x K be a closed subspace. By definition, a regular
smooth function on an open subset U C X is a function which can be extended to
a regular smooth function in an open neighborhood of U in T' x K. This defines
a sheaf C§ of regular smooth functions on X in a natural way. Similarly one can
consider differential forms and one obtains corresponding sheaves A%, .

Proposition 4.5. Let T be a locally compact totally disconnected space and let
K be a locally finite simplicial complex. For any closed subspace X C T x K the
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sheaves A% are c-soft and

Cx /(M
is a resolution of the constant sheaf Cx on X.

Proof. The assertion concerning exactness can be proved as in proposition 4.4. It
suffices to show that C% x is c-soft. Let A C T'x K be a compact subset and let f
be a regular smooth function on A. We have to construct a regular smooth function
F on T x K which extends f. First choose open subsets Uy, ..., U, covering A with
U; = V; xW; where V; C T is compact open and W; C K is open such that f can be
extended to a regular smooth function on U = (J;-_, U; which depends only on the
K-variable on each Uj. In order to extend f to T' x K we proceed as follows. If we
set V = U?:l V; we find compact open subsets T; C V' such that the restriction of
the extended function f to T; x KNU does not depend on the T-variable. Since the
set T x K N A is compact the same is true for its projection K; = mx (T x KN A)
to K. By hypothesis g;(z) = f(t,z) for (t,z) € T; x K N A yields a well-defined
regular smooth function on K;. We use proposition 4.4 to extend g; to a regular
smooth function G; on K. Setting F'(t,z) = G;(z) for (t,z) € T; x K we obtain
a regular smooth function F' on T; x K which restricts to f on T; x K N A. Since
T\V C T is an open and closed subset we may set in addition F = 0 on (T'\V) x K
to obtain the desired extension of f to a regular smooth function on 7' x K. O

5. BIVARIANT EQUIVARIANT COHOMOLOGY

In this section we review the definition of bivariant equivariant cohomology given
by Baum and Schneider [4].
Let G be a totally disconnected group. A locally compact G-space is a locally
compact space X with a continuous action of G. To every locally compact G-space
X we associate the Brylinski space

X ={(t,z) e G x X|tisellipticand t -z =z} C G x X
and the extended Brylinski space
X={tzr)eGxX|t-z=1} CGxX.

Note that we have X = X if the action of G on X is proper. If G is discrete we
may view X as the disjoint union of the fixed point sets X* = {z € X|t-z = x} of
elements t € G of finite order. Similarly, X is the disjoint union of the fixed point
sets X! of arbitrary elements t € G in this case.

Lemma 5.1. Let G be a totally disconnected group and let X be a locally compact
G-space. Then X and X are closed subspaces of G x X.

Proof. Let u: G x X — X x X be the map defined by u(t,z) = (¢ - z,x). Then
X = u~Y(A) is the preimage of the diagonal A C X x X and hence closed. Since
Glen is a closed subspace of G and X = XN (Gen x X) it follows that X isclosed. O
There is a G-action on the (extended) Brylinski space of a locally compact G-space
X given by the formula

s-(t,x) = (sts™1 s ).
In this way X and X become locally compact G-spaces.
The space X will appear in the equivariant Hochschild-Kostant-Rosenberg theorem
in section 6. For the remaining part of this section we will work only with the or-
dinary Brylinksi space X.
Since the category Sh(;(X ) has enough injectives we can choose an injective reso-
lution

Cx ° I 2
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of the constant sheaf Cy in the category of equivariant sheaves on X. Consider
the complex C*(X) obtained by taking global sections with compact support in I*.
Since the sheaves I7 are equivariant there is a natural G-action on C?(X) for all j.
Moreover we have an Og-module structure on CJ(X) given by
(fo)(s,x) = f(s)o(s,x)

for f € Og and o € CI(X). Observe that only the elliptic part of Og acts
nontrivially on C7(X). It is easy to check that this Og-module structure and
the natural G-action combine to give each C?(X) the structure of a fine covariant
module.

With these preparations the definition of bivariant equivariant cohomology given
by Baum and Schneider can be formulated as follows.

Definition 5.2. Let G be a totally disconnected group and let X and 'Y be locally
compact G-spaces. The (delocalized) bivariant equivariant cohomology of X and 'Y
18

HE(X,Y) = €t (C2(X), C2(Y))
where Erty denotes the hyperext functor in the category of fine covariant modules.

The functor €rt, can be viewed as the Hom-functor in the derived category of
fine covariant modules. In order to compute the right-hand side in definition 5.2

choose a complex I*(Y") consisting of injective fine covariant modules together with
a quasiisomorphism C?(Y) — I*(Y). Then

Crtey (C2(X), C2(Y)) = Hu($Homg(C2(X), I°(Y)),

hence in order to calculate €rt; we have to compute the homology of a certain
Hom-complex.

Let us now specialize to group actions on simplicial complexes and give some more
definitions.

Recall that a simplicial map between simplicial complexes X and Y is a continuous
map f: X — Y such that the restriction of f to any simplex of X is an affine map
into a simplex of Y. We say that the group G acts simplicially on X if every t € G
acts as a simplicial map.

Let G be a totally disconnected group. Assume that G acts simplicially on a
simplicial complex X. The action is called type-preserving if for each simplex o of
X the stabilizer G, fixes the vertices of o. In other words, an element of G which
fixes a simplex actually acts trivially on this simplex. Passing to the barycentric
subdivision one may always achieve that G acts type-preserving. The action of G
is called smooth if all isotropy groups are open.

Let us now specify the class of G-spaces we are mainly interested in.

Definition 5.3. Let G be a totally disconnected group. A G-simplicial complex is
a simplicial complex X with a type-preserving smooth simplicial action of G. A
morphism of G-simplicial complexes is an equivariant simplicial map f: X — Y.

Note that every G-simplicial complex is a G-C'W-complex. For the definition of
a G-CW-complex we refer to [12]. If X is a G-simplicial complex the space X of
invariants with respect to a subgroup H C G is a subcomplex of X. The action of
G on X is proper iff the stabilizer of every point is a compact open subgroup of G.
Let X and Y be locally finite G-simplicial complexes. Our goal is to obtain a
description of H{(X,Y) which is closer to the definition of equivariant cyclic ho-
mology.
Due to lemma 5.1 the Brylinski space X associated to a locally finite G-simplicial
complex X is a closed subspace of G x X. Hence the formalism of regular smooth
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differential developped in section 4 may be applied to X. According to proposition
4.5 we obtain a c-soft resolution

0 d 1 d 2 d
Cyp — A% —Ls Al L5 42

of the constant sheaf (C by regular smooth differential forms. This is a resolution

in the category Shg (X ) of equivariant sheaves on X. We equip the spaces AP (X )
of global sections with the fine bornology.

Proposition 5.4. Let X and Y be locally finite G-simplicial complezes. Then we
have a natural isomorphism

HE(X,Y) = g (AL(X), AX(Y)).

Proof. This isomorphism follows from proposition 4.5 and the fact that €rt, does
not distinguish between quasiisomorphic complexes. O
Now assume in addition that X is finite dimensional. Then the complex A2 (X )
is not only bounded below but also bounded above. This means that in order to
compute Ert?(A2(X), A%(Y)) we may use a complex P*(X) consisting of projective
fine covariant modules together with a quasiisomorphism p : P*(X) — A2(X) and
obtain . .
Crtgy (A2(X), AL(Y)) = H" (Homg (P*(X), A (Y))).

IfD= dim( () is the dimension of X we can construct a natural projective resolu-
tion P*(X) of A%(X) in such a way that we obtain a commutative diagram of the
form

— 2 pP-2(X) s PP1(X) 2> PP(X) ——0

lp Pk
— T AP (X) = ADTHX) S AP (X) ——0

We may require in addition that P7(X) = EPJ(X) for all j where E is the canonical
projection on the elliptic part of a covariant module. This means in particular that
the hyperbolic part of PJ (X ) is zero. In this case we call the projective resolution
P*(X) regular. Remark that T = id for the natural operator 7' on a regular
projective resolution P*(X).

Let us view A%(X) as a mixed complex by setting the Hochschild boundary equal
to zero and letting B = d be the exterior diﬂerentlal To this mixed complex we
associate a tower of supercomplexes A.(X) = (A.(X)) as follows. We define

() =

E
ALK

7=0

and equip this space with the ordmary grading into even and odd forms a}nd differ-

ential B+ b = d. Observe that A.(X)r = A.(X)p for k > D = dim(X). Hence

the tower of supercomplexes AC(X ) is isomorphic to the constant supercomplex
D
X) @ Al(X

In a similar way a regular projective resolution P*(X) of A$(X) satisfies the axioms
of a mixed complex. Let us define a tower of supercomplexes P(X) = (P(X)y) as
follows. We set
k
P(X) = P00 (X) 5(P- 2 (X)) & @) PI(X) & 6(PH(X))

i=—k
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Remark that for £k > D this becomes
D
P(X), = P~0(X) /5(P~ (X)) @ ) P/(X).
j=—k
Clearly we consider the grading into even and odd components on P(X )i and
equip these spaces with the differential 6. Recall from [19] that a a covariant pro-
module is called relatively projective if it has the lifting property with respect to
covariant maps between covariant pro-modules having a pro-linear section. Since
the covariant modules P7 (X ) are projective for all j it is easy to see that the inverse
system P(X) is relatively projective. The chain map p: P*(X X) — A%(X) induces
a covariant chain map of supercomplexes p: P(X) — A.(X).

Proposition 5.5. Let X and Y be finite dimensional locally finite G-simplicial
complexes. Then

P HEH(X,Y) = H.(lim Homa(P(X)x, Ac(V)))
JEZ k
= H.(Homg(P(X), Ac(Y)))
where in the last expression we take homomorphisms in the pro-category pro(G-9od)

of covariant modules.

Proof. The component of degree n in .Sﬁomg( *(X),A2(Y)) is
@ﬁomg (PY(X .A’Jr”( ))s
i€EZL
here a direct sum occurs because .A',()A/) is a bounded complex. We deduce
P Homs™ (P (X), A2(Y)) = P P Home (P (X), ALHH+(V))
JEZL JEZ i€l
and obtain natural maps
g Homg (P(X)g, A(Y)) — @ﬁﬂm*H](P'( ), A2(Y))
JEL

for all £ > dim(X' ). It is easy to check that each Ay is a chain map. Moreover the
maps A\ are compatible with the projections in the first variable. The resulting
map

A hﬂf)omg( (X ) — @f)om*ﬂj (P*(X ) .A'( )
k JEZL
is an isomorphism of complexes. U

6. THE EQUIVARIANT HOCHSCHILD-KOSTANT-ROSENBERG THEOREM

The algebra C2°(X) of regular smooth functions on a G-simplicial complex X is a

G-algebra in a natural way. In this section we identify the homology of Q¢ (C° (X))
with respect to the equivariant Hochschild boundary. This will be an important
ingredient in the proof of theorem 7.1 below.
Recall from section 5 the definition of the extended Brylinski space X. Let us view
A.(X) as a (para-) mixed complex with b-boundary equal to zero and B-boundary
equal to the exterior differential d. We define the equivariant Hochschild-Kostant-
Rosenberg map a : Qg(C(X)) — A.(X) by

1
a(f(t) ® apday - - - day,) = = f(t) apday A -+ A dagx:

where we recall that X denotes the set of fixed points under the action of ¢.
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Theorem 6.1. Let G be a totally disconnected group and let X be a locally finite
G-simplicial complex. The equivariant Hochschild-Kostant-Rosenberg map

a:Qc(Ce(X)) = A(X)

is a map of paramized complezes and induces an isomorphism on the homology with
respect to the Hochschild boundary.

Proof. Let us first show that « is a map of paramixed complexes. We compute

ab(f(t) ® apday - - - da,) = z_:(—l)ja(f(t) ® apday - - - d(ajajp1) - - - day,)
j=0
+(=1)"a(f(t) ® (t™" - an)aoday - - dan )

n—1
= ( (71)jf(t) aoda1 AR /\d(ajaj+1)~~~ /\damxt

+ (=) f(t)anaodas A--- A dan1|Xt> =0

where we use (t7! - a,,)(z) = a,(t - ) = an(z) for all z € X*. Moreover we have

n

aB(f(t) ® apday - - - day,) = Z(—l)"ja(f(t) @t~ ' (day—ji1 - day)dag - da,_;)
7=0

1
(n+1)! :

1
= f(t)dag A -+ Nday xe = da(f(t) ® agday - - - day,)

(—1)n]f(t) dan_j_H VANEERIVAN dan N dao VANEERIVAN dan_ﬂxf,
=0

and hence o commutes with the boundary operators as claimed.
In order to show that « induces an isomorphism in homology it suffices to prove
that the localized maps

ar : QO (X)) — Au(X), = A(XY)

are quasiisomorphisms for all ¢ € G. Let us consider the case that X is an equi-
variant simplex. By definition, an equivariant simplex is a space of the form
X = G/H x AF where H is an open subgroup of G and the action on G/H is
given by translation. The boundary X of X is defined by 0X = G/H x dAF.
Recall from section 4 that C°(X,0X) denotes the kernel the restriction map
CX(X) — C*(0X). Similarly, A.(X*, 0X") is the kernel of the natural map
A (X)) — A (0X?). The localized equivariant Hochschild-Kostant-Rosenberg map
restricts to a chain map

a; : Qe (CP(X,0X))r — A(XE,0X1).

Let us specialize further to the case G = Z and t = 1. We write AF[n] for the
Z-equivariant simplex Z/nZ x A¥. Remark that the fixed point set A¥[n]* for the
action of 1 € Z is empty forn =0 or n > 1.

Proposition 6.2. With the notation as above we have for every k > 0:

a) The localized equivariant Hochschild-Kostant-Rosenberg map
a1 : Qz(C°(AF[1],0AF 1)) — A(AF[1]Y, 0A%[1]Y)

18 a quasiisomorphism.
b) Forn =0 and n > 1 the homology of Qz(C(A¥[n], 0AF[n]))1 with respect to
the equivariant Hochschild boundary is trivial.
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Proof. a) By definition we have A¥[1] = A* and the action is trivial. The algebra
C>=(A¥[1], 0AF[1]) can be identified with the algebra C2°(AF\OAF) of smooth func-
tions with compact support on A*\ 9A*. Moreover the space A(AF[1]}, dAK[1]!)
consists of differential forms with compact support on A* \ 9A*. Hence the asser-
tion follows from the ordinary Hochschild-Kostant-Rosenberg theorem [9], [17].

b) Let n =0 or n > 1 and let B be any unital complete bornological algebra. We
equip B with the trivial Z-action and consider the Z-algebra C.(Z/nZ)®B. An el-
ement of this algebra can be written as a linear combination of elements x[i] where
z[i] € C.(Z/nZ)®B for i € Z/nZ denotes the characteristic function located in i
with value z € B.

We view the localized Hochschild complex Q7(C.(Z/nZ)®B); as a double complex
with two columns. This corresponds to the natural decomposition

QL(C) = Oc&CE" ! & OaRC®™

of the space of equivariant differential forms of a G-algebra C'. Since B is unital the
algebra C.(Z/nZ)®B has local units. Consequently, the natural inclusion of the
first column of Qz(C.(Z/nZ)®B); into the total complex induces an isomorphism
in homology. Let us construct a contracting homotopy A for the first column of
Qz(C.(Z/nZ)®B); as follows. We define

h(wolio)dw1[ir] - - daplip]) = (1) ao[io)day [ir] - - - d1[irga]dwy g [irg] - - daplip]
if 0 <1 <p—1is the smallest number such that i; # 4,41 and
h(xolio]dw1[i1] - - - dwy[ip]) = 1[io]dzolio] - - - dap[i]

if i; = 941 for 0 < j < p—1. An easy calculation shows that h is indeed a
contracting homotopy. Hence the complexes Q7 (C.(Z/nZ)®B), are acyclic for
n=0orn>1.

Due to proposition 4.2 we have an extension of Z-algebras with bounded linear
splitting

C(A*[n], 0AF[n]) = C(AF[n]) —= C*(9A*[n])

The algebras C°(A¥[n]) and C°(0AF[n]) are of the form C.(Z/nZ)®B described
above. Hence the complexes Q7 (C°(A¥[n])); and Qz(C(0AF[n])); are acyclic.
Since the algebra C2°(AF[n], A*[n]) has local units we obtain a long exact sequence
in homology showing that Qz(C°(A¥[n],0A¥[n]); is acyclic as well. This yields
the claim. ]
Let us come back to the localized Hochschild-Kostant-Rosenberg map for arbitrary
G and t and an equivariant simplex X = G/H x A¥. We extend proposition 6.2 to
this situation as follows. There is a canonical group homomorphism Z — G which
maps 1 to t and we may view X = G/H x AF as a Z-space in this way. Clearly
the localized complexes Qg (C(X,0X)); and Qz(C*(X,0X)); are isomorphic
since the equivariant Hochschild boundary in Qg (C°(X,0X)): only depends on
the action of t. Viewed as a Z-space, X can be written as disjoint union

X = a*ny]
jes
for some index set J where A¥[n] = Z/nZ x AF as before. In this decomposi-

tion the spaces A¥[n] may appear with multiplicity. Let us determine how oy :
Q2(C=(X,0X)); — Ac(X*,0X") can be described in terms of the spaces A¥[n;].
On the right hand side the decomposition of X induces a direct sum decomposition

A(X',0X") = @D Ac(AM ), 08 [n,]1).

jeJ
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Moreover we have an isomorphism

C(X) = P e (A ny))

jeJ

of Z-algebras and a natural inclusion of complexes

v @D Qe (CE(AF Iy ], 0% [y ]))1 — 0 (@D C2°(AF[ny ), 0%y ) )
jeJ jeJ

on the left hand side. It follows from the existence of local units and an inductive
limit argument that the map ¢ is a quasiisomorphism with respect to the Hochschild
boundary.

Hence, up to quasiisomorphism, the map «; can be decomposed as a direct sum of
maps aq : Qz(C2(AF[n;],0AFn;])1 — Ac(AFn;]t, 0AF[n;]'). We apply propo-
sition 6.2 and obtain the following statement.

Proposition 6.3. Let G be a totally disconnected group and let X = G/H x AF
be an equivariant simpler. For every t € G the localized equivariant Hochschild-
Kostant-Rosenberg map

ap: Qe(CX(X,0X)) — A(X',0X7)
is a quasiisomorphism.

Let us now finish the proof of theorem 6.1. First we assume that the G-simplicial
complex X is finite dimensional and use induction on the dimension of X. If
dim(X) = 0 the space X is a disjoint union of homogenous spaces G/H. As
above it suffices to consider a single equivariant simplex X = G/H. Since we
have C*(X) = C*(X,0X) in this case the assertion follows from proposition
6.3. Assume that dim(X) = k and that the assertion is proved for all G-simplicial
complexes of dimension k¥ — 1. We consider the commutative diagram

Qa(CE(X, XE1))y —— Qe (C2 (X)) ——= Qa(CZ(XFh),

SR

Ac(XF, (XF1)) Ac(X?) Ac((XE))

where X*~! denotes the k — 1-skeleton of X. The algebra C>°(X, X*~1) is a direct
sum of algebras of the form C>°(a,d0) where ¢ = G/H x A* is an equivariant
simplex. In particular C2°(X*, X*~1) has local units. Hence the upper horizontal
sequence induces a long exact sequence in homology. Proposition 6.3 implies that
the left vertical map is a quasiisomorphism. The right vertical map is a quasi-
isomorphism by induction hypothesis. Hence a; : Qg(C(X)); — A(X?) is a
quasiisomorphism as well.

For an arbitrary G-simplicial complex X we take the inductive limit over all finite
dimensional subcomplexes in order to obtain the assertion. This completes the
proof of theorem 6.1.

7. THE COMPARISON THEOREM

In this section we prove the following theorem which describes the relation be-
tween equivariant periodic cyclic homology and bivariant equivariant cohomology
in the sense of Baum and Schneider.

Theorem 7.1. Let G be a totally disconnected group and let X and Y be finite
dimensional locally finite G-simplicial complexes. If the action of G on X is proper
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there exists a natural isomorphism

HPE(CZ(X),CF(Y)) = D HG ™ (X, V).
JEZ
Even if the action on X is not proper the elliptic part of HPS(C®(X),C*(Y)) is

naturally isomorphic to ¢y Hg”j(X, Y).

It follows immediately from the definitions that the theory defined by Baum and

Schneider a priori only has an elliptic part. Hence theorem 7.1 states in particular
that the hyperbolic part of HPY(C(X),C°(Y)) is zero provided the action of
G on X is proper. In general the hyperbolic part of HPS(C°(X),C°(Y)) might
be different from zero, however, this cannot be detected using the theory of Baum
and Schneider.
The proof of theorem 7.1 is divided into several steps. First we shall identify H P
with an auxiliary bivariant theory h¢ under the assumptions of the theorem. We
denote by Fine the natural forgetful functor on covariant modules which changes
the bornology to the fine bornology. The functor §ine is extended to the category
pro(G-9o?) in the obvious way. With this notation we define the bivariant theory
h¢(A, B) for G-algebras A and B by

hE (A, B) = H.(Homg(Fine(0Qc(ADK)), Fine(02q(BOK:)))).

This definition is identical to the definition of HPS except that we do not require
the covariant maps in the Hom-complex to be bounded. Evidently h¢ shares many
properties with HPS. For our purposes it is important that h$ satisfies excision in
both variables. This follows immediately from the generalized excision theorem in
equivariant periodic cyclic homology [19]. Moreover there is an obvious composition
product for ¢ and a natural transformation

v: HPY (A, B) — h%(A, B)

which is obtained by forgetting the bornology. It is clear that v is compatible with
the composition product.

Proposition 7.2. Let X be a finite dimensional locally finite G-simplicial complex
and let B be an arbitrary G-algebra. Then the natural map

v: HPY(CZ(X), B) = hS (C°(X), B)
is an isomorphism.

Proof. We use induction on the dimension of X. For dim(X) = 0 the algebra
C2°(X) is equipped with the fine bornology and 05 (C°(X)®Kg) is a projective
system of fine spaces. Hence the complexes used in the definition of HPS and
h¢ are equal and v is clearly an isomorphism in this case. Now assume that the
assertion is true for all G-simplicial complexes of dimension smaller than & and that
dim(X) = k. Due to proposition 4.2 we have a linearly split extension of G-algebras
of the form

Dcs C(0,00;) = C2(X) — C2(X*F )

where each 0; = G/H; x AF is an equivariant simplex. Using the six-term exact
sequences for HPY and h$ obtained from the excision theorem it suffices to show
that

v: HPS (@ C®(5,00;), B) 5 hG (@ C®(5,00;), B)
jeJ jeJ

is an isomorphism. Applying excision again we see that in both theories HPS and
h¢ the G-algebras D, C(0),00;) and @, ; Cc(G/Hj) are equivalent. Since v
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is compatible with products the assertion follows now from the case dim(X) = 0
which we have already proved. O

Corollary 7.3. For all finite dimensional locally finite G-simplicial compleres X
and Y we have a natural isomorphism

HPE(CZ(X),CE(Y)) = hi(C(X),C2(Y)).

We come to the next ingredient in the proof of theorem 7.1. For an arbitrary
G-algebra B one defines a map tr : Qg(B&Kg) — Qg(B) by

tr(f(t) ® (w0 ® ko)d(z1 @ k1) -+ - d(zy @ ky))

= f(t) ® xoday - - - dxy, / ko(ro,m)ki(r1,ra) - kn(rpn, tro)drg - - - dry,
and
tr(f(t) @d(z1 @ k1) - d(zn, @ ky))

= f(t) QR dxq - - /kl 1, 7’2 n(’r’n, trl)drl -dr,,.
It is straightforward to check that tr is a map of paramixed complexes.

Proposition 7.4. Let X be a locally finite G-simplicial complex. Then the map
r: Qe(CR(X)®Kg) = Qa(CX(X)) induces an isomorphism on the homology
with respect to the equivariant Hochschild boundary.

Proof. Consider the natural commutative diagram

Qa(CR(X)0Ka) — Qa(C(X)T@Kg) — Qa(CeKq)

Qe (C (X)) Qe (C(X)T) Q6(C)

of complexes. According to proposition 4.3 the algebra C¢°(X) has local units.
The same is true for C2°(X)®Kg. Hence the horizontal maps induce long exact se-
quences in homology. Proposition 16.2 in [19] shows that tr : Qg (B&Kg) — Qa(B)
is a linear homotopy equivalence for every unital G-algebra B. We deduce that the
middle and right vertical arrows induce isomorphisms in homology. Consequently,
the left vertical arrow induces an isomorphism in homology as well. O
Let X be a G-simplicial complex. In section 6 we have studied the equivariant
Hochschild-Kostant-Rosenberg map Qg (C°(X)) — A.(X). We compose this map
with the projection onto the elliptic part of A.(X) to obtain a map

« Qg(CSO(X)) — AC(X)en = .AC(X)
By construction, the hyperbolic part of Qg (C2°(X)) is mapped to zero under this
map. Let us define a covariant map ¢ : Fine(0Qq(C®(X)&Kg)) — A(X) b
composing tr : Qg (CX(X)2Kg) = Qa(CP (X)) with the map a.
Now let @ be any relatively projective paracomplex of fine covariant pro-modules.
Composition with g yields a map

[+ Ho (Homg(Q, Fine(0Q2a(C(X)0Ka)))) = H.(Homg(Q, A(X))).

Moreover, as explained in section 5, we choose a regular projective resolution P*® (X )
of A2(X) as above and let P (X) be the associated supercomplex. Composition with
the chain map p : P(X) — A.(X) yields a map

g: Ho(Homg(Q, P(X))) = H(Homa(Q, Ac(X)))

Remark that the Hom-complexes occuring in the definition of f and g are in fact
complexes since all entries are paracomplexes of covariant pro-modules.
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Proposition 7.5. Let X be a finite dimensional locally finite G-simplicial complex.
If the action of G on X is proper the map f is an isomorphism.

Proof. We shall treat the elliptic and the hyperbolic parts separately. Let us ab-
breviate Qg (X) = Qa(CX(X)RKa).

First we consider the elliptic part. According to proposition 7.4 and theorem 6.1
the restriction to the elliptic part of the map g defined above induces a quasiisomor-
phism Q¢ (X)en — Ac(X) on the homology with respect to the Hochschild bound-
ary. Moreover the natural projection E on the elliptic part of covariant modules
introduced in section 2 preserves linearly split exact sequences of covariant modules.
In particular we obtain a quasiisomorphism EQgq(X)en = EA(X) = A.(X) which
will be denoted by ¢ again. Since T' = id on EQg(X)en and AC(X) the map ¢ is in
fact a map between ordinary mixed complexes. Recall from section 3 that we write
LI(M) = F/=Y(M)/F’(M) for the subquotients of the Hodge filtration of a (para-)
mixed complex M. The map ¢ induces chain maps LI EQg (X )en — L7 AC(X ) for
all j. Since ¢ is a quasiisomorphism with respect to the Hochschild boundary it fol-
lows easily that these maps are quasiisomorphism of supercomplexes. In particular
the corresponding mapping cones are acyclic.

We need the following two auxiliary results.

Lemma 7.6. Let ¢ : D — E be a morphism of supercomplexes of covariant mod-
ules. Assume that Oy : Do — Dy is zero and that 0y : E1 — Ey is surjective. Then
in the mapping cone C% we have im(0;) = Ey. Consequently the image of 01 is a
direct summand in Cg =D; ® Ey.

Proof. By assumption the differential d; in C'® has the form

(5 a)

Since 0, : B, — Ej is surjective the image of 9; in C? is precisely Ej. (]

Lemma 7.7. Let Q be a relatively projective paracomplex of fine covariant pro-
modules and let ¢ : Q — C' be a covariant chain map where C' is a constant and
acyclic supercompler. Moreover assume that Cy admits a direct sum decomposi-
tion Co = K @& R where K = im(0;) = ker(9y). Then ¢ is homotopic to zero.
Consequently we have H,(Home(Q,C)) = 0.

Proof. The map ¢g : Qo — Cy = K & R may be written as ¢g = k & r. Since
0: : C1 — K is a surjection we find a covariant map s : Q¢ — C; such that 05 = k.
Hence we may assume without loss of generality that £ = 0. Now since ¢ is a chain
map and the image of 0;¢; is contained in K we deduce 0;¢1; = 0. Since C' is exact
we have im(¢1) C ker(dy) = im(9p). We may thus construct a map h : Q1 — Cp
such that dyh = ¢1. Furthermore we may assume that h factorizes over R, that is,
h: Q1 — R — Cy. Hence, up to chain homotopy, the map ¢ satisfies ¢; = 0 and
k=0in ¢g = k @ r. Since ¢ is a chain map we now have 0 = Jy¢pg = Jyr. But 9y
restricted to R is an injection since ker(dy) = K. This implies ¢y = 0 and hence
our original map ¢ is homotopic to zero. Since we have explicitly shown that any
chain map ¢ : Q — C is homotopic to zero we obtain Hy($oma(Q,C)) = 0. By
reindexing @ we deduce in the same way that H;($omg(Q,C)) = 0. This finishes
the proof. O
After possibly reindexing, the map

LEQG(X)en — L7 A(X)
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satisfies the assumptions of lemma 7.6. It follows that its mapping cone C7 satisfies
the assumptions of lemma 7.7. The short exact sequence

LjAC(X) — > (0 — LjEQC,v(X)en[l}
of supercomplexes has a covariant splitting and induces a short exact sequence

Home(Qen, LI Ae(X)) = Homg(Qerr, C7) —= Home(Qen, L EQG (X )en[1])

of supercomplexes. From lemma 7.7 we deduce H. ($omg(Qen, C?)) = 0. Since the
boundary map in this long exact sequence is the map induced by ¢ we obtain an
isomorphism

H,($ome(Qen, L EQe(X)en)) = Ho(Home(Qen, L2 AL(X)))

for all j.

Since @ is assumed to be relatively projective the Hodge filtrations of E0™Qq (X )en
and O”Ac(f( ) induce bounded filtrations of the complexes Home(Qen, FO" Qe (X )en)
and Homg (Qen, G"AC(X )), respectively. Hence the corresponding spectral sequences
converge. The map g induces a map of spectral sequences which gives an isomor-
phism on the E'-terms according to the preceeding discussion. Hence we obtain

Proposition 7.8. With the notation as above the map q induces an isomorphism

H.(Hom(Qen, EO"Qc(X)en)) = Hy(Homea(Qen, 0" A(X)))
for all n.

Let M be a paramixed complex and set M™ = $Homg(Qen, 0" M). Since the
structure maps in §M are surjections and Qe is relatively projective the structure
maps in the inverse system (M"),en are surjective. This implies @1 M™ = 0.
Therefore we obtain a short exact sequence

id—o

@n M HnEN M HnEN M

of supercomplexes where o denotes the structure maps in (M, )nen. This induces
a long exact sequence

Ho($Home(Qen, M) —— Ho([[,,exy M") ——— Ho(I],.cn

| |

Hi(Il,en M™) =~—— Hi([[,, ey M") =—— H1(Homg(Qen, 0M))

Mn)

neN
in homology.
The map ¢ induces a morphism between these exact sequences for M = EQg (X )en
and M = A.(X). Hence we obtain an isomorphism

H,($Homg(Qen, EONG(X)en = Hy (Homa (Qer, Ac(X))).

According to proposition 3.4 the canonical projection Q¢ (X)en — E0Qc(X)en is
a covariant homotopy equivalence. Hence we finally conclude that the map

f+ H.(9H0mg(Qen, Fine(0Qa(C(X)&Ka))en)) = Hy(Homa(Qery Ac(X))en))

is an isomorphism on the elliptic part.

It remains to treat the hyperbolic part. Since X is proper it follows from the
equivariant Hochschild-Kostant-Rosenberg theorem 6.1 and proposition 7.4 that
the hyperbolic part Q¢ (X )nyp of Q¢(X) is acyclic with respect to the Hochschild
boundary. Hence the associated subquotients L/Q¢ (X )pny, of the Hodge filtration
are covariantly contractible paracomplexes. We can now proceed as above to obtain

H, (Homg(Qnyp, 026 (X)nyp)) = 0.
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It follows that the map
[+ Ho($90mG (Quyp, Fine(0926(X)nyp)) = He (50mG(Qnyps Ae(X)nyp))

is an isomorphism because both sides are zero. This shows that f is an isomorphism
on the hyperbolic part. O
The assumption on X being proper was only used to prove the isomorphism of
the hyperbolic parts in proposition 7.5. Hence we obtain the following general
statement for the elliptic part.

Proposition 7.9. Let X be any finite dimensional locally finite G-simplicial com-
plex. Then the restriction of the map f to the elliptic part is an isomorphism.

Now we study the map g from above.

Proposition 7.10. The map g is an isomorphism for any finite dimensional locally
finite G-simplicial complex X .

Proof. Recall from section 5 that P(X) can be viewed as an unbounded mixed
complex with b-boundary equal to zero and B-boundary equal to the differential §.
By definition, the supercomplex P(X) is the projective system of supercomplexes

¢P(X) = (£"P(X)) given by

§"P(X) = P(X)_(n1)/BP(X) _(nt2) @ @ (P(X)y)-
i=—n
Since P(X) is bounded above in the sense that P(X), = 0 for n > D = dim(X)
we obtain

§"P(X) = P(X)_(ns1)/BP(X)_(ny2) & 69

i=—n

for n > D. We define the Hodge filtration F7 of £"P(X ) for n > D by
J

FIE"P(X) = P(X)_(ns1)/B(P(X)_(ns2)) & EP P(X); ® B(P(X);).

=—nN
Hence Fi¢nP(X) is a finite increasing filtration such that F~ (”+2)§"P(X) =0
and F"¢"P(X) = €"P(X). If we proceed in the same way for Ac(X) we sce that
the map p : P*(X) — A%(X) induces chain maps £"P(X) — £"A.(X) which are
compatible with the filtrations. By construction, the map p is a quasiisomorphism
with respect to the boundary B. If we denote again by L’ the subquotients of the
Hodge filtration it follows that p : LI¢"P(X) — Li¢" A.(X) is a quasiisomorphism
for each j and n > D. Hence the corresponding mapping cone C7 is acyclic. Since
@ is relatively projective we see in the same way as in the proof of proposition 7.5
that the map

H.(Home(Q,£" P(X))) = H.(Homa(Q, " Ac(X)))
is an isomorphism for n > D.
For an unbounded mixed complex M we set M" = Homg(Q,&"M). Since for
M = P(X) and M = A.(X) the projective system EM = (£ M), ey is isomorphic
to the projective systems (§"M),~p we obtain as in the proof of proposition 7.5
long exact sequences

HO(ﬁUmG(QEH?eM)) HHO(HTLGN ) HO(HnGN MTL)

T |

Hy([Tpen M") <——— Hi([[en M") =—— Hi(Home(Qen, 0M))
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Comparing these exact sequences for P(X) and A.(X) proves the claim. O
Propositions 7.5, 7.9 and 7.10 yield the following theorem.

Theorem 7.11. Let X be a finite dimensional locally finite G-simplicial complez.
If the action of G on X is proper the paracomplezes Fine(0Qc(C(X)®Kg)) and
P(X ) are covariantly homotopy equivalent.

The elliptic parts of Fine(0Qa(C(X)®Kq)) and P(X) are covariantly homotopy
equivalent even if the action of G on X is not necessarily proper.

Proof. We consider only the case that X is proper since the second assertion is
proved in the same way. Denote by f1 respectively fo the isomorphism f for QQ =
P(X) and Q = Fine(0Qa(CX(X)®Kg)). Similarly, denote by g; respectivly go the
isomorphism g for Q = Fine(#Qc(C(X)&K¢)) and Q = P(X). Now let = be the
preimage of [p] under the isomorphism f; and let y be the preimage of [¢] under the
isomorphism g;. Then we have fi(z) =« - [¢] = [p] and ¢1(y) =y - [p] = [¢]. Hence
g2(z-y) = z-y-[p] = [p] and fa(y-z) = y-z-[q] = [¢]. Since g2 and f> are isomorphisms
we obtain x -y = id and y - z = id. This implies that Fine(dQqe(C>®(X)®Ks)) and
P(X) are covariantly homotopy equivalent. O
Now we finish the proof of theorem 7.1. Again we will restrict ourselves to the case
that X is a proper G-simplicial complex.

Using proposition 5.5 and proposition 7.9 we obtain an isomorphism

P HE (X.Y) = H.(Soma(P(X), §ine(6026(C2*(Y)EKc))).

jez
Remark that the hyperbolic part of the Hom-complex vanishes independently of
the fact that the action of G on Y may not be proper. We apply theorem 7.11 to
deduce

H.(Homa(P(X), Fine(0926(C2°(Y)@Ka))))
=~ H,(Homg(Fine(0Qc (O (X)RKg)), Fine(0Qa(C(Y)OK)))).
Consequently we have an isomorphism

D H™ (X.Y) = hi (0 (X),C2(V))

jez
where h& denotes the bivariant homology theory introduced before proposition 7.2.
Combining this with corollary 7.3 we obtain the desired identification of equivariant
periodic cyclic homology with the theory of Baum and Schneider. This finishes the
proof of theorem 7.1.
Remark that throughout this discussion we used frequently the assumption on X
being a simplicial complex. In contrast, it is mainly for convenience to require Y
to be a simplicial complex. As soon as an analogue of the equivariant Hochschild-
Kostant-Rosenberg theorem for Y is available, the proof presented above can be
easily adapted to other classes of spaces. We consider briefly the following situation.
Let G be a discrete group and let M be a G-manifold, that is, a smooth manifold
on which G acts by diffeomorphisms. Let A.(M) be the space of smooth differen-
tial forms with compact supports on M in the usual sense. Then the equivariant
Hochschild-Kostant-Rosenberg map « : Qg (C°(M))en — AC(M ) can be defined
as in section 6 and one has the following result.

Theorem 7.12. Let G be a discrete group and let M be a G-manifold. The equi-
variant Hochschild-Kostant-Rosenberg map

a:Qc(CX(M))en — Ac(M)

induces an isomorphism on homology with respect to the Hochschild boundary.
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We obtain the following variant of theorem 7.1 in the case of discrete groups.

Theorem 7.13. Let G be a discrete group and let X be a proper finite dimensional
and locally finite G-simplicial compler. Moreover let M be a G-manifold. Then
there exists a natural isomorphism

HPZ(CZ(X), 02 (M) = D HG™ (X, M).
JEL
Let us define the equivariant cohomology with G-compact supports of a locally
compact G-space Y by
H'(EG;Y) = lim @DHGY(K,Y)
KCEG jez
where the limit is taken over all G-finite subcomplexes K of EG. Here EG is the

universal example for proper actions [3] which can be chosen to be a simplicial
complex. In [4] Baum and Schneider show that there is a canonical isomorphism

P = (EG; M) = H* (M, G)
JEZL
for all discrete groups G and G-manifolds M. Here

H*(M,G) = @ Haj1+(EG x¢ TM, (EG x¢ TM)\ {0};C)
JEZ
are the equivariant cohomology groups introduced by Baum and Connes [2]. Using
theorem 7.13 we see that the theory of Baum and Connes can be expressed in terms
of equivariant cyclic homology.

8. BREDON HOMOLOGY AND COSHEAF HOMOLOGY

In this section we review the definitions of equivariant Bredon homology [7], [13]
and cosheaf homology [3] and compare these theories. Throughout we work with
coeflicients in the complex numbers.

Let us begin with Bredon homology. The smooth orbit category Or(G) of a totally
disconnected group G has as objects all homogenous spaces G/H where H is an
open subgroup of G. The morphisms in Or(G) are all G-equivariant maps. One can
also consider subcategories of Or(G) by restricting the class of subgroups. We are
interested in the class F of all compact open subgroups of G. The corresponding
full subcategory Or(G, F) of Or(G) consists of all homogeneous spaces G/H where
H is compact open.

If C is a small category a covariant (contravariant) C-vector space is a covariant
(contravariant) functor from C to the category of vector spaces. Morphisms of C-
vector spaces are natural transformations. More generally one defines covariant
and contravariant C-objects as functors with values in arbitrary target categories.
If G is a discrete group viewed as a category with one object then a G-vector space
is simply a complex representation of G. In the sequel we will have to work with
certain Or(G, F)-vector-spaces and Or(G, F)-chain complexes.

Given a contravariant C-vector space M and a covariant C-vector space IN the ten-
sor product M ®¢ N is the direct sum of M (c) ® N(c) over all objects ¢ € C divided
by all tensor relations mf @ n —m ® fn for m € M(d),n € N(c) and morphisms
frec—dinC.

A natural domain of definition for equivariant Bredon homology is the category
of G-CW-complexes. Throughout we will assume that all G-C'W-complexes are
smooth in the sense that isotropy groups are open. The basic building blocks for
these spaces are equivariant cells G/H x D* where H is an open subgroup of G.
For detailed information see [12].
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Let X be a proper G-CW-complex. If H C G is an open subgroup we have
a canonical identification X# = Mapg(G/H, X) of the H-fixed point set where
Map; denotes the space of all equivariant continuous maps. Using this description
of fixed point sets we see that one obtains a contravariant functor from Or(G, F)
to the category of CW-complexes which associates to G/H the fixed point set X .
Composition with the covariant functor from C'W-complexes to chain complexes
which associates to a CW-complex Y the cellular chain complex C,(Y) with com-
plex coefficients yields a contravariant Or(G, F)-chain complex cor(G7) (X).

Next we define a covariant Or(G, F)-vector space R, as follows. For a compact
open subgroup H of G set

R¢(G/H) = K4(C*(H)) ®zC
where K, denotes topological K-theory and C*(H) is the group C*-algebra of H.
Note that Ko(C*(H)) = R(H) is the representation ring of H and K;(C*(H)) =
0. For a compact totally disconnected group H the character map induces an
isomorphism
Ko(C*(H)) ®zC=R(H)

where R(H) is the ring of conjugation invariant smooth functions on H.
Or(G,F)

We define a chain complex C (X;Ro) by equipping
C2 G (X Ry) = @ CIEF)(X) ®ona,7) Ro
p=0
with the differential induced from C° r(G’}-)(X ). The Bredon homology of X with

coefficients in Ry is the homology
HY P (X3 Ro) = Ha(C2 O (X3 Ro))

for n inZ. Similarly, we define a Zs-graded chain complex c® r(G’}-)(X i R) by
considering
or(G,F r
o (XR) = @ CO PN (X) @ora.r) Ra
ptg=*
again with the differential coming from C2"(%) (X).
Definition 8.1. Let G be a totally disconnected group and let X be a proper G-
CW -complex. The equivariant Bredon homology of X (with coefficients in R) is

BHS(X) = H.(C2"OP) (X R)).

Next we recall the definition of cosheaf homology. Let X be a simplicial complex.
We view X as a category whose objects are the simplices of X and whose morphisms
are inclusions of simplices. A cosheaf A on X is a contravariant functor from X
to the category of complex vector spaces. More concretely, a cosheaf A is specified
by vector spaces A(c) for every simplex o C X and linear maps o : A(c) — A(n)
for every inclusion 7 C 0. These maps are required to satisfy aj = ajag whenever
T CnCoand af =id for every simplex o.

Now let G be a totally disconnected group and let X be a proper G-simplicial
complex. We are interested in the following cosheaf Rx on X. For a simplex
o C X we define Rx(0) = R(G,) ®z C =2 R(G,) where G, denotes the stabilizer
of 0. If n C o is a face the map ) : R(G,) — R(G,) is given by induction.

Let us define a complex S, (X;Rx) as follows. We set

Sn(X;Rx) = ( D RX(U))/(J"[U] — fl=ol for f € Rx(0))

dim(o)=n
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where the sum is taken over all oriented simplices of X and f[o] is our notation
for f € Rx (o) viewed as element in the summand corresponding to o. Moreover
—o denotes the oriented simplex ¢ equipped with the opposite orientation. The
boundary 9 : S, (X;Rx) = Sn—1(X;Rx) is defined by

d(flo]) = > La ().
dim () ~lim(e) -1

The group G acts on S,(X;Ryx) in a natural way. We let S¢(X;Rx) denote the
complex of coinvariants obtained from S, (X;Rx).

Definition 8.2. Let G be a totally disconnected group and let X be a proper G-
sitmplicial complex. The cosheaf homology of X (with values in Rx ) is

CHZ(X) = Ho(CF (X5 Rx))-

Let X be a G-simplicial complex. Retaining the notation from above we define
amap ¢: SE(X;Rx) — C2EP) (X, Ry) by

¢(flo]) = [01(Go) ® f(G5)
where we indicate by the brackets on the right hand side of this equation that the
tensor is viewed as an element in ¢ (X% ) ®R(G,) which maps canonically

into the target of ¢.

Proposition 8.3. Let G be a totally disconnected group and let X be a proper
G-simplicial complex. The map ¢ : SF(X;Rx) — o) (X;Ro) defined above
is an isomorphism of chain complexes.

Proof. First of all one checks that ¢ vanishes on coinvariants and hence yields a
well-defined map. We compute

¢d(flol) = ¢< > LZ(f)) =D 0(G") @G

nCo nCo
=Y n(G) & f(G7) = 0([0)(G7) ® f(G)) = 9(f[o))
nCo
for a simplex ¢ C X and f € R(G”). Here we use the fact that the simplicial and
the cellular chain complex of a simplicial complex can be identified. It follows that
¢ is a chain map. Let us define a map 1 : o) (X;Ro) — SE(X;Rx) by

Y([o)(H) @ f(H)) = indF (f)[o]-
It is straightforward to check that i is well-defined and by definition we have
¢ = id. We calculate

¢ ([o)(H) @ f(H)) = [0)(G°) ® ind (f)(G7) = [0](H) & f(H)
and conclude ¢ = id. This finishes the proof. O

Corollary 8.4. Let G be a totally disconnected group and let X be a proper G-
sitmplicial complex. Then the Bredon homology H,?r(G’}-)(X;RO) of X is naturally

isomorphic to the cosheaf homology CHE (X).

Combining this with theorem 7.1 and results from [4] we obtain the following
statement.

Theorem 8.5. Let X be a proper G-simplicial complex. Then there is a natural
isomorphism
lim HPE(C(K),C) = @ CHE,,;(X) = BHE (X)

-
KCX jEz
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where the limit on the left hand side is taken over all G-finite subcomplexes of X.
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