
ON THE ASSEMBLY MAP FOR COMPLEX SEMISIMPLE QUANTUM

GROUPS
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Abstract. We show that complex semisimple quantum groups, that is, Drin-
feld doubles of q-deformations of compact semisimple Lie groups, satisfy a

categorical version of the Baum-Connes conjecture with trivial coefficients.

This approach, based on homological algebra in triangulated categories, is
compatible with the previously studied deformation picture of the assembly

map, and allows us to define an assembly map with arbitrary coefficients for

these quantum groups.

1. Introduction

If G is a second countable locally compact group and A a separable G-C∗-
algebra, then the Baum-Connes conjecture for G with coefficients in A asserts that
the assembly map

µA : Ktop
∗ (G;A)→ K∗(Gnr A)

is an isomorphism [?], [?]. Here Ktop
∗ (G;A) denotes the topological K-theory of

G with coefficients in A, and K∗(G nr A) is the K-theory of the reduced crossed
product.

For G a connected Lie group and A = C the trivial G-C∗-algebra the assembly
map is known to be an isomorphism [?], [?], but it is an open problem whether this
is true for arbitrary coefficients A in the case of semisimple groups.

Meyer and Nest have reformulated the Baum-Connes conjecture using the lan-
guage of triangulated categories and derived functors [?]. In their approach, the
left hand side of the assembly map is identified with the localisation LF of the
functor F (A) = K∗(G nr A) on the equivariant Kasparov category KKG. One of
the advantages of the Meyer-Nest picture is that it is very flexible, and applicable
in situations where a geometric definition of the left hand side of the Baum-Connes
assembly map is no longer available. This has previously been taken advantage of in
the setting of discrete quantum groups, leading to explicit K-theory computations,
see for instance [?], [?], [?].

The present paper is devoted to the construction of an assembly map for complex
semisimple quantum groups. These locally compact quantum groups, obtained as
Drinfeld doubles of q-deformations of compact semisimple Lie groups and studied
first by Podleś and Woronowicz [?], feature in various contexts. This includes,
among other things, combinatorial quantization of complex Chern-Simons theory
[?], and the construction of subfactors with property (T), see [?].

We adopt the framework of Meyer and Nest to the situation at hand. If Gq
is a complex semisimple quantum group then it contains the q-deformation Kq of
the corresponding compact semisimple group K naturally as a quantum subgroup.
We consider the associated induction and restriction functors and define compactly
induced and compactly contractible actions in analogy with the case of classical
semisimple groups. The analysis in the quantum case is in fact somewhat simpler
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since Kq ⊂ Gq is not only compact but also an open quantum subgroup. The local-
ising subcategory of the equivariant Kasparov category KKGq generated by com-
pactly induced actions is complementary to the category of compactly contractible
actions, so that general machinery from homological algebra allows us to define an
assembly map for arbitrary Gq-C

∗-algebras. In fact, for technical reasons we will
mostly work at the level of continuous fields, assembling the quantum groups Gq
for varying deformation parameters into a global object. The corresponding variant
of equivariant KK-theory will be developed along the way as far as needed for our
purposes.

In order to analyse the assembly map we consider a specific projective resolution
of the trivial action in KKGq , built out of the Koszul complex for the module of
differential forms over the representation ring of Kq. According to general results
in [?], this leads to a cellular approximation of the trivial action in KKGq . Since
Gq has a unitary braiding, one can also obtain cellular approximations for arbitrary
actions in this way, using braided tensor products in the sense of [?].

Our main result is that the assembly map for Gq with trivial coefficients is an
isomorphism. This is proved by invoking the results from [?] on the deformation of
a complex quantum group into its associated quantum motion group. In this way
we provide the first examples of genuine locally compact quantum groups satisfying
the categorical Baum-Connes property beyond the discrete case. Our argument
shows at the same time that the categorical assembly map is naturally compatible
with the deformation picture developed in [?].

Let us briefly explain how the paper is organised. Section ?? contains some pre-
liminaries on complex semisimple quantum groups and other background material.
In section ?? we discuss the notion of continuous fields of locally compact quantum
groups. We explain in particular how Drinfeld doubles of compact semisimple Lie
groups assemble naturally into continuous fields of locally compact quantum groups
by varying the deformation parameter. Section ?? develops the basics of equivari-
ant KK-theory for continuous fields of locally compact quantum groups. This
generalises the corresponding constructions for locally compact quantum groups,
corresponding to the case that the base space is a point, and groupoid equivariant
KK-theory in the sense of [?] in the case that all fibers are classical groups. We de-
fine induction functors for continuous fields of open quantum subgroups, and verify
that induction is left adjoint to restriction on the level of equivariant KK-theory.
In section ?? we set up the homological machinery for equivariant KK-theory of
complex quantum groups in the spirit of Meyer and Nest and construct the categor-
ical Baum-Connes assembly map. Moreover we show that the assembly map with
trivial coefficients is an isomorphism. In order to do so we consider a specific model
of the Dirac morphism for complex quantum groups, constructed from the Koszul
resolution of the representation ring of the classical maximal compact subgroup.

Let us conclude with some remarks on notation. We write L(E) for the algebra
of adjointable operators on a Hilbert module E . Moreover K(E) denotes the algebra
of compact operators. The closed linear span of a subset X of a Banach space is
denoted by [X]. Depending on the context, the symbol ⊗ denotes either the tensor
product of Hilbert spaces, the spatial tensor product of C∗-algebras, or the spatial
tensor product of von Neumann algebras. We use standard leg numbering notation
for operators defined on multiple tensor products.

I would like to thank the anonymous referees for their careful reading of the
manuscript.
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2. Preliminaries

In this section we collect some background material on locally compact quantum
groups in general and complex semisimple quantum groups in particular. For more
details and further information we refer to [?], [?].

Let φ be a normal, semifinite and faithful weight on a von Neumann algebra M .
We use the standard notation

M+
φ = {x ∈M+|φ(x) <∞}, Nφ = {x ∈M |φ(x∗x) <∞}

and write M+
∗ for the space of positive normal linear functionals on M . Assume

that ∆ : M →M ⊗M is a normal unital ∗-homomorphism. The weight φ is called
left invariant with respect to ∆ if

φ((ω ⊗ id)∆(x)) = φ(x)ω(1)

for all x ∈ M+
φ and ω ∈ M+

∗ . Similarly one defines the notion of a right invariant
weight.

Definition 2.1. A locally compact quantum group G is given by a von Neumann
algebra L∞(G) together with a normal unital ∗-homomorphism ∆ : L∞(G) →
L∞(G)⊗ L∞(G) satisfying the coassociativity relation

(∆⊗ id)∆ = (id⊗∆)∆

and normal semifinite faithful weights φ and ψ on L∞(G) which are left and right
invariant, respectively.

Our notation for locally compact quantum groups is intended to make clear how
ordinary locally compact groups can be viewed as quantum groups, but for a general
locally compact quantum group G the notation L∞(G) is purely formal. Similar
remarks apply to the C∗-algebras C∗f (G), C∗r (G) and C f

0(G), Cr
0(G) associated to G

that we discuss below. It is convenient to view all of them as different appearances
of the quantum group G.

Let G be a locally compact quantum group and let Λ : Nφ → L2(G) be a
GNS-construction for the weight φ. We will only consider quantum groups for
which L2(G) is a separable Hilbert space. One obtains a unitary WG = W on
L2(G)⊗ L2(G) by

W ∗(Λ(x)⊗ Λ(y)) = (Λ⊗ Λ)(∆(y)(x⊗ 1))

for all x, y ∈ Nφ. This unitary is multiplicative, which means that W satisfies the
pentagonal equation

W12W13W23 = W23W12.

From W one can recover the von Neumann algebra L∞(G) as the strong closure
of the algebra (id⊗L(L2(G))∗)(W ) where L(L2(G))∗ denotes the space of normal
linear functionals on L(L2(G)). Moreover one has

∆(x) = W ∗(1⊗ x)W

for all x ∈M .
The group-von Neumann algebra L(G) of the quantum group G is the strong

closure of the algebra (L(L2(G))∗ ⊗ id)(W ) with the comultiplication ∆̂ : L(G)→
L(G)⊗ L(G) given by

∆̂(y) = Ŵ ∗(1⊗ y)Ŵ ,

where Ŵ = ΣW ∗Σ and Σ ∈ L(L2(G) ⊗ L2(G)) is the flip map. It defines a

locally compact quantum group Ĝ which is called the dual of G. The left invariant

weight φ̂ for the dual quantum group has a GNS-construction Λ̂ : Nφ̂ → L2(G),

and according to our conventions we have L(G) = L∞(Ĝ). We write Ǧ for the
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locally compact quantum group obtained from Ĝ by equipping the underlying von
Neumann algebra L(G) with the opposite comultiplication ∆̂cop = σ∆̂, where σ is
the flip map.

The modular conjugations of the weights φ and φ̂ are denoted by J and Ĵ ,
respectively. These operators implement the unitary antipodes in the sense that

R(x) = Ĵx∗Ĵ , R̂(y) = Jy∗J

for x ∈ L∞(G) and y ∈ L(G). Note that L∞(G)′ = JL∞(G)J and L(G)′ = ĴL(G)Ĵ

for the commutants of L∞(G) and L(G). Using J and Ĵ one obtains multiplicative
unitaries

V = (Ĵ ⊗ Ĵ)Ŵ (Ĵ ⊗ Ĵ), V̂ = (J ⊗ J)W (J ⊗ J)

which satisfy V ∈ L(G)′ ⊗ L∞(G) and V̂ ∈ L∞(G)′ ⊗ L(G), respectively.
We will mainly work with the C∗-algebras associated to the locally compact

quantum group G. The algebra [(id⊗L(L2(G))∗)(W )] is a strongly dense C∗-
subalgebra of L∞(G) which we denote by Cr

0(G). Dually, the algebra [(L(L2(G))∗⊗
id)(W )] is a strongly dense C∗-subalgebra of L(G) which we denote by C∗r (G).
These algebras are the reduced algebra of continuous functions vanishing at in-
finity on G and the reduced group C∗-algebra of G, respectively. One has W ∈
M(Cr

0(G) ⊗ C∗r (G)), and restriction of the comultiplications on the von Neumann
level turns Cr

0(G) and C∗r (G) into Hopf C∗-algebras in the sense of [?].
For every locally compact quantum group G there exists a universal dual C∗f (G)

of Cr
0(G) and a universal dual C f

0(G) of C∗r (G), respectively [?]. We call C∗f (G)
the maximal group C∗-algebra of G and C f

0(G) the maximal algebra of continuous
functions on G vanishing at infinity. Since L2(G) is assumed to be separable the
C∗-algebras C f

0(G), Cr
0(G) and C∗f (G), C∗r (G) are separable. The quantum group

G is called compact if C f
0(G) is unital, and it is called discrete if C∗f (G) is unital.

In the compact case we also write C f(G) and Cr(G) instead of C f
0(G) and Cr

0(G),
respectively.

In general, we have a surjective morphism π̂ : C∗f (G) → C∗r (G) of Hopf C∗-
algebras associated to the left regular corepresentation W ∈ M(C0(G) ⊗ C∗r (G)).
Similarly, there is a surjective morphism π : C f

0(G)→ Cr
0(G). We will call the quan-

tum group G amenable if π̂ : C∗f (G)→ C∗r (G) is an isomorphism and coamenable if
π : C f

0(G)→ Cr
0(G) is an isomorphism. If G is amenable or coamenable, we simply

write C∗(G) and C0(G) for the corresponding C∗-algebras, respectively.
An open quantum subgroup H of a locally compact quantum group G is given

by a surjective normal unital ∗-homomorphism π : L∞(G) → L∞(H) which is
compatible with comultiplications [?]. The corresponding morphism π : Cr

0(G) →
M(Cr

0(H)) takes values in Cr
0(H), and there exists a central projection 1H ∈

M(Cr
0(G)) such that the map π identifies with π(f) = 1Hf . Using the projection

1H we obtain a canonical embedding ι : Cr
0(H) → Cr

0(G) from the identification
Cr

0(H) ∼= 1HC
r
0(G). This map can be interpreted as extending functions on H by

zero to all of G. Moreover we have a canonical inclusion map C∗r (H) → C∗r (G),
compatible with the comultiplications.

For the definition of actions of locally compact quantum groups on C∗-algebras
and their crossed products we refer to [?], or to the discussion in section ?? below.
We shall gather here some results from [?] concerning induced C∗-algebras. Assume
that G is a regular locally compact quantum group and that H ⊂ G is a closed
quantum subgroup. In fact, in the sequel we will only be interested in the case that
H ⊂ G is open. From the quantum subgroup H ⊂ G one obtains a right coaction
L∞(G) → L∞(G) ⊗ L∞(H) by right translations on the level of von Neumann
algebras. The von Neumann algebraic homogeneous space L∞(G/H) ⊂ L∞(G) is
defined as the subalgebra of invariants under this coaction. If π̂′ : L(H)′ → L(G)′
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is the homomorphism π̂′(x) = ĴGπ̂(ĴHxĴH)ĴG induced by π̂ : L(H)→ L(G), then

I = {v ∈ L(L2(H), L2(G)) | vx = π̂′(x)v for all x ∈ L(H)′}
defines a von Neumann algebraic imprimitivity bimodule between the von Neumann
algebraic crossed product GnL∞(G/H) and L(H). There is a C∗-algebraic homo-
geneous space Cr

0(G/H) ⊂ L∞(G/H) and a C∗-algebraic imprimitivity bimodule
I ⊂ I which implements a Morita equivalence between Gnr C

r
0(G/H) and C∗r (H).

Explicitly, we have

I ⊗ L2(G) = [V̂G(I ⊗ 1)(id⊗π̂)(V̂ ∗H)(C∗r (H)⊗ L2(G))].

If A is an H-C∗-algebra with coaction α : A → M(Cr
0(H) ⊗ A) then the induced

G-C∗-algebra indGH(A) is defined in [?] by first constructing Gnr indGH(A), and then
applying a quantum version of Landstad’s theorem characterising reduced crossed
products. The crossed product of the induced C∗-algebra indGH(A) is

Gnr indGH(A) = [(I ⊗ 1)α(A)(I∗ ⊗ 1)],

and the Hilbert module implementing the Morita equivalence G nr indGH(A) ∼M
H nr A can be concretely described as

J = [(I ⊗ 1)α(A)] ⊂M(K(L2(H), L2(G))⊗A).

We note that [?] supposes strong regularity of the quantum group G, but for the
above constructions on the reduced level regularity is sufficient.

Let us now assume in addition that H ⊂ G is an open quantum subgroup. Since
1H ∈ M(C0(G/H)) we have 1HI ⊂ I, which implies p = 1H ⊗ id ∈ M(JJ ∗) =

M(GnrindGH(A)). Using that 1HI can be identified with C∗r (H), viewed as subspace
of L(L2(H), L2(G)) via the canonical inclusion i : L2(H) → L2(G), one checks

p(Gnr indGH(A))p = HnrA and (Gnr indGH(A))p(Gnr indGH(A)) = (Gnr indGH(A)).

In other words, the projection p exhibits H nr A as a full corner of G nr indGH(A)
in this case.

After these general considerations let us now briefly review the definition of
complex semisimple quantum groups, referring to [?] for the details. We start with
a simply connected semisimple complex Lie group G, its associated Lie algebra g,
and a positive real deformation parameter q 6= 1. Fix a Cartan subalgebra h ⊂ g,
and let k ⊂ g be the Lie algebra of the maximal compact subgroup K ⊂ G with
maximal torus T such that t ⊂ h, where t is the Lie algebra of T . We fix simple
roots α1, . . . , αN , their corresponding coroots, and denote by P the set of weights
for g. The set P+ ⊂ P of dominant integral weights is the set of all non-negative
integer combinations of the fundamental weights $1, . . . , $N .

The C∗-algebra C(K) of continuous functions on the maximal compact subgroup
K of G can be described as completion of the algebra of matrix coefficients of
all finite dimensional representations of g. In a similar way one constructs the
C∗-algebra C(Kq) as completion of the algebra of matrix coefficients of all finite
dimensional weight modules for the quantized universal enveloping algebra Uq(g)
associated with g.

The irreducible finite dimensional weight modules of Uq(g) are parametrised by
their highest weights in P+ as in the classical theory. We will write V (µ)q, or
simply V (µ), for the module associated to µ ∈ P+. We fix the ∗-structure on
Uq(g) as in [?] and note that the representations V (µ)q for µ ∈ P+ are unitarizable
with respect to this ∗-structure. In fact, one can identify the underlying Hilbert
spaces V (µ)q with the Hilbert space V (µ)1 = V (µ) of the corresponding irreducible
representation of U(g) in a natural way, compare [?].

By construction, the C∗-algebra C(Kq) contains the canonical dense Hopf ∗-
algebra of matrix coefficients, which has a linear basis given by the elements uµij =
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〈eµi | • |e
µ
j 〉, where µ ∈ P+ and eµ1 , . . . , e

µ
n is an orthonormal basis of V (µ) consisting

of weight vectors. In terms of matrix elements, the Haar state φ : C(Kq) → C is
determined by

φ(uµij) =

{
1 if µ = 0

0 else.

We will write ∆ = ∆q : C(Kq) → C(Kq) → C(Kq) for the comultiplication of
C(Kq). Dually, the group C∗-algebra C∗(Kq) is the c0-direct sum

C∗(Kq) =
⊕
µ∈P+

K(V (µ)),

and we write ∆̂ = ∆̂q : C∗(Kq) → M(C∗(Kq) ⊗ C∗(Kq)) for its comultiplica-
tion. The algebra C∗(Kq) contains the algebraic direct sum of the matrix algebras
K(V (µ)) as a dense subalgebra, and one can choose a basis ωµij for each K(V (µ))

dual to the matrix coefficients uµij . With these choices, the fundamental multiplica-

tive unitary W ∈ M(C(Kq) ⊗ C∗(Kq)) can be written as the strong∗ convergent
sum

W =
∑
µ∈P+

dim(V (µ))∑
i,j=1

uµij ⊗ ω
µ
ij ,

see [?].
The complex semisimple quantum group Gq is the Drinfeld double Gq = Kq ./

K̂q, with underlying C∗-algebra

C0(Gq) = C(Kq)⊗ C∗(Kq)

and comultiplication

∆Gq = (id⊗σ ⊗ id)(id⊗ad(W )⊗ id)(∆⊗ ∆̂).

Here W denotes the multiplicative unitary from above.
By definition, a unitary representation of Gq on a Hilbert space H is a nonde-

generate ∗-homomorphism C∗f (Gq) → L(H). A basic example is the left regular
representation of Gq on L2(Gq)), which is constructed using the fundamental mul-
tiplicative unitary. The reduced group C∗-algebra C∗r (Gq) of Gq is the image of
C∗f (Gq) under the left regular representation.

The definition of Gq given above makes perfect sense for q = 1, by starting with
the classical algebra of functions C(K) and the group C∗-algebra C∗(K) instead of
their deformed versions. It is important to keep in mind, however, that the resulting
function algebra C0(G1) is far from being isomorphic to the algebra of functions
on the group G. We also note that the group C∗-algebra C∗(G1) can be identified
with the crossed product K nad C(K) of the action of K on C(K) induced from
the adjoint action of K on itself.

In the proof of our main result we will need to consider two locally compact
quantum groups closely related to G1. Firstly, repeating the Drinfeld double con-
struction with the maximal torus T instead of K yields the locally compact quan-
tum group T ./ T̂ , which is nothing but the direct product of the classical abelian
groups T and T̂ . Secondly, we will consider the relative Drinfeld double T ./ K̂,
obtained by replacing C(K) with C(T ) in the construction of C0(G1), while keep-
ing the factor C∗(K). In this case the comultiplication involves the bicharacter
(π ⊗ id)(W ) instead of W , obtained from the canonical restriction homomorphism
π : C(K)→ C(T ).
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3. Continuous fields of locally compact quantum groups

In this section we discuss continuous fields of locally compact quantum groups.
Such continuous fields can be viewed as particular examples of locally compact
quantum groupoids [?], for which many of the technical intricacies of the general
theory of locally compact quantum groupoids disappear. Nonetheless, we will only
sketch some key definitions and constructions.

Let X be a locally compact Hausdorff space. Recall that a C0(X)-algebra is a
C∗-algebra A together with a nondegenerate ∗-homomorphism C0(X) → ZM(A),
where ZM(A) denotes the center of the multiplier algebra of A. We will usually not
distinguish between f ∈ C0(X) and its image in ZM(A) in our notation, and write
fa = af for the product of f ∈ C0(X) and a ∈ A. If A and B are C0(X)-algebras
then a ∗-homomorphism ϕ : A → B is called C0(X)-linear if ϕ(fa) = fϕ(a)
for all a ∈ A and f ∈ C0(X). In this way C0(X)-algebras with C0(X)-linear ∗-
homomorphisms form naturally a category. The definition of C0(X)-linearity also
applies to ∗-homomorphisms ϕ : A→M(B).

Let Ix ⊂ C0(X) be the kernel of evaluation at x ∈ X, consisting of all f ∈
C0(X) with f(x) = 0. The fiber of the C0(X)-algebra A at x is the C∗-algebra
Ax = A/[IxA]. The image of a ∈ A under the canonical quotient map A→ Ax will
be denoted by ax, and we have

‖a‖ = sup
x∈X
‖ax‖

for all a ∈ A. Moreover, the norm function Na : X → R, Na(x) = ‖ax‖ is upper
semicontinuous and vanishes at infinity. A C0(X)-algebra A is called a continuous
field of C∗-algebras, or simply continuous, if Na is continuous for all a ∈ A. The
trivial continuous field over X with fibre D is the C∗-algebra A = C0(X)⊗D with
the obvious C0(X)-algebra structure. Its fibers Ax identify canonically with D for
all x ∈ X.

Let A be a C0(X)-algebra. A continuous field of representations of A on a Hilbert
C0(X)-module E is a C0(X)-linear ∗-homomorphism ϕ : A→ L(E), with respect to
the canonical action C0(X)→ M(K(E)) = L(E) obtained from the C0(X)-module
structure on E . Such a continuous field induces representations ϕx : Ax → L(Ex) for
all x ∈ X, where Ex = E ⊗C0(X) C is obtained by the taking interior tensor product
with respect to evaluation at x ∈ X. A continuous field of faithful representations
is a continuous field of representations such that all maps ϕx are injective. If A
admits a continuous field of faithful representations on some Hilbert C0(X)-module
E then A is continuous, and the converse holds if A is separable, see Théorème 3.3
in [?].

If A is a C0(X)-algebra then a C∗-valued weight from A into Cb(X) = M(C0(X))
is given by a hereditary cone P ⊂ A+, closed under multiplication by elements from
the positive part C0(X)+ of C0(X), and a positive linear map ω from the linear span
M of P into M(C0(X)), such that ω(fa) = fω(a) for all a ∈M and f ∈ C0(X)+.
We will only consider regular C∗-valued weights in the sense of Kustermans, and
refer to [?] for more details.

Let A,B be C0(X)-algebras. We define the C0(X)-tensor product A⊗C0(X)B of
A and B as in Definition 1.6 of [?]. If A and B are continuous fields of C∗-algebras
and X is compact then this agrees with the minimal balanced tensor product as
defined by Blanchard in Definition 3.19 of [?]. The category of C0(X)-algebras
becomes a monoidal category with this tensor product, with monoidal unit given
by C0(X) with its obvious C0(X)-algebra structure.

Let us now define continuous fields of locally compact quantum groups, compare
section 8.2 in [?] and [?].



8 CHRISTIAN VOIGT

Definition 3.1. Let X be a second countable locally compact space. A continuous
field of locally compact quantum groups over X is a continuous field of C∗-algebras
Cr

0(G) over X together with a nondegenerate ∗-homomorphism ∆ : Cr
0(G) →

M(Cr
0(G)⊗C0(X) C

r
0(G)) of C0(X)-algebras such that

(∆⊗ id)∆ = (id⊗∆)∆,

the induced maps ∆x : Cr
0(G)x →M(Cr

0(G)x ⊗ Cr
0(G)x) are faithful for all x ∈ X

and

[(Cr
0(G)⊗ 1)∆(Cr

0(G))] = Cr
0(G)⊗C0(X) C

r
0(G) = [(1⊗ Cr

0(G))∆(Cr
0(G))],

together with C∗-valued KMS-weights φ and ψ from Cr
0(G) into M(C0(X)) which

induce faithful left and right invariant KMS-weights on all fibres, respectively.

We point out here that the fibers Cr
0(G)x together with the comultiplications

∆x : Cr
0(G)x → M(Cr

0(G)x ⊗ Cr
0(G)x) induced from ∆ are naturally Hopf C∗-

algebras. For the definition of C∗-values KMS-weights we refer to [?] and references
therein. The requirements on φ and ψ in Definition ?? ensure that the induced
weights φx, ψx on Cr

0(G)x are left and right invariant faithful KMS-weights in the
sense of [?] for all x ∈ X. In particular, the fibers Cr

0(G)x of a continuous field in
the sense of Definition ?? determine locally compact quantum groups, which we will
denote by Gx in the sequel. We will assume throughout that the underlying C∗-
algebras of our continuous fields of locally compact quantum groups are separable.

From the C∗-valued weight φ one obtains a Hilbert C0(X)-module L2(G) and
a continuous field of multiplicative unitaries W on L2(G)⊗C0(X) L

2(G), compare
Definition 4.6 in [?], such that Wx is the fundamental multiplicative unitary of
Gx for all x ∈ X. Moreover, the comultiplication ∆ can be written as ∆(f) =
W∗(1⊗ f)W as in the case of locally compact quantum groups. Let us say that a
continuous field of locally compact quantum groups is regular if the corresponding
continuous field of multiplicative unitaries W is regular, see section 4.2 in [?]. We
will only be interested in regular continuous fields in the sequel.

The dual of a continuous field of locally compact quantum groups G is obtained
from the right leg of W by setting

C∗r (G) = [(ω ⊗ id)(W) | ω ∈ L(L2(G))∗],

where L(L2(G))∗ is the continuous field of preduals as in Définition 4.2 of [?].

Together with the comultiplication ∆̂(x) = Ŵ∗(1 ⊗ x)Ŵ for Ŵ = ΣW∗Σ this
can be made again a continuous field of locally compact quantum groups. We will
write Ĝ for the resulting continuous field, so that we have Cr

0(Ĝ) = C∗r (G) with

comultiplication ∆̂, and we write Ǧ for the continuous field obtained by swapping
the comultiplication in Cr

0(Ĝ).
Let us now discuss the key example of a continuous field of locally compact

quantum groups that we will be interested in. We fix q = eh > 0 and consider a
simply connected semisimple Lie groupG with maximal compact subgroupK. With
the notations as in section ??, there are natural continuous fields of C∗-algebras
C(K) and C∗(K) over [0, 1] with fibers C(K)σ = C(Kqσ ) and C∗(K)σ = C∗(Kqσ ),
which assemble to a continuous field of C∗-algebras

C0(G) = C(K)⊗C[0,1] C
∗(K)

with fibers C0(G)σ = C0(Gqσ ), see [?], [?]. The fiberwise coproducts determine
a coproduct ∆G : C0(G) → M(C0(G) ⊗C[0,1] C0(G)) which turns C0(G) into a
regular continuous field of locally compact quantum groups over [0, 1].
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4. Equivariant Kasparov theory

In this section we develop the basics of equivariant KK-theory for continuous
fields of locally compact quantum groups. Throughout let X be a fixed second
countable locally compact space.

Let G be a continuous field of locally compact quantum groups over X, and let
A be a C0(X)-algebra. An action of G on A is an injective nondegenerate C0(X)-
linear ∗-homomorphism α : A → M(Cr

0(G) ⊗C0(X) A) such that (∆ ⊗ id)α =
(id⊗α)α and [(Cr

0(G) ⊗ 1)α(A)] = Cr
0(G) ⊗C0(X) A. We will also say that A is

a G-C∗-algebra in this case. A G-equivariant ∗-homomorphism between G-C∗-
algebras A,B with coactions α, β, respectively, is a C0(X)-linear ∗-homomorphism
ϕ : A → B such that βϕ = (id⊗ϕ)α. This notion of equivariance makes sense
also for ∗-homomorphisms ϕ : A → M(B). The trivial action of G is given by
C0(X), viewed as a C0(X)-algebra over itself, with the canonical map C0(X) →
M(Cr

0(G)⊗C0(X) C0(X)) ∼= M(Cr
0(G)) as coaction.

Let G be a continuous field of locally compact quantum groups and let β :
B → M(Cr

0(G) ⊗C0(X) B) be an action of G on the C∗-algebra B. An action of
G on a Hilbert B-module E is a nondegenerate C0(X)-linear morphism λ : E →
M(Cr

0(G)⊗C0(X) E) such that (∆⊗ id)λ = (id⊗λ)λ and

[(Cr
0(G)⊗ 1)λ(E)] = Cr

0(G)⊗C0(X) E = [λ(E)(Cr
0(G)⊗ 1)];

compare [?] for the notion of multiplier modules of Hilbert modules and their mor-
phisms. We will also say that E is a G-Hilbert B-module in this case. A G-Hilbert
space is a G-Hilbert module over the trivial G-C∗-algebra B = C0(X).

If E is a G-Hilbert B-module with coaction λ : E → M(Cr
0(G) ⊗C0(X) E) then

we obtain a unitary Vλ : E ⊗B (Cr
0(G) ⊗C0(X) B) → Cr

0(G) ⊗C0(X) E satisfying
Vλ(ξ ⊗ x) = λ(ξ)x for ξ ∈ E , x ∈ Cr

0(G) ⊗C0(X) B. Moreover K(E) becomes a
G-C∗-algebra with the adjoint action adλ : K(E) → M(Cr

0(G) ⊗C0(X) K(E)) ∼=
L(Cr

0(G)⊗C0(X) E) given by

adλ(T ) = Vλ(T ⊗ id)V ∗λ .

Let us next discuss crossed products and duality. If A is a G-C∗-algebra then
the reduced crossed product Gnr A is defined by

Gnr A = [(C∗r (G)⊗ 1)α(A)] ⊂ L(L2(G)⊗C0(X) A).

Note that the reduced crossed product is naturally a C0(X)-algebra. The dual
action α̌ : G nr A → M(Cr

0(Ǧ) ⊗C0(X) G nr A) on the reduced crossed product

is given by α̌(x) = V̌12(1 ⊗ x)V̌12, compare Theorem 4.2 in [?]. Here V̌ = ΣV̂Σ,

where V̂ is the continuous field of multiplicative unitaries constructed from W in
the same way as for locally compact quantum groups, see section ??.

Let KG = K(L2(G)) and consider KG⊗C0(X)A ∼= K(L2(G)⊗C0(X)A) as a G-C∗-
algebra with the conjugation action of the action λ(x⊗ a) = X∗12Σ12(id⊗α)(x⊗ a)
on L2(G)⊗C0(X) A, where X = ΣVΣ, compare [?]. As a special case of the results
in [?] we obtain the following version of Takesaki-Takai duality.

Theorem 4.1. Let G be a regular continuous field of locally compact quantum groups
and let A be a G-C∗-algebra. Then Ǧ nr G nr A is naturally G-equivariantly
isomorphic to KG ⊗C0(X) A.

We will now sketch the construction of equivariant KK-theory for continuous
fields in the sense of Definition ??, in analogy to the case of locally compact quantum
groups [?], [?]. Let G be a continuous field of locally compact quantum groups over
X. Moreover let A and B be separable G-C∗-algebras. A G-equivariant Kasparov
A-B-module is a countably generated graded G-equivariant Hilbert B-module E
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together with a G-equivariant ∗-homomorphism φ : A→ L(E) and an odd operator
F ∈ L(E) such that

[F, φ(a)], (F 2 − 1)φ(a), (F − F ∗)φ(a)

are contained in K(E) for all a ∈ A, and F is almost invariant in the sense that

(id⊗φ)(x)(1⊗ F − adλ(F )) ∈ Cr
0(G)⊗C0(X) K(E)

for all x ∈ Cr
0(G) ⊗C0(X) A. Here Cr

0(G) ⊗C0(X) K(E) = K(Cr
0(G) ⊗C0(X) E) is

viewed as a subset of L(Cr
0(G)⊗C0(X) E) and adλ is the adjoint action associated to

the given action λ : E → M(Cr
0(G) ⊗C0(X) E) on E . Two G-equivariant Kasparov

A-B-modules (E0, φ0, F0) and (E1, φ1, F1) are called unitarily equivalent if there is
a G-invariant unitary U ∈ L(E0, E1) of degree zero such that Uφ0(a) = φ1(a)U
for all a ∈ A and F1U = UF0. We write (E0, φ0, F0) ∼= (E1, φ1, F1) in this case.
Let EG(A,B) be the set of unitary equivalence classes of G-equivariant Kasparov
A-B-modules. This set is functorial for G-equivariant ∗-homomorphisms in both
variables. A homotopy between G-equivariant Kasparov A-B-modules (E0, φ0, F0)
and (E1, φ1, F1) is a G-equivariant Kasparov A-B[0, 1]-module (E , φ, F ) such that
(evt)∗(E , φ, F ) ∼= (Et, φt, Ft) for t = 0, 1. Here B[0, 1] = B ⊗ C[0, 1] is equipped
with the action induced from B and evt : B[0, 1]→ B is evaluation at t.

Definition 4.2. Let G be a continuous field of locally compact quantum groups and
let A and B be G-C∗-algebras. The G-equivariant Kasparov group KKG(A,B) is
the set of homotopy classes of G-equivariant Kasparov A-B-modules.

We note that KKG(A,B) becomes an abelian group with addition given by the
direct sum of Kasparov modules. Many properties of ordinary KK-theory and
equivariant KK-theory for locally compact quantum groups carry over to the G-
equivariant situation. This includes in particular the construction of the Kasparov
composition product and Bott periodicity [?], but we will not spell out the details.
As usual we write KKG

0 (A,B) = KKG(A,B) and let KKG
1 (A,B) be the odd

KK-group obtained by suspension in either variable. We note that in the case that
G is the trivial field of trivial (quantum) groups over X, Definition ?? reduces to
RKK(X;A,B) in the sense of Kasparov [?].

Using Theorem ?? one obtains the following version of the Baaj-Skandalis duality
theorem [?].

Theorem 4.3. Let G be a regular continuous field of locally compact quantum groups.
For all G-C∗-algebras A and B there is a canonical isomorphism

JG : KKG(A,B)→ KKǦ(Gnr A,Gnr B),

which is multiplicative with respect to the Kasparov product.

We note that under this isomorphism the class of a G-equivariant Kasparov A-
B-module (E , φ, F ) is mapped to the class of a Ǧ-equivariant Kasparov module
(JG(E), JG(φ), JG(F )) with an operator JG(F ) which is exactly invariant under

the coaction of Cr
0(Ĝ).

Let G be a regular continuous field of locally compact quantum groups and let E
and F be G-Hilbert B-modules which are isomorphic as Hilbert B-modules. Then
we have a G-equivariant isomorphism

L2(G)⊗C0(X) E ∼= L2(G)⊗C0(X) F
of G-Hilbert B-modules where L2(G) is viewed as a G-Hilbert space using the
left regular representation. Using the Kasparov stabilisation theorem we deduce
the equivariant stabilisation theorem, namely that there is a G-equivariant Hilbert
B-module isomorphism

(L2(G)⊗C0(X) E)⊕ (L2(G)⊗C0(X) (H⊗B)) ∼= L2(G)⊗C0(X) (H⊗B)
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for every countably generated G-Hilbert B-module E , where H is some fixed infinite
dimensional separable Hilbert space.

It follows from Baaj-Skandalis duality that KKG(A,B) can be represented by
homotopy classes of G-equivariant Kasparov (KG⊗C0(X)A)-(KG⊗C0(X)B)-modules
(E , φ, F ) with G-invariant operator F . Using the G-equivariant Morita equivalence
between KG ⊗C0(X) B and B we see that KKG(A,B) can be represented by ho-
motopy classes of equivariant Kasparov (KG ⊗C0(X) A)-B modules of the form

(L2(G) ⊗C0(X) E , φ, F ) with invariant F . Using equivariant stabilisation we can

furthermore assume that (L2(G)⊗C0(X) E)± = L2(G)⊗C0(X) (H⊗B) is the stan-
dard G-Hilbert B-module.

Our next aim is to establish the Cuntz picture of KKG for regular continuous
fields of locally compact quantum groups. This can be done in a similar way as in
[?], [?]. Let G be a continuous field of locally compact quantum groups and let A1

and A2 be G-C∗-algebras. In analogy to the construction of A1 ⊗C0(X) A2 in [?]
we define the C0(X)-free product A1 ∗C0(X) A2 as completion of the image of the
algebraic free product of A1 and A2 in all possible common C0(X)-representations
of A1, A2 on Hilbert modules over the bidual C0(X)∗∗. It is straightforward to check
that A1 ∗C0(X) A2 is a C0(X)-algebra such that the canonical ∗-homomorphisms
ιj : Aj → A1 ∗C0(X) A2 for j = 1, 2 are C0(X)-linear. Using the universal property
of A1 ∗C0(X) A2 we obtain a C0(X)-linear ∗-homomorphism α : A1 ∗C0(X) A2 →
M(Cr

0(G) ⊗C0(X) (A1 ∗C0(X) A2)). This map satisfies all properties of an action
except that it is not clear whether α is always injective. If necessary, this technicality
can be arranged by passing to the quotient of A1 ∗C0(X) A2 by the kernel of α. By
abuse of notation we will write again A1 ∗C0(X) A2 for the resulting G-C∗-algebra,
although this quotient may depend on G. The resulting G-C∗-algebra is universal
for pairs of G-equivariant ∗-homomorphisms f1 : A1 → C and f2 : A2 → C into
G-C∗-algebras C. That is, for any such pair of ∗-homomorphisms there exists a
unique G-equivariant ∗-homomorphism f : A1 ∗C0(X) A2 → C such that fιj = fj
for j = 1, 2.

Let A be an G-C∗-algebra and consider QA = A ∗C0(X) A. There is a canonical
extension

0 // qA // QA
π // A // 0

of G-C∗-algebras with G-equivariant splitting; here π is the homomorphism asso-
ciated to the pair f1 = idA = f2 and qA its kernel.

Writing [A,B]G for the set of equivariant homotopy classes of G-equivariant
∗-homomorphisms between G-C∗-algebras A and B and K for the compact opera-
tors on some separable Hilbert space, we arrive at the following description of the
equivariant KK-groups.

Theorem 4.4. Let G be a regular continuous field of locally compact quantum groups.
Then there is a natural isomorphism

KKG(A,B) ∼= [q(KG ⊗C0(X) A),KG ⊗C0(X) (K⊗B)]G

for all separable G-C∗-algebras A and B. If we write K(G) = KG⊗K we also have
a natural isomorphism

KKG(A,B) ∼= [K(G)⊗C0(X) q(K(G)⊗C0(X)A),K(G)⊗C0(X) q(K(G)⊗C0(X)B)]G

under which the Kasparov product corresponds to the composition of homomor-
phisms.

Consider the category G-Alg of all separable G-C∗-algebras and G-equivariant
∗-homomorphisms for a regular continuous field of locally compact quantum groups
G. A functor F from G-Alg to an additive category C is called a homotopy functor
if F (f0) = F (f1) whenever f0 and f1 are G-equivariantly homotopic. It is called
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stable if for all separable G-Hilbert spaces H1,H2 the maps F (K(Hj)⊗C0(X)A)→
F (K(H1 ⊕ H2) ⊗C0(X) A) induced by the canonical inclusions Hj → H1 ⊕ H2 for
j = 1, 2 are isomorphisms. As in the group case, a homotopy functor F is stable iff
there exists a natural isomorphism F (A) ∼= F (K(G) ⊗C0(X) A) for all A. Finally,
F is called split exact if for every extension

0 // K // E // Q // 0

of G-C∗-algebras that splits by a G-equivariant ∗-homomorphism σ : Q → E the
induced sequence 0→ F (K)→ F (E)→ F (Q)→ 0 in C is split exact.

Equivariant KK-theory can be viewed as an additive category KKG with sep-
arable G-C∗-algebras as objects and KKG(A,B) as the set of morphisms between
objects A and B. Composition of morphisms is given by the Kasparov product.
There is a canonical functor ι : G-Alg → KKG which is the identity on objects
and sends equivariant ∗-homomorphisms to the corresponding KK-elements. This
functor is a split exact stable homotopy functor. As a consequence of theorem ??
we obtain the following universal property of KKG, compare again [?].

Theorem 4.5. Let G be a regular continuous field of locally compact quantum groups.
The functor ι : G-Alg→ KKG is the universal split exact stable homotopy functor
on the category G-Alg. More precisely, if F : G-Alg → C is any split exact stable
homotopy functor with values in an additive category C then there exists a unique
functor f : KKG → C such that F = fι.

Let us also explain how KKG becomes a triangulated category, compare [?]. Let
ΣA denote the suspension C0(R)⊗A of a G-C∗-algebra A. Here C0(R) is equipped
with the trivial coaction. The corresponding functor Σ : KKG → KKG determines
the translation automorphism. If ϕ : A → B is a G-equivariant ∗-homomorphism
then the mapping cone

Cϕ = {(a, b) ∈ A× C0((0, 1], B)|b(1) = ϕ(a)}

is a G-C∗-algebra in a natural way, and there is a canonical diagram

ΣB // Cϕ // A
ϕ // B

of G-equivariant ∗-homomorphisms. Diagrams of this form are called mapping
cone triangles. By definition, an exact triangle is a diagram ΣQ→ K → E → Q in
KKG which is isomorphic to a mapping cone triangle.

The proof of the following result is carried out in the same way as for regular
locally compact quantum groups [?], [?].

Proposition 4.6. Let G be a regular continuous field of locally compact quantum
groups. Then the category KKG together with the translation functor and the exact
triangles described above is triangulated.

We will need a version of the Green-Julg theorem for continuous fields of compact
quantum groups. Here a continuous field of locally compact quantum groups G is
called compact if all fibers of Cr

0(G) are compact quantum groups. If A is a C0(X)-
algebra we write resEG(A) for the G-C∗-algebra A with the trivial action, given by
sending a ∈ A to 1⊗ a ∈M(Cr

0(G)⊗C0(X) A).

Theorem 4.7. Let G be a continuous field of compact quantum groups. Then there
is a natural isomorphism

KKG(resEG(A), B) ∼= RKK(X;A,Gnr B)

for all C0(X)-algebras A and all G-C∗-algebras B.
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The proof is carried out in the same way as for compact quantum groups, using
parametrised versions of the construction of the unit and counit of the adjunction.

If G is a continuous field of locally compact quantum groups over X, then a field
of open quantum subgroups is a continuous field of locally compact quantum groups
H over X together with a C0(X)-linear ∗-homomorphism π : Cr

0(G) → Cr
0(H)

compatible with the comultiplications, exhibiting all fibers Hx as open quantum
subgroups of Gx. The map π is induced from a central projection 1H ∈M(Cr

0(G))
and the C∗-valued invariant weights of Cr

0(H) are obtained by restriction from those
of Cr

0(G).
Assume that B is a G-C∗-algebra with coaction β : B → M(Cr

0(G)⊗C0(X) B).

Then the restriction resGH(B) is the H-C∗-algebra defined by (π ⊗ id)β : B →
M(Cr

0(H)⊗C0(X)B). Using Theorem ?? one checks that restriction lifts to a functor

resGH : KKG → KKH.
Conversely, following our discussion in section ??, let us sketch how to define

an induced G-C∗-algebra indG
H(A) for any H-C∗-algebra A with coaction α : A→

M(Cr
0(H)⊗C0(X)A), provided the continuous field of quantum groups G is regular

and H ⊂ G is open. In fact, with the obvious modifications, the construction
of the imprimitivity bimodule J = [(I ⊗ 1)α(A)] discussed in section ?? makes

sense in this setting, and allows us to define a G-C∗-algebra indG
H(A), such that J

defines a covariant Morita equivalence Gnr indG
H(A) ∼M HnrA of Ǧ-C∗-algebras.

Moreover, there is a projection p = 1H⊗ id ∈M(Gnr indG
H(A)) such that p exhibits

Hnr A as a full corner of Gnr indG
H(A). The construction of induced algebras lifts

to a functor indG
H : KKH → KKG on the level of KK-theory.

The following result is a generalisation of Proposition 6.2 in [?].

Theorem 4.8. Let G be a regular continuous field of locally compact quantum groups
and let H ⊂ G be a continuous family of open quantum subgroups of G. Then there
exists an isomorphism

KKG
∗ (indG

H(A), B) ∼= KKH
∗ (A, resGH(B)),

natural in A ∈ KKH, B ∈ KKG.

Proof. For A ∈ KKH there is a natural Ǧ-equivariant ∗-homomorphism HnrA→
Hnr resGH indG

H(A) coming from the embedding

[(C∗r (H)⊗ 1)α(A)] ∼= [(i⊗ id)(C∗r (H)⊗ 1)α(A)(i⊗ id)∗] ⊂ [JJ ∗],

where i : L2(H) → L2(G) is the canonical inclusion. By Baaj-Skandalis duality,

this homomorphism is of the form Hnr ηA for ηA : A→ resGH indG
H(A) in KKH.

Similarly, for B ∈ KKG we obtain a morphism Gnr indG
H resGH(B)→ GnrB in

KKǦ by composing the Morita equivalence Gnr indG
H resGH(B) ∼M Hnr resGH(B)

with the canonical inclusion Hnr resGH(B)→ Gnr B. This is of the form Gnr κB
for κB : indG

H resGH(B)→ B in KKG.
Let us check that these morphisms satisfy the required identities for an adjunc-

tion. The composition

Gnr indG
H(A)

Gnrind(ηA)// Gnr indG
H resGH indG

H(A)
Gnrκind(A)// Gnr indG

H(A)

in KKǦ can be identified with

Hnr A
HnrηA// Hnr resGH indG

H(A) // Gnr indG
H(A) ∼M Hnr A.

The map HnrA→ Gnr indG
H(A) in here is the canonical inclusion. It follows that

the composition κindA ◦ ind(ηA) is the identity.
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Similarly, the composition

Hnr resGH(B)
Hnrηres(B)// Hnr resGH indG

H resGH(B)
Hnrres(κB)// Hnr resGH(B)

in KKȞ corresponds to

Hnr resGH(B)
Hnrηres(B)// Hnr resGH indG

H resGH(B) // Gnr indG
H resGH(B)

in KKǦ, where the unlabeled arrow is the canonical inclusion. The vertical
comparison maps are given by the identity, and the covariant Morita equivalence
G nr indG

H resGH(B) ∼M H nr resGH(B), respectively. Since the latter composition

is the canonical embedding Hnr resGH(B) → Gnr indG
H resGH(B) we conclude that

res(κB) ◦ ηres(B) is the identity in KKH. �

5. The categorical Baum-Connes assembly map

In this section we define and study the categorical assembly map for complex
quantum groups in the framework of Meyer and Nest. Throughout we fix a positive
real number q 6= 1 and let G be the continuous field of locally compact quantum
groups over [0, 1] with fibers Gt = Gqt as described at the end of section ??.

From the construction of G one sees that the maximal compact quantum sub-
groups in each fiber define a continuous field of compact quantum groups K ⊂ G,
and in fact a continuous field of compact open quantum subgroups. In particular,
we have associated induction and restriction functors. Let us define full subcate-
gories CC, CI ⊂ KKG by

CC = {A ∈ KKG | resGK(A) ∼= 0 in KKK}

and

CI = {A ∈ KKG | A ∼= indG
K(B) for some B ∈ KKK}.

Then the category CC is localising, and we let 〈CI〉 ⊂ KKG be the localising
subcategory generated by CI.

Recall that a pair (L,N) of thick subcategories of a triangulated category T is
called complementary if T (L,N) = 0 for all L ∈ L and N ∈ N, and every object A
of T fits into an exact triangle L→ A→ N → L[1] with L ∈ L and N ∈ N.

Proposition 5.1. The pair of categories (〈CI〉, CC) is complementary in KKG.

Proof. Using the fact that K ⊂ G is open this is proved in the same way as Theorem
7.3 in [?]. More precisely, since indG

K is left adjoint to the restriction functor resGK
by Theorem ??, one finds that the ideal ker(resGK) in KKG has enough projective
objects, and that these projective objects are precisely the direct summands of
objects in CI. According to Theorem 3.31 and Theorem 3.21 in [?] this yields the
claim. �

Due to Proposition ?? each object A ∈ KKG fits into an exact triangle LA →
A → NA → LA[1], and complementarity ensures that this triangle is unique up to
isomorphism. This way one obtains a functor L : KKG → KKG which is given
by L(A) = LA on objects, together with a natural transformation L(A)→ A. The
resulting morphism will also be referred to as a CI-cellular approximation, or simply
cellular approximation, of A.

By definition, the assembly map for G with coefficients in A ∈ KKG is the
induced map

µA : K∗(Gnr L(A))→ K∗(Gnr A)

on the K-theory of the reduced crossed products.
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We are mainly interested in the assembly maps for the fiber quantum groups,
which are constructed in exactly the same way. More precisely, we obtain subcat-
egories CCqt , CIqt and 〈CIqt〉 in KKGt = KKGqt by replacing G and K in the
above constructions with the fiber quantum groups Gt = Gqt and Kt = Kqt , re-
spectively. The same proof as for Proposition ?? shows that the pair (〈CIqt〉, CCqt)
in KKGqt for t ∈ [0, 1] is complementary, and we obtain cellular approximation
functors Lqt : KKGqt → KKGqt .

Definition 5.2. Let Gq be a complex semisimple quantum group and let A be a Gq-
C∗-algebra. The categorical Baum-Connes assembly for Gq with coefficients in A
is the map

µAq : K∗(Gq nr Lq(A))→ K∗(Gq nr A)

induced from a cellular approximation Lq(A) of A in KKGq .

We shall now construct a cellular approximation Pq → C for the trivial action
of Gq starting from the Koszul complex of the representation ring R(Kq) = R(K).
For later use, it will in fact be convenient to consider this construction on the level
of the continuous field G.

As a first step let us give a concrete description of the homogeneous space
indG

K(C[0, 1]) = C0(G/K). We can identify

C0(G/K) = W∗(1⊗ C∗(K))W ⊂ C(K)⊗C[0,1] C
∗(K) = C0(G).

In other words, C0(G/K) is isomorphic to C∗(K) in such a way that the left
coaction of C∗(K) on C0(G/K) becomes the regular coaction. The left coaction
of C(K) on C0(G/K) is identified with the fibrewise conjugation action of K on
C∗(K), implemented by W ∈M(C(K)⊗C[0,1] C

∗(K)).

Lemma 5.3. We have

KKG(C0(G/K), C[0, 1]) ∼= R(K).

Proof. According to Theorem ?? we obtain isomorphisms

KKG
∗ (C0(G/K), C[0, 1]) ∼= KKK

∗ (C[0, 1], C[0, 1]) ∼= K∗(C
∗(K)) = R(K),

using that the field C∗(K) is constant. �
Recall that the representation ring R(K) = Z[$1, . . . , $N ] is a polynomial ring

generated by the classes of the fundamental representations V ($1), . . . , V ($N ) of
K. For each 1 ≤ j ≤ N we obtain a chain complex of free Z[$j ]-modules

C(j) : 0 Z[$j ] Z[$j ] 0
$j−dj

Here the differential is given by multiplication with$j−dj , where dj = dim(V ($j)).
We form the Koszul complex C by taking the tensor product of these complexes,
that is,

C = C(1) ⊗Z · · · ⊗Z C
(N),

compare section 4.5 in [?]. By construction, the Koszul complex is a complex of
free modules over R(K) = Z[$1, . . . , $N ]. Writing ei for the generator of the
module Z[$j ] in degree 1 of C(j), we may view the underlying module of C as
the exterior algebra of the free R(K)-module Ω = Ω1

Z(R(K)) with basis e1, . . . , eN .
More precisely, we get a R(K)-basis of the component Ck of C in degree k ≥ 1
given by the elements

ei1 ∧ · · · ∧ eik
for 1 ≤ i1 < · · · < ik ≤ N , such that the differential in C reads

∂(ei1 ∧ · · · ∧ eik) =

k∑
j=1

(−1)j−1($ij − dij )ei1 ∧ · · · ∧ eij−1 ∧ eij+1 ∧ · · · ∧ eik .
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Since the elements $j − dj form a regular sequence in Z[$1, . . . , $N ], the Koszul
complex can be augmented to an exact chain complex

0 ΛNΩ ΛN−1Ω · · · Λ1Ω Λ0Ω Z 0∂ ∂ ∂ ∂ ε

of R(K)-modules. Here ε : Λ0Ω = R(K)→ Z is the augmentation homomorphism
given by ε($j) = dj . Note that the resulting augmented chain complex is free as a
complex of Z-modules, so that we can find a Z-linear contracting homotopy for it.

We shall now lift this complex to the level of KKG. For 0 ≤ k ≤ N let rk =
(
N
k

)
be the rank of the R(K)-module ΛkΩ and consider the G-C∗-algebra

Pk =

rk⊕
j=1

C0(G/K),

which we shall view as a direct sum of copies of C0(G/K) indexed by the basis
vectors ei1 ∧ · · · ∧ eik from above. Then we may identify K0(Pk) = ΛkΩ, and we
claim that we can build the differential ∂ of the Koszul complex using morphisms
in KKG. To this end it is enough to implement the multiplication action of $j

on R(K) by an element of KKG(C0(G/K), C0(G/K)). The comultiplication ∆̂ :
C∗(K) → M(C∗(K) ⊗C[0,1] C

∗(K)), composed with the representation C∗(K) →
K(V ($j)) provides a representative of the desired class, using the G-equivariant
Morita equivalence between C∗(K)⊗K(V ($j)) and C∗(K) = C0(G/K).

The map ε : R(K)→ Z can be lifted to the class induced by

Gnr C0(G/K) ∼M C∗r (K)→ C∗r (G) ∼= Gnr C[0, 1]

under Baaj-Skandalis duality. Using Lemma ?? one checks that this yields a complex

0 PN PN−1 · · · P1 P0 C[0, 1] 0∂ ∂ ∂ ∂ ε

in KKG, which upon taking K-theory gives the augmented Koszul complex. Here,
by slight abuse of notation, we denote the boundary maps at the level of KKG by
the same symbols as their counterparts in the Koszul complex.

Lemma 5.4. The complex P defines a CI-projective resolution of the trivial G-C∗-
algebra C[0, 1] in KKG.

Proof. By construction the objects Pn are CI-projective. For exactness it suffices
to observe that the action of K on C0(G/K) is K-theoretically trivial, so that we
can write down a contracting homotopy at the level of KKK, by lifting a Z-linear
contracting homotopy of the augmented Koszul complex. �

From Lemma ?? we obtain a CI-cellular approximation of C[0, 1] using general
machinery from homological algebra in triangulated categories [?]. More precisely,
starting from P one constructs, in the terminology of [?], a phantom castle over
C[0, 1] in KKG. The corresponding cellular approximation tower yields an exact
triangle P → C[0, 1] → N → P[1] in KKG such that P ∈ 〈CI〉 and N ∈ CC.
The object P can be described as homotopy colimit of the cellular approximation
tower, and together with the morphism P → C[0, 1] in KKG from the triangle this
provides a CI-cellular approximation of C[0, 1].

The analogous constructions for the fiber quantum groups provide cellular ap-
proximations as well. More precisely, for every t ∈ [0, 1], the morphism Pqt → C
in KKGqt induced from P → C[0, 1] in KKG is a CIqt-cellular approximation of

C ∈ KKGqt .
We are mainly interested in the case t = 1 and the resulting assembly map for

Gq, but we shall first consider the case t = 0, corresponding to G1 = K ./ K̂.
For this purpose we need an equivariant version of Baaj-Skandalis duality for the
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group K. Let K nK be the compact group obtained as the semidirect product of
K acting on itself by conjugation.

Proposition 5.5. Taking reduced crossed products with respect to K and K̂, respec-
tively, induces equivalences of triangulated categories

JKK : KKKnK → KKK./K̂

JK
K̂

: KKK./K̂ → KKKnK

which are mutually inverse up to natural isomorphism.

Proof. Let A ∈ KKKnK and denote by α : A → C(K) ⊗ A the coaction corre-
sponding to the action of the second factor in the semidirect product. We equip the
crossed product K nr A = [(C∗(K)⊗ 1)α(A)] ⊂ L(L2(K)⊗ A) with the K-action
given by conjugation on C∗(K) ⊂ M(K nr A) and the action of the first factor
of K nK on A ⊂ M(K nr A). This is implemented by the tensor product of the
conjugation action of K on L2(K) and the action of the first factor of K nK on

A inside L2(K) ⊗ A. Together with the dual action of K̂ this yields a K ./ K̂-
C∗-algebra structure on K nr A = JKK (A), compare Proposition 3.2 in [?]. Using
the universal property of equivariant KK-theory, see Theorem ??, one verifies that

this construction extends to a triangulated functor JKK : KKKnK → KKK./K̂ as
stated.

If B ∈ KKK./K̂ and β : B →M(C∗(K)⊗B) denotes the coaction corresponding

to the action of K̂ ⊂ K ./ K̂, then K̂ nB = [(C(K)⊗ 1)β(B)] ⊂ L(L2(K)⊗B) is
naturally equipped with the dual action of K. We obtain an additional action of K
by conjugation with the tensor product action on the Hilbert module L2(K) ⊗ B
given by conjugation in the first factor and the given K-action on B in the second.
In the same way as above one checks that these actions combine to an action of
K n K on K̂ n B = JK

K̂
(B), and that this construction induces a triangulated

functor JK
K̂

: KKK./K̂ → KKKnK .

In order to show that the functors JKK and JK
K̂

are mutually inverse up to natural

isomorphism it suffices to inspect the proof of Takesaki-Takai duality, see [?] or
chapter 9 in [?], noting that the multiplicative unitary W ∈ L(L2(K)⊗L2(K)) for
the group K commutes with the diagonal action of K on L2(K)⊗ L2(K) induced
by conjugation in both factors. �

The group C∗-algebra C∗r (K ./ K̂) of G1 = K ./ K̂ can be identified with

C∗r (K ./ K̂) = [(C∗(K)⊗ 1)ad(C(K))] = K nad C(K),

the crossed product of C(K) with respect to the adjoint action of K. Explicitly,
the corresponding coaction ad : C(K) → C(K) ⊗ C(K) is given by ad(f)(s, t) =
f(sts−1). Note that ad(f) = U∗(1 ⊗ f)U where U ∈ L(L2(K) ⊗ L2(K)) is the
unitary operator given by

U(h⊗ k)(s, t) = h(s)k(s−1ts).

With this description at hand let us explain how to interpret reduced crossed prod-
ucts with respect to K ./ K̂ as iterated crossed products, first by K̂ and then by K.

More precisely, let A ∈ KKK./K̂ . Then the coaction γ : A→M(C0(K ./ K̂)⊗A)
corresponds to a pair of coactions α : A→ C(K)⊗A, λ : A→M(C∗(K)⊗A) such
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that γ(a) = (id⊗λ)α, see again Proposition 3.2 in [?]. We therefore obtain

(K ./ K̂) nr A = [(C∗(K ./ K̂)⊗ 1)γ(A)]

= [(C∗(K)⊗ 1⊗ 1)U∗12(1⊗ C(K)⊗ 1)U12(id⊗λ)α(A)]

= [(C∗(K)⊗ 1⊗ 1)U∗12(1⊗ C(K)⊗ 1)U12W
∗
12(σ ⊗ id)(id⊗α)λ(A)W12]

= [(C∗(K)⊗ 1⊗ 1)U∗12(1⊗ C(K)⊗ 1)(σ ⊗ id)(id⊗α)λ(A)U12]

∼= K nr,α̃ K̂ nr A,

where α̃ : K̂ nr A→ C(K)⊗ (K̂ nr A) is the action given by

α̃((f ⊗ 1)λ(a)) = U∗12(σ ⊗ id)(id⊗α)((f ⊗ 1)λ(a))U12

= (ad(f)⊗ 1)(id⊗λ)α(a).

With these preparations in place we are ready to study the assembly map for
the quantum group G1.

Theorem 5.6. The Drinfeld double G1 = K ./ K̂ of the classical group K satisfies
the strong Baum-Connes property, that is, we have KKG1 = 〈CI1〉.
Proof. For A ∈ KKK we denote by resKKnK(A) ∈ KKKnK the K nK-C∗-algebra
obtained by letting K nK act via the group homomorphism K nK → K given by
projection to the first factor. Using the fact that we may write crossed products
with respect to K ./ K̂ as iterated crossed products as explained above, we obtain
equivariant isomorphisms and Morita equivalences

(K ./ K̂) nr J
K
K (resKKnK(A)) ∼= (K ./ K̂) nr (C∗(K)⊗A)

∼= K nr (K(L2(K))⊗A)

∼M K nr A

∼M (K ./ K̂) nr indK./K̂K (A)

with respect to the action of the dual of K ./ K̂. This yields an isomorphism

JKK (resKKnK(A)) ∼= indK./K̂K (A)

in KKK./K̂ .
Taking into account Proposition ??, this observation shows that it is enough

to verify KKKnK = 〈resKKnK(A) | A ∈ KKK〉. This, in turn, is an immediate
consequence of the strong Baum-Connes-property for the dual of the compact Lie
group K n K, see [?]. In fact, it suffices to consider C∗-algebras A with trivial
K-action on the right hand side. �

Let us now formulate and prove our main result.

Theorem 5.7. The complex quantum group Gq satisfies the Baum-Connes conjec-
ture. That is, the assembly map

µq : K∗(Gq nr Pq)→ K∗(C
∗
r (Gq))

is an isomorphism.

Proof. The map µq fits into the commutative diagram

K∗(Gq nr Pq) K∗(C
∗
r (Gq))

K∗(Gnr P) K∗(C
∗
r (G))

K∗(G1 nr P1) K∗(C
∗
r (G1))

µq

µ

µ1
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obtained by specialising the assembly map for G to the fibers at the endpoints of
the interval [0, 1]. According to Theorem 6.2 and Theorem 6.5 in [?], the right
vertical maps in this diagram are both isomorphisms.

Consider next the left hand side of the diagram. Let F be the homological functor
from KKG to the category of abelian groups given by F (A) = K(GnrA). We may
compute Kn(Gnr P) using the ABC spectral sequence from [?] for the functor F .
The first page of this spectral sequence can be written as E1

mn = Fn(Pm), where
P is the projective resolution in KKG obtained further above in this section and
Fn(A) = Kn(G nr A). According to Proposition 4.10 and Proposition 3.28 in [?],
the ABC spectral sequence collapses after N + 1 steps and converges towards the
K-theory of Gnr P.

In the same way we obtain homological functors and their associated ABC spec-
tral sequences with respect to the fibers of the continuous field G. Since the con-
tinuous fields G nr Pm in the complex G nr P are Morita equivalent to constant
fields, evaluation at the endpoints of [0, 1] induces isomorphisms of the E1-terms of
these spectral sequences. It follows that the left vertical maps in the above diagram
are both isomorphisms.

The strong Baum-Connes property for G1 obtained in Theorem ?? implies that
the bottom horizontal map is an isomorphism as well. Combining these facts we
deduce that µ and µq are isomorphisms. �

From the proof of Theorem ?? it follows in particular that the assembly map
constructed using deformations in [?] is canonically isomorphic to the assembly
map µq obtained from the categorical setup discussed here.

Let us remark that braided tensor products allow one to describe the assembly
map for Gq with arbitrary coefficients using the cellular approximation Pq. More
precisely, Theorem 3.6 in [?] with G = Gq and H = Kq yields

C0(Gq/Kq) �Gq A = ind
Gq
Kq

(C) �Gq A ∼= ind
Gq
Kq

(C�Kq res
Gq
Kq

(A)) = ind
Gq
Kq

res
Gq
Kq

(A)

for all A ∈ KKGq . It follows that Pq�GqA is contained in 〈CIq〉, and the canonical
morphism Pq�GqA→ C�GqA ∼= A is a cellular approximation of A. In particular,

the Baum-Connes assembly map for Gq with coefficients in A ∈ KKGq is the
induced map K∗(Gq nr (Pq �Gq A)) → K∗(Gq nr A) in K-theory. According to
Theorem ??, this map is always an isomorphism for q = 1.
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[17] Lafforgue, V. K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-
Connes. Invent. Math. 149, 1 (2002), 1–95.
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