
QUANTUM GROUPS AND THE BAUM-CONNES CONJECTURE

CHRISTIAN VOIGT

Abstract. In these lecture notes we explain the formulation and proof of
the Baum-Connes conjecture for the dual of the quantum group SUq(2) of

Woronowicz. Along the way we discuss some concepts and results of inde-

pendent interest, like braided tensor products and the notion of torsion-free
discrete quantum groups.

1. Introduction

Let G be a second countable locally compact group and let A be a separable
G-C∗-algebra. The Baum-Connes conjecture with coefficients in A asserts that the
assembly map

µA : Ktop
∗ (G;A)→ K∗(Gnr A)

is an isomorphism [3], [4]. Here K∗(Gnr A) is the K-theory of the reduced crossed
product of A by G. The validity of this conjecture has applications in topology,
geometry and representation theory. In particular, if G is discrete then the Baum-
Connes conjecture with trivial coefficients C implies the Novikov conjecture on
higher signatures and the Kadison-Kaplansky idempotent conjecture.
It is natural to ask what happens if one replaces the group G in this conjecture
by a locally compact quantum group. Indeed, quantum groups give rise to inter-
esting C∗-algebras, and an important aspect in the study of a C∗-algebra is the
computation of its K-theory. Since the Baum-Connes conjecture provides powerful
tools to calculate the K-theory of group C∗-algebras it should also be useful in the
quantum case.
In these notes we discuss the formulation and proof of the Baum-Connes conjec-
ture for a specific discrete quantum group, namely the dual of the quantum group
SUq(2) of Woronowicz. Along the way we will review some results in connection
with braided tensor products and the Drinfeld double. We shall also explain basic
facts concerning torsion-free quantum groups. The material covered here is mostly
taken from [19], [23].
In order to formulate the Baum-Connes problem for quantum groups we follow the
approach proposed by Meyer and Nest using the language of triangulated categories
and derived functors [16]. In this approach the left hand side of the assembly map
is identified with the localisation LF of the functor F (A) = K∗(G nr A) on the
equivariant Kasparov category KKG. The usual definition of the left hand side of
the conjecture is based on the universal space for proper actions, a concept which
does not translate to the quantum setting in an obvious way. Following [16], one has
to specify instead an appropriate subcategory of the equivariant Kasparov category
corresponding to compactly induced actions in the group case. This approach has
been implemented in [17] for duals of compact groups.
Let us describe how the paper is organized. In section 2 we discuss some basic
material on Hilbert modules and the definition of KK-theory. Section 3 contains
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the definition of coactions and equivariant KK-theory for quantum groups. Equi-
variant KK-theory is the most important tool in our considerations. In section 4
we define braided tensor products and their relation to the Drinfeld double D(G)
of a quantum group G. Braided tensor products replace the usual tensor products
in the context of quantum group actions. In section 5 we first review the definition
of SUq(2) and the standard Podleś sphere SUq(2)/T . Then we prove that, on the
level of KKD(SUq(2)), the Podleś sphere C(SUq(2)/T ) is isomorphic to C2. This
turns out to be the most important ingredient in the proof of the Baum-Connes
conjecture below. In section 6 we discuss the notion of torsion-free quantum groups
and formulate the Baum-Connes conjecture for these quantum groups. Finally, us-
ing the considerations from section 5 we prove in section 7 that the dual of SUq(2)
satisfies the strong Baum-Connes conjecture. In two appendices we discuss the re-
lation between Hilbert modules and continuous fields of Hilbert spaces and details
on Yetter-Drinfeld structures. The first appendix on continuous fields is not needed
in the main text and only included as additional information.
Let us make some remarks on notation. We write L(E) for the space of adjointable
operators on a Hilbert A-module E . Moreover K(E) denotes the space of compact
operators. The closed linear span of a subset X of a Banach space is denoted by
[X]. Depending on the context, the symbol ⊗ denotes either the tensor product of
Hilbert spaces, the minimal tensor product of C∗-algebras, or the tensor product
of von Neumann algebras. We write � for algebraic tensor products. For operators
on multiple tensor products we use the leg numbering notation.
It is a pleasure to thank E. Germain and R. Vergnioux for their kind hospitality in
Caen. Moreover I thank J. Bichon and R. Vergnioux for discussions on the notion
of torsion-freeness for quantum groups.

2. Hilbert modules and KK-theory

In this section we discuss Hilbert modules an explain the definition of KK-
theory. We state most results without proof. For more details on Hilbert modules
and KK-theory we refer to [12] and [5].
Let B be a C∗-algebra and let E be a right B-module. A B-valued inner product
on E is a sesquilinear form E × E → B, (ξ, η) 7→ 〈ξ, η〉, linear in the second and
conjugate linear in the first variable, such that

〈ξ, ηb〉 = 〈ξ, η〉b, 〈ξ, η〉 = 〈η, ξ〉∗, 〈ξ, ξ〉 ≥ 0

for all ξ, η ∈ E and b ∈ B. Note that the last condition asserts positivity in the
C∗-algebra B.

Definition 2.1. Let B be a C∗-algebra and E a right B-module with a B-valued
inner product 〈 , 〉. Then E is called a Hilbert B-module if

||ξ|| = ||〈ξ, ξ〉||1/2

defines a norm on E for which E is complete. A Hilbert module is called full if the
ideal [〈E , E〉] ⊂ B is equal to B.

Observe that ||ξ|| = 0 holds iff 〈ξ, ξ〉 = 0 in B. Hence for an element ξ in a
Hilbert B-module E the relation 〈ξ, ξ〉 = 0 holds if and only if ξ = 0.

Examples 2.2. Let us consider some examples of Hilbert modules.
a) B = C. It is easy to check that Hilbert C-modules are the same thing as Hilbert

spaces.
b) B = C0(X) for a locally compact Hausdorff space X. Hilbert C0(X)-modules

are the same thing as continuous fields of Hilbert spaces over X.
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c) E = B with right multiplication and the scalar product 〈x, y〉 = x∗y is a Hilbert
B-module for any C∗-algebra B.

For the definition of continuous fields of Hilbert spaces see [8] and appendix A.
From example b) we see in particular that every hermitian vector bundle E over
a locally compact space X yields a Hilbert C0(X)-module by taking the global
sections of E vanishing at infinity.
Many constructions for modules carry over to the setting of Hilbert modules. In
particular, a submodule of a Hilbert B-module E is a closed subspace of E which is
preserved by the B-module structure. If E and F are Hilbert B-modules, the direct
sum E ⊕ F is a Hilbert B-module in the obvious way. One may also take infinite
direct sums of Hilbert modules, in particular we may consider

HB =
∞⊕
n=1

B =
{

(bk) ∈
∏
n∈N

B

∣∣∣∣ ∞∑
k=1

b∗kbk converges in B
}

with the inner product

〈(ak), (bk)〉 =
∞∑
k=1

a∗kbk.

This Hilbert B-module is called the standard Hilbert B-module, and plays an im-
portant role according to the following theorem.

Theorem 2.3 (Kasparov’s stabilization theorem). Let B be a C∗-algebra and let
E be a countably generated Hilbert B-module. Then E ⊕ HB

∼= HB as Hilbert B-
modules.

Here a Hilbert module E is called countably generated if there exists a countable
set X ⊂ E such that the smallest Hilbert submodule of E containing X is E itself.
The stabilization theorem asserts that every countably generated Hilbert module is
a direct summand in the standard Hilbert module HB . We note that the C∗-algebra
B itself does not need to be separable.
Next we introduce bounded operators on Hilbert modules.

Definition 2.4. Let E be a Hilbert B-module. A bounded operator on E is a linear
map T : E → E such that there exists a linear map T ∗ : E → E satisfying

〈Tξ, η〉 = 〈ξ, T ∗η〉
for all ξ, η ∈ E.

It is easy to check that the map T ∗ is uniquely determined by T , and that T is
automatically a B-module map. In fact, even linearity follows from the existence
of T ∗. A bounded operator is indeed bounded for the operator norm, this follows
from the closed graph theorem. The algebra L(E) of all bounded operators on E is
a C∗-algebra with the operator norm and the ∗-structure given by taking adjoints.

Example 2.5. It is easy to find an example of Hilbert modules EB and FB and
a bounded B-linear map E → F which is not adjointable, hence not a bounded
operator in the sense of definition 2.4. Consider, for instance, B = C[0, 1] and
E = C0([0, 1)),F = C[0, 1]. The inclusion map T : E → F is clearly B-linear and
bounded. If T ∗ : F → E where an adjoint then we would have T ∗(1)(x) = 1 for
all x ∈ [0, 1). This would contradict the fact that T ∗(1) has to be an element in
C0([0, 1)).

Let E be a Hilbert module and let ξ, η ∈ E . The rank-one operator |ξ〉〈η| is the
linear map E → E defined by

|ξ〉〈η|(µ) = ξ〈η, µ〉
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for µ ∈ E . One checks that |ξ〉〈η| is a bounded operator with adjoint

(|ξ〉〈η|)∗ = |η〉〈ξ|.
A finite sum of rank-one operators is called a finite rank operator. The finite rank
operators form a two-sided ideal in L(E).

Definition 2.6. Let E be a Hilbert B-module. A compact operator on E is a bounded
operator which is the norm-limit of a sequence of finite rank operators.

The set K(E) of all compact operators on E is a closed two-sided ideal in L(E),
in particular it is itself a C∗-algebra.

Examples 2.7. Let us consider some examples of bounded and compact operators.
a) For B = C we reobtain the usual notions of bounded and compact operators on

a Hilbert space.
b) Consider the Hilbert B-module E = B. Then K(B) = B and L(B) = M(B),

the multiplier algebra of B.
c) More generally, for any Hilbert module E one has L(E) = M(K(E)).
d) If B = C0(X) and E = (Ex)x∈X is a continuous field of Hilbert spaces, then

K(E) ∼= Γ0(K(Ex))

is the algebra of C0-sections of the algebra bundle K(E), and

L(E) ∼= Γb(L(Ex))

where on the right-hand side we consider strong-∗-continuous bounded sections.

Let E be a Hilbert A-module and F a Hilbert B-module. Then the algebraic
tensor product E � F is a right A� B-module and equipped with a A⊗ B-valued
inner product given by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1, ξ2〉〈η1, η2〉.
The completion of E�F with respect to the corresponding norm is a Hilbert A⊗B-
module, denoted by E ⊗F and called the exterior tensor product of E and F . One
has natural ∗-homomorphisms L(E) → L(E ⊗ F) and L(F) → L(E ⊗ F) and an
isomorphism K(E)⊗K(F) ∼= K(E ⊗ F).
Let E be a Hilbert A-module and F a Hilbert B-module. If φ : A → L(F) is a
∗-homomorphism we can define a Hilbert module E ⊗AF , called the interior tensor
product of E and F along φ, as follows. First we consider the algebraic tensor
product E �A F , which is defined as the quotient of the algebraic tensor product
E � F by the space of all elements

ξa⊗ η − ξ ⊗ φ(a)(η)

for ξ ∈ E , a ∈ A and η ∈ F . Then E �A F is a right B-module and carries a
B-valued inner product given by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, φ(〈ξ1, ξ2〉)η2〉.
One can show that this inner product is positive definite. By definition, the com-
pletion of E �A F with respect to the corresponding norm is the interior tensor
product E ⊗A F .
We are now ready to give the definition of Kasparov cycles.

Definition 2.8. Let A and B be C∗-algebras. A Kasparov A-B-cycle (E , φ, F )
consists of
a) a (countably generated) graded Hilbert B-module E = E0 ⊕ E1
b) a graded ∗-homomorphism φ : A → L(E), that is, φ = φ0 ⊕ φ1 where φj : A →

L(Ej) for j = 0, 1
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c) a bounded operator F ∈ L(E) which is odd, that is, of the form

F =
(

0 F10

F01 0

)
.

These data are required to satisfy the condition that

φ(a)(F 2 − 1), φ(a)(F − F ∗), [F, φ(a)]

are in K(E) for all a ∈ A.

Two Kasparov A-B-cycles (E0, φ0, F0) and (E1, φ1, F1) are called unitarly equiv-
alent if there is a unitary U ∈ L(E0, E1) of degree zero such that Uφ0(a) = φ1(a)U
for all a ∈ A and F1U = UF0. We write (E0, φ0, F0) ∼= (E1, φ1, F1) in this case.
Let E(A,B) be the set of unitary equivalence classes of Kasparov A-B-cycles. This
set is functorial for ∗-homomorphisms in both variables. If f : B1 → B2 is a
∗-homomorphism and (E , φ, F ) is a Kasparov A-B1-cycle, then

f∗(E , φ, F ) = (E ⊗f B2, φ⊗ id, F ⊗ 1)

is the corresponding Kasparov A-B2-cycle. A homotopy between Kasparov A-
B-cycles (E0, φ0, F0) and (E1, φ1, F1) is a Kasparov A-B[0, 1]-cycle (E , φ, F ) such
that (evt)∗(E , φ, F ) ∼= (Et, φt, Ft) for t = 0, 1. Here B[0, 1] = B ⊗ C[0, 1] and
evt : B[0, 1]→ B is evaluation at t.

Definition 2.9. Let A and B be C∗-algebras. The Kasparov group KK(A,B) is
the set of homotopy classes of Kasparov A-B-cycles.

The addition in KK(A,B) is defined in the obvious way by taking direct sums
of cycles.
Every ∗-homomorphism φ : A → B defines an element [φ] ∈ KK(A,B) by taking
E = E0 = B,φ : A→ B = K(E) ⊂ L(E) and F = 0.

Theorem 2.10. There exists an associative bilinear product

KK(A,B)×KK(B,C)→ KK(A,C), (x, y) 7→ x⊗ y

generalizing the composition of ∗-homomorphisms.

That is, [φ] ⊗ [ψ] = [ψ ◦ φ] whenever φ : A → B and ψ : B → C are ∗-
homomorphisms. The element id = [id] acts as a unit with respect to the product.
Using the Kasparov product, we may view KK as a category with objects all
separable C∗-algebras and with the set of morphisms between A and B given by
KK(A,B).
The construction of the product and the proof of its associativity are difficult. We
refer to [5] for the details. A simple special case of the Kasparov product arises if
the operators in both cycles are zero. More precisely, if (E1, φ1, 0) is a Kasparov
A-B-module and (E2, φ2, 0) is a Kasparov B-C-module then (E1 ⊗B E2, φ1 ⊗ id, 0)
represents their Kasparov product.
This situation arises in the context of Morita equivalences. A Morita equivalence
between C∗-algebras A and B is a full Hilbert B-module E together with an iso-
morphism φ : A → K(E) of C∗-algebras. Such a Hilbert module is called an
A-B-imprimitivity bimodule. The triple (E , φ, 0) defines an element in KK(A,B),
and this element is invertible with respect to Kasparov product. The inverse is
implemented by the dual imprimitivity bimodule E∨ = K(E , B). It follows that
Morita equivalent C∗-algebras are isomorphic in KK.
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3. Coactions, crossed products, and equivariant KK-theory

In this section we extend the definition of KK-theory to the equivariant setting.
We work in the setting of Hopf-C∗-algebras.
Let us begin with the definition of a Hopf-C∗-algebra.

Definition 3.1. A Hopf C∗-algebra is a C∗-algebra S together with an injective
nondegenerate ∗-homomorphism ∆ : S →M(S ⊗ S) such that the diagram

S
∆ //

��

M(S ⊗ S)

id⊗∆

��
M(S ⊗ S)

∆⊗id // M(S ⊗ S ⊗ S)

is commutative and [∆(S)(1⊗ S)] = S ⊗ S = [(S ⊗ 1)∆(S)].
A morphism between Hopf-C∗-algebras (S,∆S) and (T,∆T ) is a nondegenerate ∗-
homomorphism π : S →M(T ) such that ∆T π = (π ⊗ π)∆S.

If S is a Hopf-C∗-algebra we write Scop for the Hopf-C∗-algebra obtained by
equipping S with the opposite comultiplication ∆cop = σ∆.
All Hopf-C∗-algebras of interest to us are obtained from locally compact quantum
groups, see [10], [11].

Definition 3.2. A locally compact quantum group G is given by a von Neumann
algebra L∞(G) together with a normal unital ∗-homomorphism ∆ : L∞(G) →
L∞(G)⊗ L∞(G) satisfying the coassociativity relation

(∆⊗ id)∆ = (id⊗∆)∆

and normal semifinite faithful weights φ and ψ on L∞(G) which are left and right
invariant, respectively.

Let G be a locally compact quantum group and let Λ : Nφ → HG be a GNS-
construction for the weight φ where

Nφ = {x ∈M |φ(x∗x) <∞}.
One obtains a unitary WG = W on HG ⊗HG by

W ∗(Λ(x)⊗ Λ(y)) = (Λ⊗ Λ)(∆(y)(x⊗ 1))

for x, y ∈ Nφ. This unitary is multiplicative, which means that W satisfies the
pentagonal equation

W12W13W23 = W23W12.

Using W one obtains Hopf C∗-algebras

Cr
0(G) = [(id⊗L(HG)∗)(W )], ∆(x) = W ∗(1⊗ x)W

and

C∗r (G) = [(L(HG)∗ ⊗ id)(W )], ∆̂(y) = ΣW (y ⊗ 1)W ∗Σ = Ŵ ∗(1⊗ y)Ŵ

where Σ ∈ L(HG ⊗ HG) is the flip map and Ŵ = ΣW ∗Σ. We note that W ∈
M(Cr

0(G)⊗ C∗r (G)).
There are also Hopf-C∗-algebras C f

0(G) and C∗f (G) associated to G, together with
canonical surjective morphisms π̂ : C∗f (G) → C∗r (G) and π : C f

0(G) → Cr
0(G) of

Hopf-C∗-algebras. One should view all these Hopf-C∗-algebras as different appear-
ances of the quantum group G. The quantum group G is amenable if π̂ is an
isomorphism and coamenable if π is an isomorphism.
A quantum group G is called compact iff C f

0(G) is unital. In this case we write
C f(G) = C f

0(G) and Cr(G) = Cr
0(G). If G is in addition coamenable we write
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C(G) = C f(G) = Cr(G). We will be interested in particular in the coamenable
compact quantum group SUq(2).

Definition 3.3. Let q ∈ (0, 1]. The C∗-algebra C(SUq(2)) is the universal C∗-
algebra generated by elements α and γ satisfying the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1.

The comultiplication ∆ : C(SUq(2))→ C(SUq(2))⊗ C(SUq(2)) is defined by

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.
We will come back to SUq(2) in section 5.

Let us now introduce coactions on C∗-algebras.

Definition 3.4. A (continuous, left) coaction of a Hopf C∗-algebra S on a C∗-
algebra A is an injective nondegenerate ∗-homomorphism α : A→M(S ⊗ A) such
that the diagram

A
α //

α

��

M(S ⊗A)

∆⊗id

��
M(S ⊗A)

id⊗α // M(S ⊗ S ⊗A)

is commutative and [α(A)(S ⊗ 1)] = S ⊗A.
An S-C∗-algebra (A,α) is a C∗-algebra A with a coaction α of S on A. If (A,α)
and (B, β) are S-C∗-algebras, then a ∗-homomorphism f : A → M(B) is called
S-colinear if βf = (id⊗f)α.

A G-C∗-algebra is an S-C∗-algebra for S = Cr
0(G) for a locally compact quantum

group G. In this case S-colinear ∗-homomorphisms will be called G-equivariant.
We write G-Alg for the category of separable G-C∗-algebras and equivariant ∗-
homomorphisms.

Examples 3.5. Let us consider two examples of S-C∗-algebras.
a) If A = S then α = ∆ defines a coaction of S on A.
b) For any C∗-algebra B the trivial coaction β : B →M(S⊗B), β(b) = 1⊗ b turns

B into an S-C∗-algebra.

Let EB be a right Hilbert module. The multiplier module M(E) of E is the
right Hilbert-M(B)-module M(E) = L(B, E). There is a natural embedding E ∼=
K(B, E)→ L(B, E) = M(E). If EA and FB are Hilbert modules, then a morphism
from E to F is a linear map Φ : E → M(F) together with a ∗-homomorphism
φ : A→M(B) such that

〈Φ(ξ),Φ(η)〉 = φ(〈ξ, η〉)
for all ξ, η ∈ E . In this case Φ is automatically norm-decreasing and satisfies
Φ(ξa) = Φ(ξ)φ(a) for all ξ ∈ E and a ∈ A. The morphism Φ is called nondegenerate
if φ is nondegenerate and [Φ(E)B] = F .

Definition 3.6. Let S be a Hopf-C∗-algebra and let (B, β) an S-C∗-algebra. A
(continuous, left) coaction of S on a Hilbert module EB is a nondegenerate morphism
λ : E →M(S ⊗ E) such that the diagram

E λ //

λ

��

M(S ⊗ E)

∆⊗id

��
M(S ⊗ E)

id⊗λ // M(S ⊗ S ⊗ E)

is commutative and [(S ⊗ 1)λ(E)] = S ⊗ E = [λ(E)(S ⊗ 1)].
An S-Hilbert B-module (E , λ is a Hilbert module E together with a coaction of S on
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E. A morphism Φ : E → M(F) of S-Hilbert B-modules with coactions λE and λF ,
respectively, is called S-colinear if λFΦ = (id⊗Φ)λE .

If λ : E →M(S ⊗E) is a coaction on the Hilbert-B-module E then the map λ is
automatically isometric and hence injective.
If G is a locally compact quantum group and S = Cr

0(G), then S-Hilbert B-modules
are also called G-Hilbert B-modules. Instead of S-colinear morphisms we also speak
of equivariant morphisms between G-Hilbert B-modules.
Let S be a Hopf-C∗-algebra and (EB , λ) an S-Hilbert B-module. We obtain a
unitary operator Vλ : E ⊗B (S ⊗B)→ S ⊗ E by

Vλ(ξ ⊗ x) = λ(ξ)x

for ξ ∈ E and x ∈ S⊗B. Here the tensor product over B is formed with respect to
the coaction β : B →M(S ⊗B). This unitary satisfies the relation

(id⊗CVλ)(Vλ ⊗(id⊗β) id) = Vλ ⊗(∆⊗id) id

in L(E ⊗(∆⊗id)β (S ⊗ S ⊗B), S ⊗ S ⊗ E), compare [1]. Moreover, the equation

adλ(T ) = Vλ(T ⊗ id)V ∗λ

determines a coaction adλ : K(E) → M(S ⊗ K(E)) = L(S ⊗ E) which turns K(E)
into an S-C∗-algebra.

Definition 3.7. Let S be a Hopf-C∗-algebra and let A and B be S-C∗-algebras.
An S-equivariant Kasparov A-B-module is a countably generated graded S-Hilbert
B-module E together with an S-colinear graded ∗-homomorphism φ : A→ L(E) and
an odd operator F ∈ L(E) such that

[F, φ(a)], (F 2 − 1)φ(a), (F − F ∗)φ(a)

are contained in K(E) for all a ∈ A and F is almost invariant in the sense that

(id⊗φ)(x)(1⊗ F − adλ(F )) ⊂ S ⊗K(E)

for all x ∈ S ⊗ A. Here S ⊗ K(E) = K(S ⊗ E) is viewed as a subset of L(S ⊗ E)
and adλ is the adjoint coaction associated to the given coaction λ : E → M(S ⊗ E)
on E.

As in the nonequivariant case one defines unitary equivalence and homotopy
of S-equivariant Kasparov modules, taking into account compatibility with the S-
coactions in the obvious way.

Definition 3.8. Let S be Hopf-C∗-algebra and let A and B be S-C∗-algebras.
The S-equivariant Kasparov group KKS(A,B) is the set of homotopy classes of
S-equivariant Kasparov A-B-cycles.

We will be interested in the case that S = Cr
0(G) for a locally compact quantum

group G. In this case we write KKG instead of KKS .
Every G-equivariant ∗-homomorphism φ : A → B between G-C∗-algebras defines
an element [φ] ∈ KKG(A,B) by taking E = E0 = B,φ : A→ B = K(E) ⊂ L(E) and
F = 0. The construction of the Kasparov product carries over to the equivariant
case.
A G-equivariant Morita equivalence between G-C∗-algebras A and B is given by
an equivariant A-B-imprimitivity bimodule, that is, a full G-Hilbert B-module E
together with an isomorphism φ : A→ K(E) of G-C∗-algebras. As in the nonequiv-
ariant case, the triple (E , φ, 0) gives an invertible element in KKG(A,B).
We shall now introduce some further concepts which play a role in the sequel.
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Definition 3.9. Let G be a locally compact quantum group and let (A,α) be a
G-C∗-algebra. The reduced crossed product C∗r (G)cop nr A is defined by

C∗r (G)cop nr A = [(C∗r (G)⊗ 1)α(A)] ⊂ L(HG ⊗A) = M(KG ⊗A)

where KG = K(HG).

There is a nondegenerate ∗-homomorphism jA : A → M(C∗r (G)cop nr A) in-
duced by α. Similarly, we have a canonical nondegenerate ∗-homomorphism gA :
C∗r (G)cop →M(C∗r (G)cop nr A).
The reduced crossed products admits a dual coaction of C∗r (G)cop. The dual
coaction leaves jA(A) invariant and acts by the (opposite) comultiplication on
gA(C∗r (G)cop).
If A is equipped with the trivial coaction then C∗r (G)cop nr A = C∗r (G)cop ⊗ A is
the minimal tensor product of C∗r (G)cop and A. Recall that the comultiplication
∆ : Cr

0(G) → M(Cr
0(G) ⊗ Cr

0(G)) defines a coaction of Cr
0(G) on itself. A locally

compact quantum group G is called regular if C∗r (G)cop nr C
r
0(G) ∼= KG = K(HG).

All compact and all discrete quantum groups are regular, and we will only consider
regular locally compact quantum groups in the sequel.

Theorem 3.10. [Baaj-Skandalis duality] Let G be a regular locally compact quan-
tum group and let S = Cr

0(G) and Ŝ = C∗r (G)cop. For all S-C∗-algebras A and B
there is a canonical isomorphism

JS : KKS(A,B)→ KKŜ(Ŝ nr A, Ŝ nr B)

which is multiplicative with respect to the composition product.

A proof of theorem 3.10 can be found in [1], [2].

Definition 3.11. A unitary corepresentation of a Hopf-C∗-algebra S on a Hilbert
B-module E is a unitary X ∈ L(S ⊗ E) satisfying

(∆⊗ id)(X) = X13X23.

Let B be a C∗-algebra equipped with the trivial coaction of the Hopf-C∗-algebra
S and let λ : E → M(S ⊗ E) be a coaction on the Hilbert module EB . Then using
the natural identification E ⊗B (S ⊗B) ∼= E ⊗ S ∼= S ⊗E the associated unitary Vλ
determines a unitary corepresentation V ∗λ in L(S⊗E). If G is a regular locally com-
pact quantum group and S = Cr

0(G), then this defines a bijective correspondence
between S-Hilbert B-modules and unitary corepresentations.

4. The Drinfeld double and braided tensor products

In this section we discuss the definition of the braided tensor product and the
Drinfeld double.
To motivate the definition of braided tensor products let us first consider the prob-
lem that it is designed to solve. Although we are interested in G-C∗-algebras for a
quantum group G, the problem is in fact purely algebraic.
If C is a monoidal category then an algebra in C is an object A ∈ C together with
a morphism µA : A⊗A→ A such that

A⊗A⊗A
id⊗µA //

µA⊗id

��

A⊗A
µA

��
A⊗A

µA // A

is commutative.
Assume thatA andB are algebras in C. We may form the tensor product A⊗B as an
object of C, but in contrast to the situation for vector spaces it will be an algebra in C
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in general only when C is braided. If C is braided and γXY : X⊗Y → Y ⊗X denotes
the braiding, the multiplication µA⊗B for A⊗B is defined as the composition

A⊗B ⊗A⊗B
id⊗γBA⊗id// A⊗A⊗B ⊗B

µA⊗µB// A⊗B.

We are interested in the case where C is, roughly speaking, the category of comod-
ules for a Hopf-C∗-algebra associated to a quantum group. However, in order to
explain the main ideas we shall first consider the algebraic situation of ordinary
Hopf algebras.
The comodule category of a Hopf algebra H is braided if H is coquasitriangular.

Definition 4.1. A Hopf algebra H is called coquasitriangular if there exists a linear
form r : H⊗H → C such that r is invertible with respect to the convolution product
and

a) µopp = r ∗ µ ∗ r−1

a) r(µ⊗ id) = r13r23 and r(id⊗µ) = r13r12

Here µ : H ⊗H → H denotes the multiplication map.

If M and N are comodules over a coquasitriangular Hopf algebra H then

γMN (m⊗ n) = r(n(−1) ⊗m(−1))n(0) ⊗m(0)

is an H-colinear isomorphism which defines a braiding on the category of H-
comodules.
It is easy to give examples of Hopf algebras which are not braided.

Example 4.2. Consider a finite group G and the Hopf algebra H = CG. A co-
module for H is the same thing as a G-graded vector space V , that is,

V =
⊕
s∈G

Vs

If G is nonabelian then this category is not braided.
To see this let us write Cs for C with the coaction λs : Cs → H ⊗ Cs given by
λs(1) = s⊗ 1. We find

Cs ⊗ Ct ∼= Cst
for all s, t so that Cs ⊗ Ct is not isomorphic to Ct ⊗ Cs unless s and t commute.

Hence a finite dimensional Hopf algebra H will usually fail to be coquasitriangu-
lar. However, there is a universal way to write H as a quotient of a coquasitriangular
Hopf algebra. This is the Drinfeld double construction which we shall explain next.
Let H be a finite dimensional Hopf algebra and consider

ŵ =
n∑
j=1

S−1(ej)⊗ ej ∈ (H∗)cop ⊗H

where e1, . . . , en is a basis of H with dual basis e1, . . . , en of (H∗)cop = H∗. We
write ∆ for the comultiplication in H and ∆̂ for the comultiplication in (H∗)cop.

Lemma 4.3. The element ŵ is a bicharacter of (H∗)cop⊗H, that is, ŵ is invertible
and the formulas

(ε⊗ id)(ŵ) = 1, (id⊗ε)(ŵ) = 1

and
(∆̂⊗ id)(ŵ) = ŵ13ŵ23, (id⊗∆)(ŵ) = ŵ13ŵ12

hold.
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Proof. Let us write

〈x, f〉 = x(f) = 〈f, x〉

for the canonical evaluation of x ∈ (H∗)cop = H∗ and f ∈ H. Note that S−1 is the
antipode of (H∗)cop in the above formula for ŵ, and that 〈S−1(x), f〉 = 〈x, S(f)〉
for all x ∈ (H∗)cop and f ∈ H. For f, g ∈ H and x ∈ H∗ we compute

〈(∆̂⊗ id)(ŵ), f ⊗ g ⊗ x〉 =
n∑
j=1

〈∆̂(S−1(ej))⊗ ej , f ⊗ g ⊗ x〉

=
n∑
j=1

〈S−1(ej), gf〉〈ej , x〉

= x(S(gf))

=
n∑

j,k=1

〈ej , S(f)〉〈ek, S(g)〉〈ejek, x〉

=
n∑

j,k=1

〈S−1(ej), f〉〈S−1(ek), g〉〈ejek, x〉

=
n∑

j,k=1

〈S−1(ej)⊗ S−1(ek)⊗ ejek, f ⊗ g ⊗ x〉

= 〈ŵ13ŵ23, f ⊗ g ⊗ x〉

The verification of the remaining relations can be found in appendix B. �
Using the bicharacter ŵ we can define a new Hopf algebra as follows.

Definition 4.4. Let H be a finite dimensional Hopf algebra. The Drinfeld codouble
of H is

DH = H ⊗ (H∗)cop

with the tensor product algebra structure, the counit εD(f ⊗ x) = ε(f)ε(x), the
antipode SD = w−1(S ⊗ S)w, the comultiplication

∆D(f ⊗ x) = f(1) ⊗ ŵ−1(x(1) ⊗ f(2))ŵ ⊗ x(2)

= (id⊗σ ⊗ id)(id⊗adw ⊗ id)(∆⊗ ∆̂)(f ⊗ x)

where ŵ ∈ (H∗)cop ⊗ H as above, w = (ŵ−1)21 ∈ H ⊗ (H∗)cop and adw denotes
conjugation by w.

Using lemma 4.3 one checks that DH becomes a Hopf algebra such that the
projection maps π : DH → H,π(f ⊗ x) = fε(x) and π̂ : DH → (H∗)cop, π̂(f ⊗ x) =
ε(f)x are Hopf algebra homomorphisms. The Hopf algebra DH is coquasitriangular
with universal r-form

r(f ⊗ x⊗ g ⊗ y) = ε(f)g(x)ε(y).

If M and N are left DH -comodules, this can be used to define a DH -colinear iso-
morphism γMN : M ⊗N → N ⊗N given by

γMN (m⊗ n) = r(n(−1) ⊗m(−1))n(0) ⊗m(0)

providing a braiding for the category of DH -comodules.
We want to describe comodules for DH in terms of H. For this we need the following
definition.
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Definition 4.5. Let H be a Hopf algebra. An H-Yetter-Drinfeld module M is a
vector space which is both a left H-module via H ⊗M →M,f ⊗m 7→ f ·m and a
left H-comodule via M → H ⊗M,m 7→ m(−1) ⊗m(0) such that

(f ·m)(−1) ⊗ (f ·m)(0) = f(1)m(−1)S(f(3))⊗ f(2) ·m(0)

for all f ∈ H and m ∈M .

With this definition we can formulate the following basic result.

Proposition 4.6. Let H be a finite dimensional Hopf algebra. Then there is a
bijective correspondence between H-Yetter-Drinfeld modules and left DH-comodules.

The correspondence is as follows. If λ : M → DH ⊗M is a coaction, then using
the morphisms π and π̂ we obtain coactions M → H ⊗M and M → (H∗)cop ⊗M .
The latter corresponds to a left H-module structure.
Using proposition 4.6 we can give a basic example of a DH -comodule. Consider
A = H with the regular coaction ∆ : A→ H ⊗A and the left action

f · a = f(1)aS(f(2))

for f ∈ H and a ∈ A. Then A is an H-Yetter-Drinfeld module, in fact even a
DH -comodule algebra.
Now we shall go back to C∗-algebras. If G is a locally compact quantum group
then the Drinfeld double D(G) is given by Cr

0(D(G)) = Cr
0(G)⊗C∗r (G) with comul-

tiplication
∆D(G) = (id⊗σ ⊗ id)(id⊗ad(W )⊗ id)(∆⊗ ∆̂).

Here ad(W ) denotes the adjoint action of the left regular multiplicative unitary
W ∈ M(Cr

0(G) ⊗ C∗r (G)) and σ is the flip map. To relate this with the algebraic
setting we note that ŵ corresponds to the multiplicative unitary Ŵ = ΣW ∗Σ. If
G is regular then D(G) is again regular.
The analogue of definition 4.5 for actions on C∗-algebras is as follows.

Definition 4.7. Let G be a locally compact quantum group and let S = Cr
0(G)

and Ŝ = C∗r (G) be the associated reduced Hopf-C∗-algebras. A G-Yetter-Drinfeld
C∗-algebra is a C∗-algebra A equipped with continuous coactions α of S and λ of Ŝ
such that the diagram

A
λ //

α

��

M(Ŝ ⊗A)
id⊗α // M(Ŝ ⊗ S ⊗A)

σ⊗id

��
M(S ⊗A)

id⊗λ // M(S ⊗ Ŝ ⊗A)
ad(W )⊗id// M(S ⊗ Ŝ ⊗A)

is commutative. Here ad(W )(x) = WxW ∗ denotes the adjoint action of the funda-
mental unitary W ∈M(S ⊗ Ŝ).

We could also consider actions on Hilbert modules, this would actually be even
closer to the case of comodules in the algebraic setting treated above. For simplicity
however, we restrict to actions on C∗-algebras here.
Definition 4.7 is made such that the following analogue of proposition 4.6 holds.

Proposition 4.8. Let G be a locally compact quantum group and let D(G) be its
Drinfeld double. Then a G-Yetter-Drinfeld C∗-algebra is the same thing as a D(G)-
C∗-algebra.

The proof of proposition 4.8 can be found in [19].
We will now define a suitable tensor product for G-Yetter-Drinfeld C∗-algebras A
and B. In fact, for the construction we do not need a G-YD-algebra structure on
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B. More precisely, let A be a G-YD-algebra and let B be a G-C∗-algebra. The C∗-
algebra B acts on the Hilbert module HG⊗B by β where we view Cr

0(G) ⊂ L(HG).
Similarly, the C∗-algebra A acts on HG ⊗ A by λ where we view C∗r (G) ⊂ L(H).
From this we obtain two ∗-homomorphisms ιA = λ12 : A → L(H ⊗ A ⊗ B) and
ιB = β13 : B → L(H⊗A⊗B).

Definition 4.9. Let G be a locally compact quantum group, let A be a G-YD-
algebra and B a G-C∗-algebra. With the notation as above, the braided tensor
product A �G B is the C∗-subalgebra of L(H ⊗ A ⊗ B) generated by all elements
ιA(a)ιB(b) for a ∈ A and b ∈ B.

We will also write A � B instead of A �G B if the quantum group G is clear
from the context. The braided tensor product A�B is in fact equal to the closed
linear span [ιA(A)ιB(B)]. This follows from proposition 8.3 in [22]. In particular,
we have natural nondegenerate ∗-homomorphisms ιA : A → M(A � B) and ιB :
B →M(A�B).
The braided tensor product A�B becomes a G-C∗-algebra in a canonical way such
that the ∗-homomorphisms ιA and ιB are G-equivariant. If B is a G-YD-algebra
then A�B is a G-YD-algebra such that ιA and ιB are D(G)-equivariant. It is this
symmetric situation which is the exact analogue of the braided tensor product in
the algebraic setting. For the proofs of the above assertions and more details we
refer to [19].

5. The quantum group SUq(2) and the Podleś sphere

In this section we discuss some constructions and results related to SUq(2) and
the standard Podleś sphere. Background material on compact quantum groups and
q-deformations can be found in [9]. Our main aim is to compute the equivariant
KK-theory of the Podleś sphere. Throughout we consider q ∈ (0, 1].
Let us first recall the definition of the quantum group SUq(2). In definition 3.3
we introduced the C∗-algebra C(SUq(2)) as the universal C∗-algebra generated by
elements α and γ satisfying the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1.

These relations are equivalent to saying that the fundamental matrix

u =
(
α −qγ∗
γ α∗

)
is unitary.
Recall also the comultiplication ∆ : C(SUq(2))→ C(SUq(2))⊗C(SUq(2)) given by

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

Using the above matrix notation, we can write the definition of ∆ in a concise way
as

∆
(
α −qγ∗
γ α∗

)
=
(
α −qγ∗
γ α∗

)
⊗
(
α −qγ∗
γ α∗

)
.

It is important that SUq(2) can be described equivalently on the level of Hopf-
∗-algebras. The algebra C[SUq(2)] of polynomial functions on SUq(2) is the ∗-
subalgebra of C(SUq(2)) generated by α and γ. It is a Hopf-∗-algebra with comul-
tiplication ∆ : C[SUq(2)] → C[SUq(2)] ⊗ C[SUq(2)] given by the same formula as
above. Using again matrix notation, the counit ε : C[SUq(2)]→ C is defined by

ε

(
α −qγ∗
γ α∗

)
=
(

1 0
0 1

)



14 CHRISTIAN VOIGT

and the antipode S : C[SUq(2)]→ C[SUq(2)] by

S

(
α −qγ∗
γ α∗

)
=
(
α∗ γ∗

−qγ α

)
.

Recall that the antipode in a Hopf algebra is always an algebra anti-homorphism,
so that it is uniquely determined by describing it on algebra generators.
We use the Sweedler notation ∆(x) = x(1)⊗x(2) for the comultiplication and write

f ⇀ x = x(1)f(x(2)), x ↼ f = f(x(1))x(2)

for elements x ∈ C[SUq(2)] and linear functionals f : C[SUq(2)]→ C. The antipode
satisfies S(S(x∗)∗) = x for all x ∈ C[SUq(2)]. In particular the map S is invertible,
and the inverse of S can be written as

S−1(x) = f1 ⇀ S(x) ↼ f−1

where f±1 : C[SUq(2)]→ C are the modular characters given by

f±1

(
α −qγ∗
γ α∗

)
=
(
q∓1 0
0 q±1

)
.

We note that f−1(x) = f1(S(x)) for all x ∈ C[SUq(2)]. These maps are actually
members of a canonical family (fz)z∈C of characters. The character f1 describes
the modular properties of the Haar state φ of C(SUq(2)) in the sense that

φ(xy) = φ(y(f1 ⇀ x ↼ f1))

for all x, y ∈ C[SUq(2)].
We write L2(SUq(2)) for the Hilbert space obtained using the inner product

〈x, y〉 = φ(x∗y)

on C(SUq(2)). It is a SUq(2)-Hilbert space with the coaction λ : L2(SUq(2)) →
C(SUq(2))⊗ L2(SUq(2)) given by

λ(ξ) = W ∗(1⊗ ξ).

This is the left regular representation of SUq(2). According to the Peter-Weyl the-
orem, the Hilbert space L2(SUq(2)) has an orthonormal basis given by the decom-
position of the left regular representation into isotypical components. Explicitly,
we have basis vectors e(l)

i,j where l ∈ 1
2N and −l ≤ i, j ≤ l for all l.

The classical torus T = S1 is a closed quantum subgroup of SUq(2). Explicitly,
the inclusion T ⊂ SUq(2) is determined by the ∗-homomorphism π : C[SUq(2)] →
C[T ] = C[z, z−1] given by

π

(
α −qγ∗
γ α∗

)
=
(
z 0
0 z−1

)
.

By definition, the standard Podleś sphere SUq(2)/T is the space of coinvariants
with respect to the restricted action, that is

C(SUq(2)/T ) = {x ∈ C(SUq(2))|(id⊗π)∆(x) = x⊗ 1},

see [20]. Inside C(SUq(2)/T ) we have the dense ∗-subalgebra

C[SUq(2)/T ] = {x ∈ C[SUq(2)]|(id⊗π)∆(x) = x⊗ 1}

corresponding to polynomial functions. In the classical case q = 1, these algebras
define the continuous and polynomial functions on the 2-sphere SU(2)/T = S2,
respectively.
Generalizing these constructions, we define for k ∈ Z the space

Γ(Ek) = {x ∈ C[SUq(2)]|(id⊗π)∆(x) = x⊗ zk} ⊂ C[SUq(2)]
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and let C(Ek) and L2(Ek) be the closures of Γ(Ek) in C(SUq(2)) and L2(SUq(2)),
respectively. The space Γ(Ek) is a C[SUq(2)/T ]-bimodule in a natural way which is
finitely generated and projective both as a left and right C[SUq(2)/T ]-module. The
latter follows from the fact that C[SUq(2)/T ] ⊂ C[SUq(2)] is a faithfully flat Hopf-
Galois extension, compare [21]. The space C(Ek) is naturally a SUq(2)-equivariant
Hilbert C(SUq(2)/T )-module with coaction given by comultiplication. The space
L2(Ek) is naturally a SUq(2)-Hilbert space. These structures are induced from
C(SUq(2)) and L2(SUq(2)) by restriction.
In the classical case q = 1, the above constructions correspond to looking at induced
vector bundles over the homogeneous space SU(2)/T ∼= S2. More precisely, if Ck
is the irreducible representation of T weight k ∈ Z, then

Γ(Ek) = Γ(SU(2)×T Ck)

is the space of polynomial sections of the vector bundle

SU(2)×T Ck = (SU(2)× C)/ ∼

over SU(2)/T where
(gt, λ) ∼ (g, tkλ)

for all g ∈ SU(2), λ ∈ C and t ∈ T . Similarly, C(Ek) and L2(Ek) are the spaces of
continuous sections and L2-sections, respectively, in this case.
Recall from section 4 the definition of the Drinfeld double D(G) of a locally compact
quantum group G. The C∗-algebra C(SUq(2)/T ) is a D(SUq(2))-C∗-algebra with
the coaction λ : C(SUq(2)/T )→M(C∗(SUq(2))⊗ C(SUq(2)/T )) given by

λ(g) = Ŵ ∗(1⊗ g)Ŵ

where Ŵ = ΣW ∗Σ as usual. This coaction is determined on the algebraic level by
the adjoint action

h · g = h(1)gS(h(2))

of C[SUq(2)] on C[SUq(2)/T ]. To see that this action preserves C[SUq(2)/T ] we
compute

(id⊗π)∆(h · g) = (id⊗π)∆(h(1)gS(h(2)))

= (id⊗π)(h(1)g(1)S(h(4))⊗ h(2)g(2)S(h(3)))

= h(1)g(1)S(h(4))⊗ π(h(2))π(g(2))π(S(h(3)))

= h(1)g(1)S(h(4))⊗ π(h(2)S(h(3)))

= h(1)g(1)S(h(2))⊗ 1 = (h · g)⊗ 1,

so that h · g is indeed contained in C[SUq(2)/T ] for all h ∈ C[SUq(2)]. The same
construction turns the spaces C(Ek) for k ∈ Z into D(SUq(2))-equivariant Hilbert
C(SUq(2)/T )-modules for every k ∈ Z.
In the case of Hilbert spaces we need to twist the action as follows.

Lemma 5.1. For every k ∈ Z the formula

ω(h)(ξ) = h(1)ξ f1 ⇀ S(h(2))

determines a ∗-homomorphism ω : C(SUq(2)) → L(L2(Ek)) which turns L2(Ek)
into a D(SUq(2))-Hilbert space.

The proof of lemma 5.1 is a straightforward computation. The twist by the
modular character f1 is needed because the Haar integral φ fails to be a trace
unless q = 1.
Our aim is to describe the Podleś sphere as an element in the equivariant KK-
category KKD(SUq(2)). It is easy to show that the C∗-algebra C(SUq(2)/T ) of
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the Podleś sphere for q 6= 1 is isomorphic to K+, the compact operators K on a
separable Hilbert space with a unit adjoined. Hence one obtains an extension

0 // K // K+ // C // 0

of C∗-algebras. Consider the ∗-homomorphism ρ : C ⊕ C ∼= C+ → K+ given by
ρ(1, 0) = 1 − e11, ρ(0, 1) = e11. Since K(K) = Z = K(C) we see that ρ induces an
isomorphism on the level of K-theory and KK-theory. We thus obtain the following
statement.

Lemma 5.2. The map ρ induces an isomorphism C(SUq(2)/T ) ∼= C⊕ C in KK.

However, the isomorphism in lemma 5.2 does not respect the D(SUq(2))-actions,
in fact not even the SUq(2)-actions. Here C ⊕ C is of course equipped with the
trivial action. To improve on this we need more refined arguments.
Firstly, we recall the definition of the equivariant Fredholm module corresponding
to the Dirac operator on the standard Podleś sphere SUq(2)/T , compare [6], [19].
The underlying graded SUq(2)-Hilbert space is

H = L2(E1)⊕ L2(E−1)

as defined above. The representation φ of C(SUq(2)/T ) is given by left multiplica-
tion. We obtain a G-equivariant self-adjoint unitary operator F on H by

F =
(

0 1
1 0

)
by identifying the basis vectors e(l)

i,1/2 and e
(l)
i,−1/2 in even and odd degrees.

Proposition 5.3. With the notation as above, D = (H, φ, F ) is a SUq(2)-equivariant
Fredholm module defining an element in KKSUq(2)(C(SUq(2)/T ),C).

Our considerations above show that the Drinfeld double D(SUq(2)) acts on the
ingredients of the above cycle. The following proposition shows that this additional
symmetry is compatible with the structure of D.

Proposition 5.4. Let q ∈ (0, 1]. The Fredholm module D defined above induces
an element [D] in KKD(SUq(2))(C(SUq(2)/T ),C).

Proof. We note that for q = 1 all the actions defined above are trivial. Hence only
the case q < 1 has to be treated. We have to verify that F commutes with the
action of D(SUq(2)) up to compact operators. Since F is SUq(2)-equivariant this
amounts to showing

(C∗(SUq(2))⊗ 1)(1⊗ F − adλ(F )) ⊂ C∗(SUq(2))⊗K(H)

where λ : H →M(C∗(SUq(2))⊗H) is the coaction on H obtained from lemma 5.1.
It suffices to check that F commutes with the corresponding action ω : C(SUq(2))→
L(H) up to compact operators. This is a straightforward explicit calculation, in
fact, F commutes exactly with this action. �
Recall that C(Ek) for k ∈ Z is a D(SUq(2))-equivariant Hilbert C(SUq(2)/T )-
module in a natural way. Left multiplication yields a D(SUq(2))-equivariant ∗-
homomorphism ψ : C(SUq(2)/T ) → K(C(Ek)), and it is straightforward to check
that (C(Ek), ψ, 0) defines a class [[Ek]] inKKD(SUq(2))(C(SUq(2)/T ), C(SUq(2)/T )).
Moreover

[[Em]]⊗C(SUq(2)/T ) [[En]] = [[Em+n]]
for all m,n ∈ Z.
We define [Dk] ∈ KKD(SUq(2))(C(SUq(2)/T ),C) by

[Dk] = [[Ek]]⊗C(SUq(2)/T ) [D]
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where [D] ∈ KKD(SUq(2))(C(SUq(2)/T ),C) is the element obtained in proposition
5.4. Remark that [D0] = [D] since [[E0]] = 1.
The unit map u : C → C(SUq(2)/T ) given by u(1) = 1 induces a class [u] in
KKD(SUq(2))(C, C(SUq(2)/T )). We define [Ek] in KKD(SUq(2))(C, C(SUq(2)/T ))
by

[Ek] = [u]⊗C(SUq(2)/T ) [[Ek]].

Using this notation we define αq ∈ KKD(SUq(2))(C(SUq(2)/T ),C ⊕ C) and βq ∈
KKD(SUq(2))(C⊕ C, C(SUq(2)/T )) by

αq = [D0]⊕ [D−1], βq = (−[E1])⊕ [E0],

respectively.

Theorem 5.5. Let q ∈ (0, 1]. The standard Podleś sphere C(SUq(2)/T ) is isomor-
phic to C⊕ C in KKD(SUq(2)).

Proof. We claim that βq and αq define inverse isomorphisms. The crucial part is
the relation

βq ◦ αq = id
in KKD(SUq(2))(C ⊕ C,C ⊕ C). In order to prove it we have to compute the Kas-
parov products [E0] ◦ [D] and [E±1] ◦ [D].
The class [E0] ◦ [D] is obtained from the D(SUq(2))-equivariant Fredholm module
D by forgetting the left action of C(SUq(2)/T ). The operator F intertwines the
representations of C(SUq(2)) on L2(E1) and L2(E−1) induced from the D(SUq(2))-
Hilbert space structure. It follows that the resulting D(SUq(2))-equivariant Kas-
parov C-C-module is degenerate, and hence [E0] ◦ [D] = 0 in KKD(SUq(2))(C,C).
For [E±1] ◦ [D] the situation is much more complicated. For instance, it is easy
to check [E−1] ◦ [D] = 1 in KKG(C2,C2). The entire difficulty lies in construct-
ing a D(SUq(2))-equivariant homotopy to obtain the same relation on the level of
KKD(SUq(2)). For the details we refer to [23]. �
For q = 1 the difficulties with the D(SUq(2))-actions disappear since in this case
the discrete part of the Drinfeld double acts trivially. Thus there is an important
difference between the classical and the deformed situations.

6. Torsion-free discrete quantum groups and the Baum-Connes
conjecture

In this section we formulate the Baum-Connes conjecture for torsion-free discrete
quantum groups following Meyer [14]. This involves some general concepts from
homological algebra in triangulated categories. For more detailed information we
refer to [15], [14], [16].
Our first task is, however, to explain what it means for a discrete quantum group
to be torsion-free. Recall that a discrete group is called torsion-free if it does
not contain nontrivial elements of finite order. For discrete quantum groups the
following definition was proposed by Meyer [14].

Definition 6.1. Let G be discrete quantum group and set Ŝ = C∗r (G)cop. Then G

is called (quantum) torsion-free iff every finite dimensional Ŝ-C∗-algebra is equiv-
ariantly isomorphic to a direct sum of Ŝ-C∗-algebras that are equivariantly Morita
equivalent to C.

In order to explain this definition let us first review the following basic construc-
tion. Assume that H is a finite dimensional Hilbert space and that λ : H → Ŝ ⊗H
is a coaction. As above we write here Ŝ = C∗r (G)cop for the unital Hopf-C∗-algebra
associated to a discrete quantum group G. Since Ŝ is unital, there are no mul-
tipliers involved in the definition of the coaction, see definition 3.6. As indicated
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at the end of section 3, the map λ is uniquely determined by a unitary element
Uλ ∈ L(Ŝ ⊗H) ∼= L(H⊗ Ŝ) satisfying

λ(ξ) = U∗λ(1⊗ ξ).

The operator Uλ is a unitary corepresentation, that is, the relation

(∆̂cop ⊗ id)(Uλ) = (Uλ)13(Uλ)23

holds in Ŝ⊗ Ŝ⊗H. Moreover we obtain a coaction adλ : K(H)→ Ŝ⊗K(H) by the
formula

adλ(T ) = U∗λ(id⊗T )Uλ
which turns K(H) into a Ŝ-C∗-algebra.
Roughly speaking, torsion-freeness of G amounts to saying that every coaction of
Ŝ on a finite dimensional C∗-algebra is obtained using this construction. More
precisely, G is torsion-free iff for every finite dimensional Ŝ-C∗-algebra A there are
finite dimensional Hilbert spaces H1, . . . ,Hl and unitary corepresentations Uj ∈
L(Ŝ ⊗Hj) such that

A ∼= K(H1)⊕ · · · ⊕K(Hl)
as Ŝ-C∗-algebras. Here each matrix block K(Hj) is equipped with the adjoint action
implemented by Uj .
An Ŝ-C∗-algebra A with coaction α : A→ Ŝ ⊗A is called ergodic iff its fixed point
subalgebra

Ae = {a ∈ A|α(a) = 1⊗ a}
is equal to C. In order to study the property described in definition 6.1 the following
terminology is useful.

Definition 6.2. Let G be a discrete quantum group and Ŝ = C∗r (G)cop.
a) G has no permutation torsion if there are no nonsimple finite dimensional C∗-

algebras with ergodic coactions of Ŝ.
b) G has no projective torsion if for every finite dimensional simple Ŝ-C∗-algebra

A there exists a finite dimensional unitary corepresentation H of Ŝ such that
A ∼= K(H) as Ŝ-C∗-algebras.

A basic source of permutation torsion in a discrete quantum group arises from
nontrivial finite quantum subgroups and their permutation actions. Similarly, pro-
jective torsion arises from projective representations of the dual compact quantum
group.

Proposition 6.3. A discrete quantum group G is quantum torsion-free iff it has
no permutation torsion and no projective torsion.

Proof. Assume first that G is quantum torsion-free. Then clearly G has no pro-
jective torsion. Now let A be a nonsimple finite dimensional ergodic Ŝ-C∗-algebra.
According to torsion-freeness there are corepresentations H1 . . . ,Hl such that

A ∼= K(H1)⊕ · · · ⊕K(Hl)

as Ŝ-C∗-algebras. Since A is nonsimple we must have l > 1. But for l > 1 the right
hand side is not an ergodic Ŝ-C∗-algebra. Hence such an Ŝ-C∗-algebra cannot exist,
and G has no permutation torsion.
Conversely, assume that G has neither permutation torsion nor projective torsion
and let A be a finite dimensional Ŝ-C∗-algebra. We may assume that A is not
simple and not ergodic. Let

A = Mn1(C)⊕ · · · ⊕Mnl
(C)
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and P1, . . . , Pm be mutually orthogonal mimimal projections in the invariant sub-
algebra Ae ⊂ A such that P1 + · · ·+ Pm = 1. Write

Pj = (pj1, . . . , p
j
l )

for all j and consider PjAPj . Since Pj is invariant, PjAPj is a Ŝ-C∗-algebra, and
since Pj is minimal in Ae it is ergodic. Since G has no permutation torsion we
conclude that PjAPj is simple, and hence

PjAPj = K(Hj)

as Ŝ-C∗-algebras because G has no projective torsion. In particular, pkj = 0 except
for one k. Accordingly, every Pj is supported on a single matrix block, and using
P1 + · · · + Pm = 1 it follows that each central projection in A must be invariant.
Hence we may reduce to the case that A is a single matrix block, and since A has
no projective torsion we obtain the assertion. �
Let us now check that definition 6.1 is compatible with the classical definition of
torsion-freeness in the case of discrete groups.

Proposition 6.4. A discrete group G is torsion-free in the quantum sense above
iff it is torsion-free in the usual sense.

Proof. Assume first that G is not torsion-free in the classical sense. Then there ex-
ists an element t ∈ G different from the identity e and n > 1 such that tn = e. Con-
sider the finite subgroup F ⊂ G generated by t. Then the C∗-algebra A = C∗(F )
is finite dimensional, and we obtain a coaction A → C∗r (G) ⊗ A from the restric-
tion of the comultiplication to A. Since F is abelian we have A ∼= Cn. If G were
torsion-free in the quantum sense we would find one-dimensional corepresentations
H1, . . . ,Hn of C∗r (G) such that A ∼= K(H1) ⊕ · · · ⊕ K(Hn) as C∗r (G)-C∗-algebras.
This would imply that the coaction on A is trivial. We obtain a contradition since
∆(t) = t⊗ t and t is different from the identity element by assumption. Note that
the above coaction on A is ergodic, so that G has permutation torsion.
Conversely let us assume that G is torsion-free in the classical sense. In order to
show that G is quantum torsion-free it suffices according to proposition 6.3 to show
that G has no permutation torsion and no projective torsion. Let A be a finite
dimensional C∗-algebra and let α : A → C∗r (G) ⊗ A be a coaction. Since A is
finite dimensional, we may view α as an algebraic coaction α : A→ CG�A. This
corresponds to a G-grading on A. That is,

A =
⊕
s∈G

As

where AsAt ⊂ Ast and (As)∗ = As−1 for all s ∈ G.
Let us first show that Ae = C implies A = C. If A is differnt from Ae = C we may
pick an element t ∈ G such that At is nonzero. If x ∈ At is nonzero then x∗x ∈ Ae
is nonzero and hence invertible. It follows that x itself is invertible. Since t has
infinite order and xn ∈ Atn is nonzero for all n we would obtain that A is infinite
dimensional. We conclude that A = Ae = C as claimed.
It follows in particular that G has no permutation torsion. Hence it remains to show
that G has no projective torsion. We shall prove by induction on the dimension of
the simple C∗-algebra A that the coaction α has the required form. For dim(A) = 1
the coaction is necessarily trivial, and therefore the claim is true in this case. Now
assume that the assertion is proved for all dimensions ≤ n and let A be of dimension
n+ 1. By our above reasoning, Ae contains a nontrivial invariant projection p. Let
us write

A = Mn(C)
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and cut down A with p to obtain a coaction of C∗r (G) on pAp. Since pAp is simple
we know by induction hypothesis that the C∗r (G)-C∗-algebra pAp is of the form

pAp ∼= K(H)

for some corepresentation H. Since every corepresentation of C∗r (G) is a direct
sum of one-dimensional corepresentations the algebra K(H) contains an invariant
minimal projection. It follows that A itself contains an invariant minimal projection
e. Pick an invariant state φ on A such that φ(e) is nonzero. We write K for linear
subspace Ae inside the corresponding GNS-construction. It carries naturally a
coaction of Ŝ. The GNS-representation restricts to a ∗-homomorphism µ : A →
K(K) given by µ(a)(x) = ax. By construction, the map µ is covariant. Since it is
nonzero it is an isomorphism of Ŝ-C∗-algebras by dimension reasons. Hence G has
no projective torsion. �
Definition 6.1 is motivated from the study of torsion phenomena that occur for
coactions of compact groups [17].

Lemma 6.5. The dual of a compact Lie group G has no permutation torsion iff G
is connected.

Proof. If G is connected, then every action of G on

A = Mn1(C)⊕ · · · ⊕Mnl
(C)

must preserve the individual matrix blocks. Indeed, if (ht)t∈[0,1] is a path from e
to s in G then every central projection pj must obviously stay fixed under each ht.
Therefore s · x = s · (pjx) = pj(s · x) for all x ∈Mnj

(C), so that s · x ∈Mnj
(C) as

well.
Conversely assume that G is not connected. Then the quotient F = G/G0 of G
by its connected component is a nontrivial finite group, and since F is finite it has
permutation torsion. Hence G has permutation torsion as well. �
The dual of a compact connected Lie group may still have projective torsion.

Example 6.6. The dual Ĝ of G = SO(3) is not torsion-free. To see this consider
the vector representation of SU(2) on C2. The corresponding conjugation action
on M2(C) is trivial on the center Z(SU(2)) of SU(2) since

Z(SU(2)) =
{
±
(

1 0
0 1

)}
∼= Z2

Hence it descends to an action of SO(3) ∼= SU(2)/Z(SU(2)). This action is not
SO(3)-equivariantly Morita equivalent to a trivial action since the spinor space C2

is only a projective representation of SO(3).

In fact, the dual Ĝ of a compact Lie group G has no projective torsion iff there
are no nontrivial projective representations of G. If G is connected this happens iff
the fundamental group π1(G) of G is torsion-free.
We finally mention the following result in the case of SUq(2).

Proposition 6.7. Let q ∈ (0, 1]. Then the discrete quantum group dual to SUq(2)
is torsion-free.

For the proof of proposition 6.7 we refer to [23]. In the case q < 1 it is based on
a computation using the quantized universal enveloping algebra Uq(sl2). For q = 1
one may do a similar computation using the ordinary enveloping algebra U(sl2), or
instead refer to example a) above, the proof of which is contained in [17].
We shall now review some basics on triangulated categories. Let T be an additive
category and let Σ : T → T be an additive automorphism. A diagram

Σ(B) h // E
g // A

f // B
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in T is called a triangle if f ◦ g = 0, g ◦ h = 0 and h ◦ Σ(f) = 0.
Let us now state the definition of a triangulated category, see [18].

Definition 6.8. A triangulated category is an additive category T together with
an additive automorphism T , called the translation functor, and a class of exact
triangles such that the following conditions are satisfied.
(TR0) Any triangle which is isomorphic to an exact triangle is exact. Every tri-

angle of the form

Σ(B) // 0 // B
id // B

is exact.
(TR1) For any morphism f : A→ B in T there exists an exact triangle

Σ(B) // C // A
f // B

(TR2) A triangle

Σ(B) h // C
g // A

f // B

is exact iff

Σ(A)
−Σ(f) // Σ(B)

−h // C
−g // A

is exact.
(TR3) If

Σ(B)

Σ(β)

��

// C // A

α

��

// B

β

��
Σ(B′) // C ′ // A′ // B′

is a commutative diagram in T such that both rows are exact triangles, then
there exist a morphism γ : C → C ′ such that the completed diagram is still
commutative.

(TR4) (Octahedral axiom) If f : B → D and g : A→ B are morphisms in T there
exists a commutative diagram

Σ2(D)

��

// Σ(Cf )

��

// Σ(B)

��

Σ(f) // Σ(D)

��
0

��

// Cg

��

Cg

��

// 0

β

��
Σ(D)

��

// Cfg

��

// A

g

��

fg // D

Σ(D) // Cf // B
f // D

whose rows and columns are exact triangles. Moreover, the morphisms Σ(B) →
Σ(D)→ Cfg and Σ(B)→ Cg → Cfg in this diagram coincide.

We also need the notion of a localizing subcategory.

Definition 6.9. Let T be a triangulated category with countable direct sums.
A triangulated subcategory of T is a full subcategory S ⊂ T that is closed under Σ
and has the property that if

ΣB // C // A // B
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is an exact triangle with A,B ∈ S, then C ∈ S as well.
A triangulated subcategory S ⊂ T is called localising if it is closed under countable
direct sums.

Every localising subcategory S ⊂ T is closed under retracts. That is, if X =
X1 ⊕X2 is a direct sum in T and X ∈ S, then also X1, X2 ∈ S.
Let G be a discrete quantum group. The equivariant Kasparov category KKG has
as objects all separable G-C∗-algebras, and KKG(A,B) as the set of morphisms
between two objects A and B. Composition of morphisms is given by the Kasparov
product.
The category KKG is triangulated with translation automorphism Σ : KKG →
KKG given by the suspension

ΣA = C0(R, A) = C0(R)⊗A

of a G-C∗-algebra A. Here C0(R) carries the trivial G-action.
Every G-equivariant ∗-homomorphism f : A→ B induces a diagram of the form

ΣB // Cf // A
f // B

where Cf denotes the mapping cone of f . By definition

Cf = {(a, b) ∈ A⊕ C0((0, 1], B)|f(a) = b(1)} ⊂ A⊕ C0((0, 1], B),

and the maps ΣB → Cf and Cf → A are given by inclusion in the second variable
and projection onto the first variable, respectively. Diagrams of the form above are
called mapping cone triangles.
By definition, an exact triangle is a diagram in KKG of the form ΣQ→ K → E →
Q which is isomorphic to a mapping cone triangle.
For the formulation of the Baum-Connes conjecture for a locally compact group
G we have to consider G-C∗-algebras that are induced from compact subroups.
The easiest situation arises when there are no nontrivial compact subgroups. For a
discrete group G this means of course just that G is torsion-free.
Since torsion for quantum groups is not well-understood we consider in the sequel
only the case that G is a torsion-free discrete quantum group. Associated with the
inclusion of the trivial quantum subgroup E in G we have the obvious restriction
functor resGE : KKG → KKE = KK and an induction functor indGE : KK →
KKG. Explicitly, indGE(A) = C0(G) ⊗ A for A ∈ KK with action of G given by
comultiplication on the copy of C0(G).
We consider the following full subcategories of KKG,

CCG = {A ∈ KKG| resGE(A) = 0 ∈ KK}

CIG = {indGE(A)|A ∈ KK},

and refer to their objects as compactly contractible and compactly induced G-C∗-
algebras, respectively. If there is no risk of confusion we will write CC and CI
instead of CCG and CIG. The subcategory CC is localising, and we denote by 〈CI〉
the localising subcategory generated by CI.
The following result follows from theorem 3.21 in [14].

Theorem 6.10. Let G be a torsion-free quantum group. Then the pair of localising
subcategories (〈CI〉, CC) in KKG is complementary. That is, KKG(P,N) = 0 for
all P ∈ 〈CI〉 and N ∈ CC, and every object A ∈ KKG fits into an exact triangle

ΣN // Ã // A // N

with Ã ∈ 〈CI〉 and N ∈ CC.
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A triangle as in theorem 6.10 is uniquely determined up to isomorphism and
depends functorially on A. The morphism Ã→ A is called a Dirac element for A.
The localisation LF of a functor F on KKG at CC is given by

LF (A) = F (Ã)

where Ã → A is a Dirac element for A. By construction, there is an obvious map
LF (A)→ F (A) for every A ∈ KKG.
In the sequel we write Gnr A for the reduced crossed products of A by G.

Definition 6.11. Let G be a torsion-free discrete quantum group and consider the
functor F (A) = K∗(G nr A) on KKG. The Baum-Connes assembly map for G
with coefficients in A is the map

µA : LF (A)→ F (A).

We say that G satisfies the Baum-Connes conjecture with coefficients in A if µA
is an isomorphism. We say that G satisfies the strong Baum-Connes conjecture if
〈CI〉 = KKG.

The strong Baum-Connes conjecture implies the Baum-Connes conjecture with
arbitrary coefficients. Indeed, for A ∈ 〈CI〉 the assembly map µA is an isomorphism
since id : A→ A is a Dirac morphism for A.
By the work of Meyer and Nest [16], the above terminology is consistent with the
classical definitions in the case that G is a torsion-free discrete group. The strong
Baum-Connes conjecture amounts to the assertion that G has a γ-element and
γ = 1 in this case.

7. The Baum-Connes conjecture for the dual of SUq(2)

In this section we show that the dual of SUq(2) satisfies the strong Baum-Connes
conjecture. We work within the general setup explained in the previous section,
taking into account proposition 6.7 which asserts that the dual of SUq(2) is torsion-
free. Let us remark that the strong Baum-Connes conjecture for the dual of the
classical group SU(2) is a special case of the results in [17].
As a preparation we need some results on induction and restriction. Let G be a
locally compact quantum group and let H be a closed quantum subgroup. If B is
a G-C∗-algebra we may restrict the coaction to obtain an H-C∗-algebra resGH(B).
In this way we obtain a triangulated functor resGH : G-Alg→ H-Alg.

Examples 7.1. Instead of giving the precise definition of the restriction functor in
general, we only give two examples that are relevant for our purposes.
a) In the previous section we considered the trivial (quantum) subgroup E = {e} of

a discrete quantum group G. The restriction functor G-Alg→ E-Alg is nothing
but the forgetful functor to C∗-algebras.

b) Below we will need restriction in the case that G = SUq(2) and H = T ⊂ G is
the maximal torus. Restriction of coactions is obtained using the quotient map
C(G)→ C(T ).

Conversely, let G be a strongly regular quantum group and let H ⊂ G be a
closed quantum subgroup. Given an H-C∗-algebra B, there exists an induced G-
C∗-algebra indGH(B), see [22]. If B is an H-YD-algebra then the induced C∗-algebra
indGH(B) is a G-YD-algebra in a natural way. These constructions yield triangulated
functors indGH : H-Alg→ G-Alg and indGH : D(H)-Alg→ D(G)-Alg.

Examples 7.2. Let us give two examples of induced C∗-algebras.
a) If E ⊂ G is the trivial quantum subgroup then indGE(B) = Cr

0(G)⊗B where the
coaction is given by comultiplication on the left tensor factor.



24 CHRISTIAN VOIGT

b) If G = SUq(2) and H = T ⊂ G is the maximal torus, we have indGT (C) =
C(G/T ), the Podleś sphere.

The following theorem is a fundamental result relating induction with braided
tensor products.

Theorem 7.3. Let G be a strongly regular quantum group and let H ⊂ G be a closed
quantum subgroup. Moreover let A be an H-YD-algebra and let B be a G-algebra.
Then there is a natural G-equivariant isomorphism

indGH(A�H resGH(B)) ∼= indGH(A) �G B.

The proof of theorem 7.3 can be found in [19].
Now we are ready to prove the Baum-Connes conjecture for the dual of SUq(2).

Theorem 7.4. Let q ∈ (0, 1]. The dual discrete quantum group of SUq(2) satisfies
the strong Baum-Connes conjecture.

Proof. In the sequel we write G = SUq(2). According to Baaj-Skandalis duality
it suffices to prove KKG = 〈T 〉 where 〈T 〉 denotes the localizing subcategory of
KKG generated by all trivial G-C∗-algebras.
Let A be a G-C∗-algebra. Theorem 5.5 implies that A is a retract of C(G/T ) �GA
in KKG, and according to theorem 7.3 we have a G-equivariant isomorphism

C(G/T ) �G A = indGT (C) �G A ∼= indGT resGT (A).

Since T̂ = Z is a torsion-free discrete abelian group the strong Baum-Connes con-
jecture holds for T̂ . That is, we have

KKZ = 〈CI〉
where CI = CIZ denotes the full subcategory in KKZ of compactly induced Z-C∗-
algebras. Equivalently, we have

KKT = 〈T 〉
where T ⊂ KKT is the full subcategory of trivial T -C∗-algebras. In particular we
obtain

resGT (A) ∈ 〈T 〉 ⊂ KKT .

Due to theorem 5.5 we know that

indGT (B) = C(G/T )⊗B ∼= (C⊕ C)⊗B
is contained in 〈T 〉 inside KKG for any trivial T -C∗-algebra B. Since the induction
functor indGT : KKT → KKG is triangulated it therefore maps 〈T 〉 to 〈T 〉. This
yields

indGT resGT (A) ∈ 〈T 〉
in KKG. Combining the above considerations shows A ∈ 〈T 〉, and we conclude
KKG = 〈T 〉 as desired. �

Appendix A: Continuous fields of Hilbert spaces and Hilbert modules

In this appendix we show that continuous field of Hilbert spaces over a locally
compact space X are in bijective correspondence with Hilbert C0(X)-modules. We
refer to [7], [8] for more information.
Let us first recall the definition of a continuous field of Banach spaces. If X is a
topological space then a field of Banach spaces over X is simply a family (Bx)x∈X
of Banach spaces indexed by X. A section of such a field is an element

ξ = (ξ(x))x∈X ∈
∏
x∈X

Bx,
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it is called bounded if
||ξ|| = sup

x∈X
||ξ(x)|| <∞.

The set of all bounded sections forms a Banach space, it is simply the l∞-direct
product of the Banach spaces Bx. In particular, the topology of X does not play
any role in the considerations so far.

Definition 7.5. Let X be a locally compact space. A continuous field of Banach
spaces over X is a family (Bx)x∈X of Hilbert spaces together with a linear subspace

F ⊂
∏
x∈X

Bx

such that

a) For every ξ ∈ F the function x 7→ ||ξ(x)|| is continuous.
b) We have

Bx = {ξ(x)|ξ ∈ F}
for every x ∈ X.

c) If η ∈
∏
x∈X Bx is a section such that for every x ∈ X and every ε > 0 there

exists a neighborhood U of x and an element ξ ∈ F such that

||η(y)− ξ(y)|| < ε

for all y ∈ U , then η ∈ F .

The above definition works in fact for arbitrary topological spaces. We note
that the norms of the Banach spaces Bx enter the definition via condition a).
Replacing the norm of Bx by an equivalent norm is ususally not compatible with
the continuous field structure. In other words, we always consider Banach spaces
with a fixed norm.
By slight abuse of notation, we will write (Bx)x∈X or F for a continuous field of
Banach spaces ((Bx)x∈X , F ). The elements of F are also called the continuous
sections of the field. Of course, both the family of Banach spaces and the space of
continuous sections are needed to describe a continuous field.
We note that condition b) in definition 7.5 can be relaxed. More precisely, it suffices
to require that the set {ξ(x)|ξ ∈ F} is dense in Bx for every x ∈ X, see proposition
10.1.10 in [7] or proposition 3 in [8]. We shall give the proof of another basic
property of continuous fields, compare proposition 10.1.9 in [7].

Lemma 7.6. Let X be a locally compact space and let F be a continuous field of
Banach spaces over X. Then the space F is a (right) C(X)-module with the module
structure

(ξf)(x) = ξ(x)f(x)

for ξ ∈ F and f ∈ C(X).

Proof. We only have to show that ξf is contained in F for ξ ∈ F and f ∈ C(X).
Fix x ∈ X and let U be a neighborhood of x such that ||f(x) − f(y)|| < ε for all
y ∈ U . Then

||ξ(y)f(y)− ξ(y)f(x)|| ≤ ε||ξ(y)||
for all y ∈ U . By condition a) we may assume that the norms ||ξ(y)|| are bounded
on U . Now condition c) implies that ξf is contained in F . �
Observe that C(X) is not a C∗-algebra unless X is compact. We note that lemma
7.6 remains valid over arbitrary topological spaces X.
It is now easy to define continuous fields of Hilbert spaces.
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Definition 7.7. Let X be a locally compact space. A continuous field of Hilbert
spaces over X is a continuous field of Banach spaces (Hx)x∈X over X such that
Hx is a Hilbert space for each x ∈ X.
A unitary isomorphism of continuous fields (Hx)x∈X and (Kx)x∈X of Hilbert spaces
over X is a family (Ux)x∈X of unitaries Ux : Hx → Kx such that x 7→ Uxσ(x) is a
continuous section of (Kx)x∈X for every continuous section σ of (Hx)x∈X .

The scalar products in a continuous field of Hilbert spaces (Hx)x∈X are au-
tomatically compatible with the continuous field structure. More precisely, the
polarization identity

4〈ξ, η〉 = ||ξ + η||2 − ||ξ − η||2 − i||ξ + iη||2 + i||ξ − iη||2

shows that the functions x 7→ 〈ξ(x), η(x)〉 are continuous for all ξ, η ∈ F . Recall
that our scalar products are always linear in the second variable.
Let X be a locally compact space and let F be a continuous field of Hilbert spaces
over X. We associate to F the right C0(X)-module HM(F ) of all ξ ∈ F such that
x 7→ ||ξ(x)|| is in C0(X). According to the previous remark, the sesquilinear form

〈ξ, η〉(x) = 〈ξ(x), η(x)〉
takes values in C0(X).

Lemma 7.8. Let X be a locally ompact space and let F be a continuous field of
Hilbert spaces over X. The space HM(F ) with the sesquilinear form defined above
is a Hilbert C0(X)-module.

Proof. It is clear that the above sesquilinear form defines a C0(X)-valued inner
product on HM(F ) and that 〈ξ, ξ〉 = 0 iff ξ = 0. It remains to check that HM(F )
is complete with respect to the norm ||ξ|| = ||〈ξ, ξ〉||1/2. Assume that (ξn)n∈N is a
Cauchy sequence with respect to this norm. Then clearly ξn converges pointwise
to a section ξ of

∏
x∈X Hx. More precisely, we have ξn → ξ in the Banach space

of all bounded elements in
∏
x∈X Hx with respect to the l∞-norm. Hence we find

for every ε > 0 an n ∈ N such that ||ξ(x) − ξn(x)|| < ε for all x ∈ X. According
to condition c) in definition 7.5 we conclude that ξ is contained in F . Using the
triangle inequality

||ξ(x)|| ≤ ||ξ(x)− ξn(x)||+ ||ξn(x)||
we see that we have in fact ξ ∈ HM(F ). �
Conversely, let X be a locally compact space and let E be a Hilbert C0(X)-module.
For x ∈ X we consider the Hilbert space Ex = E ⊗evx

C, where evx : C0(X) → C
denotes evaluation at x. Recall that E ⊗evx

C is the completion of E �C0(X) C with
respect to the scalar product

〈ξ ⊗ 1, η ⊗ 1〉 = evx(〈ξ, η〉) = 〈ξ(x), η(x)〉.
Let us write Ix ⊂ C0(X) for the kernel of evx. Clearly Ix is a C∗-algebra, and
[EIx] ⊂ E is a nondegenerate right Ix-module. By the Cohen factorization theorem,
every element in EIx can be written as ξf for some ξ ∈ [EIx] and f ∈ Ix. Hence we
obtain [EIx] = EIx, in other words, the linear subspace EIx ⊂ E is closed.

Lemma 7.9. With the notation as above, we have a canonical isomorphism

Ex ∼= E/(EIx)

of Hilbert spaces.

Proof. Let us write || ||q for the quotient norm on the Banach space E/(EIx) and
|| ||x for the seminorm ξ 7→ ||ξ(x)||. It is clear that || ||x ≤ || ||q, and to see that we
have in fact equality let ξ ∈ E and ε > 0. Then we find a neighborhood U of x such
that ||ξ(y)|| ≤ ||ξ(x)||+ ε for all y ∈ U . We choose a compact neighborhood K ⊂ U
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of x, and using the Urysohn theorem we find a continuous function χ : X → [0, 1]
such that χ(y) = 1 for y ∈ K and supp(χ) ⊂ U . Let us set η = ξχ − ξ. Then we
have η(y) = 0 for all y ∈ K, and using again Urysohn we find a continuous function
µ on X such that µ(x) = 0 and µ = 1 on X \K. Hence η = ηµ ∈ EIx. We now
obtain

||ξ||q ≤ ||ξ + η|| = ||ξχ|| ≤ ||ξ(x)||+ ε = ||ξ||x + ε,

and this yields the claim. In particular || ||x is a norm on E/EIx.
Consider the canonical linear map π : E/(EIx) → E �C0(X) C ⊂ Ex given by
π(ξ) = ξ ⊗ 1. According to our previous remark this map is an isometry. Since
E/EIx is complete and the range of π is clearly E �C0(X) C, we conclude

E/(EIx) ∼= E �C0(X) C = Ex
as desired. �
We remark that the assumption that X is locally compact is used in the proof of
lemma 7.9.
We have now constructed a field (Ex)x∈X of Hilbert spaces out of the Hilbert mod-
ule E . Moreover the canonical map E →

∏
x∈X Ex is injective and provides a

linear subspace satisfying conditions a) and b) in definition 7.5. According to
proposition 10.2.3 in [7] there exists a unique continuous field of Hilbert spaces
CF (E) ⊂

∏
x∈X Ex containing E . The elements in CF (E) are precisely the sections

η such that for every x ∈ X and ε > 0 there exists a neighborhood U of x and ξ ∈ E
such that ||ξ(y)− η(y)|| < ε for all y ∈ U .

Proposition 7.10. Let X be a locally compact space.
a) If E is a Hilbert C0(X)-module then there is a canonical unitary isomorphism

HM(CF (E)) ∼= E

of Hilbert C0(X)-modules.
b) If F ⊂

∏
x∈X Hx is a continuous field of Hilbert spaces over X then there is a

canonical unitary isomorphism

CF (HM(F )) ∼= F

of continuous fields.
Hence there is a bijective correspondence between isomorphism classes of Hilbert
C0(X)-modules and continuous fields of Hilbert spaces over X. Under this corre-
spondence, full Hilbert modules are identified with continuous fields

∏
x∈X Hx with

all fibres Hx being nonzero.

Proof. a) By construction we may view E ⊂ HM(CF (E)), and the scalar product
of HM(CF (E)) restricted to E agrees with the given scalar product. Assume ξ ∈
HM(CF (E)) and let ε > 0. Then there is a compact subset K ⊂ X such that
||ξ(x)|| < ε for x ∈ X \K. For every x ∈ K we find an open neighborhood Ux ⊂ X
and an element ηx ∈ E such that ||ηx(y) − ξ(y)|| < ε for all y ∈ Ux. Since K is
compact there is a finite covering K ⊂ Ux1 ∪ · · · ∪ Uxn

, and we let χ1, . . . , χn be a
subordinate partition of unity. That is, χk : X → [0, 1] is continuous, the support
supp(χk) is compact and contained in Uxk

for all k and
n∑
j=1

χj(x) =

{
1 x ∈ K
≤ 1 x ∈ X \K.

We define η ∈ E by

η(x) =
n∑
j=1

χj(x)ηxj (x)
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and obtain

||ξ(x)− η(x)|| =
∥∥∥∥ n∑
j=1

χj(x)ξ(x)− χj(x)ηxj
(x)
∥∥∥∥ ≤ n∑

j=1

χj(x)||ξ(x)− ηxj
(x)|| ≤ ε

for all x ∈ X. Since ε was arbitrary it follows that we find a sequence ηn in E
converging to ξ with respect to || || in HM(CF (E)). This implies ξ ∈ E because E
is closed in HM(CF (E)). This yields the claim.
b) Using lemma 7.9 we see that the canonical linear map Ux : CF (HM(F ))x =
HM(F )/(HM(F )Ix)→ Hx given by Ux(ξ) = ξ(x) is an isometry for every x ∈ X.
From condition b) in definition 7.5 it follows that Ux is surjective. Hence the fibre
of CF (HM(F )) over x is unitarily isomorphic to HM(F )/(HM(F )Ix).
Using these isomorphisms we may view both F and CF (HM(F )) as linear sub-
spaces of

∏
x∈X Hx. Let ξ ∈ F and x ∈ X. Then for every ε > 0 there exists a

neighborhood U of x and η ∈ HM(F ) such that ||ξ(y) − η(y)|| < ε for all y ∈ U .
By the definition of CF (HM(F )) it follows that ξ ∈ CF (HM(F )). Conversely, let
ξ ∈ CF (HM(F )) and x ∈ X. Then we find for every ε > 0 a neighborhood U of x
and an element η ∈ HM(F ) such that ||ξ(y)− η(y)|| < ε for all y ∈ U . Since F is
a continuous field and HM(F ) ⊂ F we conclude ξ ∈ F . This proves part b).
The remaining assertion concerning full Hilbert C0(X)-modules is obvious. �

Appendix B: Braided tensor product and the Drinfeld double

Let H be a finite dimensional Hopf algebra and consider

ŵ =
n∑
j=1

S−1(ej)⊗ ej ∈ (H∗)cop ⊗H

where e1, . . . , en is a basis of H with dual basis e1, . . . , en of (H∗)cop = H∗. We
write ∆ for the comultiplication in H and ∆̂ for the comultiplication in (H∗)cop.

Definition 7.11. Let H be a finite dimensional Hopf algebra. The Drinfeld double
of H is

DH = H ⊗ (H∗)cop

with the tensor product algebra structure, the counit ε(f ⊗ x) = ε(f)ε(x) and the
comultiplication

∆D(f ⊗ x) = f(1) ⊗ ŵ−1(x(1) ⊗ f(2))ŵ ⊗ x(2)

where ŵ ∈ (H∗)cop ⊗H as above.

We note that the element ŵ is a bicharacter, or skew-copairing, of (H∗)cop and
H in the following sense, compare page 358 in [9].

Definition 7.12. A bicharacter between bialgebras K and H is an element w ∈
K ⊗H such that

(εK ⊗ id)(w) = 1, (id⊗εH)(w) = 1
and

(∆K ⊗ id)(w) = w13w23, (id⊗∆H)(w) = w13w12

Lemma 7.13. The element ŵ is a bicharacter between (H∗)cop and H. Explicitly,
ŵ is invertible and the formulas

(ε⊗ id)(ŵ) = 1, (id⊗ε)(ŵ) = 1

and
(∆̂⊗ id)(ŵ) = ŵ13ŵ23, (id⊗∆)(ŵ) = ŵ13ŵ12

hold.
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Proof. We claim that

ŵ−1 =
n∑
j=1

ej ⊗ ej

is inverse to ŵ. To check this let us write

〈x, f〉 = x(f) = 〈f, x〉

for the canonical evaluation of x ∈ (H∗)cop = H∗ and f ∈ H. Note that S−1 is the
antipode of (H∗)cop in the above formula for ŵ, and that 〈S−1(x), f〉 = 〈x, S(f)〉
for all x ∈ (H∗)cop and f ∈ H. We compute

〈ŵŵ−1, f ⊗ x〉 =
n∑

j,k=1

〈S−1(ej)ek ⊗ ejek, f ⊗ x〉

=
n∑

j,k=1

〈S−1(ej)ek, f〉〈ejek, x〉

=
n∑

j,k=1

〈S−1(ej)⊗ ek,∆(f)〉〈ejek, x〉

=
n∑

j,k=1

〈S−1(ej), f(1)〉〈ek, f(2)〉〈ejek, x〉

= 〈S(f(1))f(2), x〉 = ε(f)ε(x)

so that ŵŵ−1 = 1. Similarly one obtains ŵ−1ŵ = 1.
The equations

(ε⊗ id)(ŵ) =
n∑
j=1

ε(S−1(ej))ej = ε(ej)ej = ε = 1

and (id⊗ε)(ŵ) are easy. We compute

〈(∆̂⊗ id)(ŵ), f ⊗ g ⊗ x〉 =
n∑
j=1

〈∆̂(S−1(ej))⊗ ej , f ⊗ g ⊗ x〉

=
n∑
j=1

〈S−1(ej), gf〉〈ej , x〉

= x(S(gf))

=
n∑

j,k=1

〈ej , S(f)〉〈ek, S(g)〉〈ejek, x〉

=
n∑

j,k=1

〈S−1(ej), f〉〈S−1(ek), g〉〈ejek, x〉

=
n∑

j,k=1

〈S−1(ej)⊗ S−1(ek)⊗ ejek, f ⊗ g ⊗ x〉

= 〈ŵ13ŵ23, f ⊗ g ⊗ x〉
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for all f, g ∈ H and x ∈ H∗. Similarly we have

〈(id⊗∆̂)(ŵ), f ⊗ x⊗ y〉 =
n∑
j=1

〈S−1(ej)⊗∆(ej), f ⊗ x⊗ y〉

=
n∑
j=1

〈S−1(ej), f〉〈(ej)(1), x〉〈(ej)(2), y〉

= 〈S(f)(1), x〉〈S−1(f)(2), y〉
= 〈S(f), xy〉

=
n∑

j,k=1

〈ekej , S(f)〉〈ek, x〉〈ej , y〉

=
n∑

j,k=1

〈S−1(ej)S−1(ek)⊗ ek ⊗ ej , f ⊗ x⊗ y〉

= 〈ŵ13ŵ12, f ⊗ x⊗ y〉

as required. �
The assertion that ŵ is invertible can be viewed in a more conceptual way as follows.
Consider the canonical map c : H ⊗ (H∗)cop → End(H) given by

c(f ⊗ x)(h) = |f〉〈x|(h) = f〈x, h〉 = fx(h).

We view End(H) as an algebra with the convolution multiplication

(T1 · T2)(h) = µ(T1 ⊗ T2)∆(h).

Then we compute

(c(f ⊗ x) · c(g ⊗ y))(h) = µ(|f〉〈x| ⊗ |g〉〈y|)∆(h)

= fg〈x, h(1)〉〈y, h(2)〉
= fg〈x⊗ y,∆(h)〉
= fg〈xy, h〉 = c(fg ⊗ xy)(h)

and conclude that c is an algebra homomorphism. The element ŵ ∈ (H∗)cop⊗H ∼=
H ⊗ (H∗)cop considered above corresponds to S ∈ End(H), and the basic Hopf
algebra axioms say that S is invertible with respect to convolution. Similarly, the
relation (id⊗∆)(ŵ) = ŵ13ŵ12 can be reduced to the condition ∆S = (S ⊗ S)∆cop

for the antipode, for instance.
We shall now discuss comodules for DH .

Definition 7.14. Let H be a Hopf algebra. An H-Yetter-Drinfeld module M is a
vector space which is both a left H-module via H ⊗M →M,f ⊗m 7→ f ·m and a
left H-comodule via M → H ⊗M,m 7→ m(−1) ⊗m(0) such that

f(1)m(−1)S(f(3))⊗ f(2) ·m(0) = (f ·m)(−1) ⊗ (f ·m)(0)

for all f ∈ H and m ∈M .

We need the following lemma.

Lemma 7.15. Let h⊗ y ∈ H ⊗ (H∗)cop = DH . Then

(ε⊗ f ⊗ id⊗ε)(∆D(h⊗ y)) = 〈f(2), y〉f(1)hS(f(3))

= f(1)(id⊗ε⊗ ε⊗ f(2))(∆D(h⊗ y))S(f(3))
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Proof. We compute

(ε⊗ f⊗ id⊗ε)(∆D(h⊗ y)) = (ε⊗ f ⊗ id⊗ε)(h(1) ⊗ ŵ−1(y(1) ⊗ h(2)ŵ ⊗ y(2))

=
n∑

j,k=1

(ε⊗ f ⊗ id⊗ε)(h(1) ⊗ ejy(1)S
−1(ek)⊗ ejh(2)ek ⊗ y(2))

=
n∑

j,k=1

(f ⊗ id)(ejyS−1(ek)⊗ ejhek)

= 〈f(2), y〉f(1)hS(f(3))

= f(1)(id⊗ε⊗ ε⊗ f(2))(∆D(h⊗ y))S(f(3))

as claimed. �
The following basic result explains the relation between Yetter-Drinfeld modules
and comodules for DH .

Proposition 7.16. Let H be a finite dimensional Hopf algebra. Then there is a
bijective correspondence between H-Yetter-Drinfeld modules and left DH-comodules.

Proof. Let M be a left DH -comodule with coaction λ : M → DH ⊗M . We obtain
a left H-comodule structure µ : M → H ⊗M by restriction, that is µ = (π ⊗ id)λ
where π : DH → H,π(f ⊗ x) = fε(x). We write µ(m) = m(−1) ⊗m(0). In a similar
way we obtain a comodule structure µ̂ : M → (H∗)cop ⊗M given by µ̂ = (π̂ ⊗ id)λ
where π̂ : DH → (H∗)cop, π̂(f ⊗ x) = ε(f)x. We may view M as a left H-module
by setting

f ·m = (f ⊗ id)µ̂(m)
for f ∈ H.
Consider the equation

(id⊗λ)λ(m) = (∆D ⊗ id)λ(m)

in H⊗ (H∗)cop⊗H⊗ (H∗)cop⊗M . If we apply (ε⊗ f ⊗ id⊗ε⊗ id) on the left hand
side we obtain (f ·m)(−1)⊗ (f ·m)(0). According to lemma 7.15 this is the same as
f(1)m(−1)S(f(3))⊗ f(2) ·m(0). Hence we obtain a YD-module in this way.
Conversely, assume that we start from a Yetter-Drinfeld module with coaction
γ : M → H ⊗ M and left action µ : H ⊗ M → M . We dualize µ to a right
coaction µ̂ : M → M ⊗ H∗ by µ̂(m) = µ(ej ⊗ m) ⊗ ej and view this as a left
coaction of (H∗)cop. Now define a linear map λ : M → DH ⊗M by

λ = (id⊗µ̂)γ.

Writing µ(f ⊗m) = f ·m and γ(m) = m(−1) ⊗m(0) we compute

(id⊗λ)λ(m) = (id⊗ id⊗λ)(m(−1) ⊗ ej ⊗ ej ·m(0))

= m(−1) ⊗ ej ⊗ (ej ·m(0))(−1) ⊗ ek ⊗ ek · (ej ·m(0))(0)

= m(−2) ⊗ ej ⊗ (ej)(1)m(−1)S((ej)(3))⊗ ek ⊗ ek · (ej)(2) ·m(0)

Evaluating with f ∈ H on the second tensor factor and g ∈ H on the fourth factor
gives

m(−2) ⊗ f(1)m(−1)S(f(3))⊗ g · (f(2) ·m(0))

Conversely, we have

(∆D ⊗ id)λ(m) = (∆D ⊗ id)(m(−1) ⊗ ej ⊗ ej ·m(0))

= m(−2) ⊗ ŵ−1((ej)(1) ⊗m(−1))ŵ ⊗ (ej)(2) ⊗ ej ·m(0)

= m(−2) ⊗ ek(ej)(1)S
−1(el)⊗ ekm(−1)el ⊗ (ej)(2) ⊗ ej ·m(0)
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Evaluating with f ∈ H on the second tensor factor and g ∈ H on the fourth factor
gives

m(−2) ⊗ 〈f(2), (ej)(1)〉f(1)m(−1)S(f(3))〈g, (ej)(2)〉 ⊗ ej ·m(0))

= m(−2) ⊗ f(1)m(−1)S(f(3))⊗ (gf(2)) ·m(0))

This shows that λ is coassociative, and it is clearly counital. �

Definition 7.17. A bialgebra H is called coquasitriangular if there exists a linear
form r : H⊗H → C such that r is invertible with respect to the convolution product
and

a) mopp = r ∗m ∗ r−1

a) r(m⊗ id) = r13r23 and r(id⊗m) = r13r12

Proposition 7.18. The Drinfeld codouble DH is coquasitriangular with universal
r-form r : DH ⊗ DH → C given by

r(f ⊗ x⊗ g ⊗ y) = ε(f)g(x)ε(y)

Proof. We claim that

r(f ⊗ x⊗ g ⊗ y) = ε(f)g(S(x))ε(y)

is the inverse of r. We compute

(r ∗ r)(f1 ⊗ x1 ⊗ f2 ⊗ x2) = (r13r24)(∆D(f1 ⊗ x1)⊗∆D(f2 ⊗ x2))

= (r13r24)(f1
(1) ⊗ ŵ

−1(x1
(1) ⊗ f

1
(2))ŵ ⊗ x

1
(2) ⊗ f

2
(1) ⊗ ŵ

−1(x2
(1) ⊗ f

2
(2))ŵ ⊗ x

2
(2))

= ε(f1)〈x1
(1), f

2
(1)〉〈S(x1

(2)), f
2
(2)〉ε(x

2)

= (εD ⊗ εD)(f1 ⊗ x1 ⊗ f2 ⊗ x2)

and similarly

(r ∗ r)(f1 ⊗ x1 ⊗ f2 ⊗ x2) = (r13r24)(∆D(f1 ⊗ x1)⊗∆D(f2 ⊗ x2))

= (r13r24)(f1
(1) ⊗ ŵ

−1(x1
(1) ⊗ f

1
(2))ŵ ⊗ x

1
(2) ⊗ f

2
(1) ⊗ ŵ

−1(x2
(1) ⊗ f

2
(2))ŵ ⊗ x

2
(2))

= ε(f1)〈S(x1
(1)), f

2
(1)〉〈x

1
(2), f

2
(2)〉ε(x

2)

= (εD ⊗ εD)(f1 ⊗ x1 ⊗ f2 ⊗ x2)
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We compute

(mopp ∗ r)(f1 ⊗ x1 ⊗ f2 ⊗ x2) = (mopp
13 ⊗ r24)(∆D(f1 ⊗ x1)⊗∆D(f2 ⊗ x2))

= (mopp
13 ⊗ r24)(f1

(1) ⊗ ŵ
−1(x1

(1) ⊗ f
1
(2))ŵ ⊗ x

1
(2) ⊗ f

2
(1) ⊗ ŵ

−1(x2
(1) ⊗ f

2
(2))ŵ ⊗ x

2
(2))

=
∑
j,k

(mopp
13 ⊗ r24)(f1

(1) ⊗ x
1
(1) ⊗ f

1
(2) ⊗ x

1
(2) ⊗ f

2
(1) ⊗ e

jx2
(1)S

−1(ek)⊗ ejf2
(2)ek ⊗ x

2
(2))

=
∑
j,k

f2
(1)f

1 ⊗ ejx2S−1(ek)x1
(1)〈x

1
(2), ejf

2
(2)ek〉

=
∑
j,k

f2
(1)f

1 ⊗ ejx2S−1(ek)x1
(1)〈x

1
(4), ej〉〈x

1
(3), f

2
(2)〉〈x

1
(2), ek〉

= f2
(1)f

1 ⊗ x1
(4)x

2S−1(x1
(2))x

1
(1)〈x

1
(3), f

2
(2)〉

= f2
(1)f

1 ⊗ x1
(2)x

2〈x1
(1), f

2
(2)〉

= f2
(1)f

1S(f2
(3))f

2
(4) ⊗ x

1
(2)x

2〈x1
(1), f

2
(2)〉

=
∑
j,k

〈ej , f2
(1)〉〈x

1
(1), f

2
(2)〉〈S

−1(ek), f2
(3)〉ejf

1ekf
2
(4) ⊗ x

1
(2)x

2

=
∑
j,k

〈ejx1
(1)S

−1(ek), f2
(1)〉ejf

1ekf
2
(2) ⊗ x

1
(2)x

2

=
∑
j,k

(r13 ⊗m24)(f1
(1) ⊗ e

jx1
(1)S

−1(ek)⊗ ejf1
(2)ek ⊗ x

1
(2) ⊗ f

2
(1) ⊗ x

2
(1) ⊗ f

2
(2) ⊗ x

2
(2))

= (r13 ⊗m24)(f1
(1) ⊗ ŵ

−1(x1
(1) ⊗ f

1
(2))ŵ ⊗ x

1
(2) ⊗ f

2
(1) ⊗ ŵ

−1(x2
(1) ⊗ f

2
(2))ŵ ⊗ x

2
(2))

= (r13 ⊗m24)(∆D(f1 ⊗ x1)⊗∆D(f2 ⊗ x2))

= (r ∗m)(f1 ⊗ x1 ⊗ f2 ⊗ x2)

Moreover we have

r(m⊗ id)(f1 ⊗ x1 ⊗ f2 ⊗ x2 ⊗ f3 ⊗ x3) = r(f1f2 ⊗ x1x2 ⊗ f3 ⊗ x3)

= ε(f1)ε(f2)f3(x1x2)ε(x3)

= ε(f1)〈x1, f3
(1)〉ε(f

2)〈x2, f3
(2)〉ε(x

3)

= ε(f1)〈x1, f3
(1)〉ε(x

3
(1))r(f

2 ⊗ x2 ⊗ f3
(2) ⊗ x

3
(2))

= r13r24(f1 ⊗ x1 ⊗ f2 ⊗ x2 ⊗ f3
(1) ⊗ ŵ

−1(x3
(1) ⊗ f

3
(2))ŵ ⊗ x

3
(2)))

= r13r24(f1 ⊗ x1 ⊗ f2 ⊗ x2 ⊗∆D(f3 ⊗ x3))

= r13r23(f1 ⊗ x1 ⊗ f2 ⊗ x2 ⊗ f3 ⊗ x3)

and

r(id⊗m)(f1 ⊗ x1 ⊗ f2 ⊗ x2 ⊗ f3 ⊗ x3) = r(f1 ⊗ x1 ⊗ f2f3 ⊗ x2x3)

= ε(f1)(f2f3)(x1)ε(x2x3)

= ε(f1)〈x1
(1), f

3〉〈x1
(2), f

2〉ε(x2)ε(x3)

= ε(f1
(1))〈x

1
(1), f

3〉ε(x3)ε(f1
(2))〈x

1
(2), f

2〉ε(x2)

= r(f1
(1) ⊗ x

1
(1) ⊗ f

3 ⊗ x3)ε(f1
(2))〈x

1
(2), f

2〉ε(x2)

= r14r23(f1
(1) ⊗ ŵ

−1(x1
(1) ⊗ f

1
(2))ŵ ⊗ x

1
(2) ⊗ f

2 ⊗ x2 ⊗ f3 ⊗ x3)

= r14r23(∆D(f1 ⊗ x1)⊗ f2 ⊗ x2 ⊗ f3 ⊗ x3)

= r13r12(f1 ⊗ x1 ⊗ f2 ⊗ x2 ⊗ f3 ⊗ x3)

where we note that x(1) ⊗ x(2) is Sweedler notation for the comultiplication in
(H∗)cop. �
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Note that if γMN : M⊗N → N⊗M is the braiding in a braided monoidal category
C, then also φMN = γ−1

NM : M⊗N → N⊗M is a braiding for the monoidal category
C. This follows from the symmetry in the hexagon diagrams, see [13], page 430.
The braiding φ is indeed different from γ in general, since in particular the maps
φMM and γMM for M ∈ C differ unless C is symmetric.
If X,Y are left DH -comodules we obtain a braiding γXY : X ⊗ Y → Y ⊗X by

γXY (x⊗ y) = r(y(−1) ⊗ x(−1))y(0) ⊗ x(0).

Indeed, we compute

λY⊗XγXY (x⊗ y) = r(y(−2) ⊗ x(−2))y(−1)x(−1) ⊗ y(0) ⊗ x(0)

= r(y(−2) ⊗ x(−2))m(y(−1) ⊗ x(−1))⊗ y(0) ⊗ x(0)

= mopp(y(−2) ⊗ x(−2))r(y(−1) ⊗ x(−1))⊗ y(0) ⊗ x(0)

= x(−2)y(−2)r(y(−1) ⊗ x(−1))⊗ y(0) ⊗ x(0)

= (id⊗γXY )λX⊗Y (x⊗ y).

Moreover we obtain

(id⊗γXZ)(γXY ⊗ id)(x⊗ y ⊗ z) = r(y(−1) ⊗ x(−1))(id⊗γXZ)(y(0) ⊗ x(0) ⊗ z)
= r(y(−1) ⊗ x(−2))r(z(−1) ⊗ x(−1))y(0) ⊗ z(0) ⊗ x(0)

= r13r23(y(−1) ⊗ z(−1) ⊗ x(−1))y(0) ⊗ z(0) ⊗ x(0)

= r(m⊗ id)(y(−1) ⊗ z(−1) ⊗ x(−1))y(0) ⊗ z(0) ⊗ x(0)

= r(y(−1)z(−1) ⊗ x(−1))y(0) ⊗ z(0) ⊗ x(0)

= γX,Y⊗Z(x⊗ y ⊗ z)

and

(γXZ ⊗ id)(id⊗γY Z)(x⊗ y ⊗ z) = r(z(−1) ⊗ y(−1))(γXZ ⊗ id)(x⊗ z(0) ⊗ y(0))

= r(z(−2) ⊗ y(−1))r(z(−1) ⊗ x(−1))z(0) ⊗ x(0) ⊗ y(0)

= r13r12(z(−1) ⊗ x(−1) ⊗ y(−1))z(0) ⊗ x(0) ⊗ y(0)

= r(id⊗m)(z(−1) ⊗ x(−1) ⊗ y(−1))z(0) ⊗ x(0) ⊗ y(0)

= r(z(−1) ⊗ x(−1)y(−1))z(0) ⊗ x(0) ⊗ y(0)

= γX⊗Y,Z(x⊗ y ⊗ z)

which shows that γ satisfies the hexagon relations as on page 430 in [13].
Note that according to our remark above

φY X(y ⊗ x) = γ−1
XY (y ⊗ x) = r−1(y(−1) ⊗ x(−1))x(0) ⊗ y(0)

defines a braiding as well.
In order to explain the connection with the C∗-algebraic framework we consider
the case of finite quantum groups. If G is a finite quantum group then H = C(G)
and (H∗)cop = C∗(G) are finite dimensional Hopf algebras. The GNS-construction
is HG = H together with the map Λ : H → HG given by the identity. The scalar
product on HG is

〈Λ(f),Λ(g)〉 = φ(f∗g)

for f, g ∈ H where φ : H → C is the Haar state. The fundamental unitary W is
given by

W ∗(Λ(f)⊗ Λ(g)) = Λ(g(1)f)⊗ Λ(g(2))

which can equivalently be described by

W (Λ(f)⊗ Λ(g)) = Λ(S−1(g(1))f)⊗ Λ(g(2))
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using the inverse of the antipode S of H. The algebra H is contained as subalgebra
of L(HG) consisting of all operators (id⊗ω)W for ω ∈ L(HG)∗. One checks that
this are precisely the multiplication operators

f · Λ(h) = Λ(fh)

for f ∈ H. The comultiplication of H can be recovered from the formula

∆(h)(Λ(f)⊗ Λ(g)) = W ∗(1⊗ h)W (Λ(f)⊗ Λ(g))

= W ∗(1⊗ h)(Λ(S−1(g(1))f)⊗ Λ(g(2)))

= W ∗(Λ(S−1(g(1))f)⊗ Λ(hg(2)))

= Λ(h(1)f)⊗ Λ(h(2)g)

in this representation.
The dual quantum group C∗(G) = Ĥ = (H∗)cop consists of all operators of the
form (ω ⊗ id)W for ω ∈ L(HG)∗. It can be identified with the linear dual of H
acting on HG according to the formula

x · Λ(h) = x(S−1(h(1)))Λ(h(2))

for a linear form x on H.
Using Sweedler notation in (H∗)cop, the comultiplication ∆̂ on Ĥ is given by the
formula

∆̂(x)(Λ(f)⊗ Λ(g)) = ΣW (x⊗ 1)W ∗Σ(Λ(f)⊗ Λ(g))

= ΣW (x⊗ 1)(Λ(f(1)g)⊗ Λ(f(2)))

= x(S−1(f(1)g(1)))ΣW (Λ(f(2)g(2))⊗ Λ(f(3)))

= x(1)(S−1(f(1)))x(2)(S−1(g(1)))Λ(f(2))⊗ Λ(g(2))

that is, ∆̂ is precisely the comultiplication in (H∗)cop.
Let us compare the Yetter-Drinfeld conditions in the algebraic setting and the C∗-
algebraic framework. The C∗-algebraic condition amounts to

w(a(−1)⊗(a(0))[−1])w−1 ⊗ (a(0))[0]

=
n∑

j,k=1

eja(−1)ek ⊗ ej(a(0))[−1]S
−1(ek)⊗ (a(0))[0]

= (a[0])(−1) ⊗ a[−1] ⊗ (a[0])(0)

where we write
α(a) = a(−1) ⊗ a(0), λ(a) = a[−1] ⊗ a[0]

and use

w =
n∑
j=1

ej ⊗ ej , w−1 =
n∑
j=1

ej ⊗ S−1(ej).

Evaluating the above equality on f ∈ H in the second tensor factor gives

(f · a)(−1) ⊗ (f · a)(0) = (a[0])(−1)〈f, a[−1]〉(a[0])(0)

=
n∑

j,k=1

eja(−1)ek〈ej(a(0))[−1]S
−1(ek), f〉(a(0))[0]

=
n∑

j,k=1

eja(−1)ek〈ej , f(1)〉〈(a(0))[−1], f(2)〉〈S−1(ek), f(3)〉(a(0))[0]

= f(1)a(−1)S(f(3))f(2) · a(0)



36 CHRISTIAN VOIGT

and thus amounts to the algbraic Yetter-Drinfeld condition.
Now let A be an DH -algebra and B be an H-algebra. We define the algebraic
braided tensor product A�B as A⊗B with the multiplication

(a� b)(a′ � b′) = a(b(−1) · a′) � b(0)b
′

Applying γBA to b⊗ a′ gives

r(a′[−1] ⊗ b[−1])a′[0] ⊗ b[0] = (b(−1) · a′)⊗ b(0),

so that the above multiplication is indeed given by

A⊗B ⊗A⊗B
id⊗γBA⊗id// A⊗A⊗B ⊗B

µA⊗µB// A⊗B.
Let us compare the commutation relations of A and B in the above algebraic setting
with the commutation relations in the C∗-algebraic framework used in definition
4.9. We have the correspondence

(a� 1)(1 � b) = a� b ∼ a[−1]b(−1) ⊗ a[0] ⊗ b(0) = λ(a)12β(b)13

where we view H and (H∗)cop as acting on the GNS-space. Moreover

(1 � b)(a� 1) = (b(−1) · a) � b(0)

= 〈b(−1), a[−1]〉 a[0] � b(0)

∼ 〈b(−2), a[−2]〉a[−1]b(−1) ⊗ a[0] ⊗ b(0)

and we should compare this with

β(b)13λ(a)12 = b(−1)a[−1] ⊗ a[0] ⊗ b(0).

The two expressions will be equal provided

〈f(1), x(1)〉x(2)f(2) = fx

for all f ∈ H and x ∈ (H∗)cop where we use Sweedler notation in H and (H∗)cop.
Indeed,

f · x · Λ(h) = 〈S−1(h(1)), x〉Λ(fh(2))

= 〈S−1(f(2))f(1), x(1)〉〈S−1(h(1)), x(2)〉Λ(f(3)h(2))

= 〈f(1), x(1)〉〈S−1(f(2)), x(2)〉〈S−1(h(1)), x(3)〉Λ(f(3)h(2))

= 〈f(1), x(1)〉〈S−1(f(2)h(1)), x(2)〉Λ(f(3)h(2))

= 〈f(1), x(1)〉 x(2) · f(2) · Λ(h),

and thus the desired equality holds.
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J. Funct. Anal., 258(5):1466–1503, 2010.
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