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Abstract. Motivated by the theory of Cuntz-Krieger algebras we define and

study C∗-algebras associated to directed quantum graphs. For classical graphs

the C∗-algebras obtained this way can be viewed as free analogues of Cuntz-
Krieger algebras, and need not be nuclear.

We study two particular classes of quantum graphs in detail, namely the

trivial and the complete quantum graphs. For the trivial quantum graph on a
single matrix block, we show that the associated quantum Cuntz-Krieger al-

gebra is neither unital, nuclear nor simple, and does not depend on the size of

the matrix block up to KK-equivalence. In the case of the complete quantum
graphs we use quantum symmetries to show that, in certain cases, the corre-

sponding quantum Cuntz-Krieger algebras are isomorphic to Cuntz algebras.

These isomorphisms, which seem far from obvious from the definitions, imply
in particular that these C∗-algebras are all pairwise non-isomorphic for com-

plete quantum graphs of different dimensions, even on the level of KK-theory.
We explain how the notion of unitary error basis from quantum information

theory can help to elucidate the situation.

We also discuss quantum symmetries of quantum Cuntz-Krieger algebras
in general.

1. Introduction

Cuntz-Krieger algebras were introduced in [12], generalizing the Cuntz algebras
in [9]. These algebras have intimate connections with symbolic dynamics, and
have been studied intensively in the framework of graph C∗-algebras over the past
decades, thus providing a rich supply of interesting examples [29]. The structure of
graph C∗-algebras is understood to an impressive level of detail, and many proper-
ties can be interpreted geometrically in terms of the underlying graphs. Motivated
by this success, the original constructions and results have been generalized in
several directions, including higher rank graphs [21], Exel-Laca algebras [17] and
ultragraph algebras [32], among others.

The aim of the present paper is to study a generalization of Cuntz-Krieger al-
gebras of a quite different flavor, based on the concept of a quantum graph. The
latter notion goes back to work of Erdos-Katavolos-Shulman [16] and Weaver [34],
and was subsequently developed further by Duan-Severini-Winter [14] and Musto-
Reutter-Verdon [27]. Quantum graphs play an intriguing role in the study of the
graph isomorphism game in quantum information via their connections with quan-
tum symmetries of graphs [7]. Moreover, based on the use of quantum symmetries,
fascinating results on the graph theoretic interpretation of quantum isomorphisms
between finite graphs were recently obtained by Mančinska-Roberson [24].

Our main idea is to replace the matrix A in the definition of the Cuntz-Krieger al-
gebra OA by the quantum adjacency matrix of a directed quantum graph. Roughly
speaking, this means that the standard generators in a Cuntz-Krieger algebra are
replaced by matrix-valued valued partial isometries, with matrix sizes determined
by the quantum graph, and the Cuntz-Krieger relations are expressed using the
quantum adjacency matrix of the quantum graph, in analogy to the scalar case.
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An important difference to the classical situation is that the matrix partial isome-
tries are not required to have mutually orthogonal ranges, as this condition does
not generalize to matrices in a natural way. Therefore, the quantum Cuntz-Krieger
algebra of a classical graph is typically not isomorphic to an ordinary Cuntz-Krieger
algebra, and will often neither be unital nor nuclear. However, we show that free
Cuntz-Krieger algebras, or equivalently, quantum Cuntz-Krieger algebras associ-
ated with classical graphs, are always KK-equivalent to Cuntz-Krieger algebras.

Our main results concern the quantum Cuntz-Krieger algebras associated with
two basic examples of quantum graphs, namely the trivial and complete quantum
graphs associated to an arbitrary measured finite-dimensional C∗-algebra (B,ψ).
The first example we consider in detail, namely the quantum Cuntz-Krieger algebra
of the trivial quantum graph TMN on the full matrix algebra MN (C), can be viewed
as a non-unital version of Brown’s universal algebra generated by the entries of a
unitary N ×N -matrix [8]. For N > 1, the quantum Cuntz-Krieger algebra of TMN

is neither unital, nuclear nor simple, but it is always KK-equivalent to C(S1).
We exhibit a description of matrices over this algebra in terms of a free product.
The second example, namely the quantum Cuntz-Krieger algebra associated to the
complete quantum graph K(B,ψ), is even more intriguing. We show that this
C∗-algebra always admits a canonical quotient map onto the Cuntz algebra On,
where n = dim(B). Moreover, for certain quantum complete graphs we are able
to show that this map is an isomorphism. This fact, which seems far from obvious
from the defining relations, is proved using monoidal equivalence of the quantum
automorphism groups of the underlying quantum graphs. In particular, our results
show that for N > 1 the quantum Cuntz-Krieger algebras of the complete quantum
graphs K(MN (C), tr) are unital, nuclear, simple, and pairwise non-isomorphic, even
on the level of KK-theory.

We also discuss how quantum symmetries of directed quantum graphs induce
quantum symmetries of their associated quantum Cuntz-Krieger algebras in general.
This is particularly interesting when one tries to relate quantum Cuntz-Krieger
algebras associated to graphs which are quantum isomorphic, as in our analysis
of the examples mentioned above. In particular, we indicate how the notion of a
unitary error basis [35], which is well-known in quantum information theory, can
be used to find finite-dimensional quantum isomorphisms, which in turn induce
crossed product relations between quantum Cuntz-Krieger algebras. In a sense, the
existence of quantum symmetries can be viewed as a substitute for the gauge action
which features prominently in the study of ordinary Cuntz-Krieger algebras. While
there exists a gauge action in the quantum case as well, it seems to be of limited
use for understanding the structure of quantum Cuntz-Krieger algebras in general.

Let us briefly explain how the paper is organized. In section 2 we collect some
background material on graphs and their associated C∗-algebras, and introduce
free graph C∗ algebras and free Cuntz-Krieger algebras. We show that these alge-
bras are KK-equivalent to ordinary graph C∗-algebras and Cuntz-Krieger algebras,
respectively. After reviewing some facts about finite quantum spaces, that is, mea-
sured finite-dimensional C∗-algebras, we define directed quantum graphs in section
3. We then introduce our main object of study, namely quantum Cuntz-Krieger
algebras. In section 4 we discuss some examples of quantum graphs and their asso-
ciated C∗-algebras. We show that the quantum Cuntz-Krieger algebras associated
with classical graphs lead precisely to free Cuntz-Krieger algebras, and look at sev-
eral concrete examples of quantum graphs. We also discuss two natural operations
on directed quantum graphs, obtained by taking direct sums and tensor products
of their underlying C∗-algebras, respectively. Section 5 is concerned with a general
procedure to assign quantum graphs to classical graphs, essentially by replacing all
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vertices with matrix blocks of a fixed size. We analyze the structure of the resulting
quantum Cuntz-Krieger algebras, and show that they are always KK-equivalent to
their classical counterparts. This allows one in particular to determine the K-
theory of the quantum Cuntz-Krieger algebra of the trivial quantum graph on a
matrix algebra mentioned above. In section 6 we explain how quantum symme-
tries of quantum graphs induce actions on quantum Cuntz-Krieger algebras. We
also discuss the canonical gauge action, in analogy to the classical situation. The
construction of quantum symmetries works in fact at the level of linking algebras
associated with arbitrary quantum isomorphisms of quantum graphs. This is used
together with the some unitary error basis constructions in section 7 to study the
structure of the quantum Cuntz-Krieger algebras of the trivial and complete quan-
tum graphs associated to a full matrix algebra equipped with its standard trace. In
the final section 8 we gather the required results from the preceding sections to fur-
nish a proof of our main theorem for quantum Cuntz-Krieger algebras of complete
quantum graphs.

Let us conclude with some remarks on notation. The closed linear span of a
subset X of a Banach space is denoted by [X]. If F is a finite set and A a C∗-
algebra we shall write MF (A) for the C∗-algebra of matrices indexed by elements
from F with entries in A. We write ⊗ both for algebraic tensor products and for the
minimal tensor product of C∗-algebras. For operators on multiple tensor products
we use the leg numbering notation.
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unitary error bases and their connections with quantum isomorphisms. MB and
KE were partially supported by NSF Grant DMS-2000331. CV and MW were
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2. Cuntz-Krieger algebras

In this section we review the definition of Cuntz-Krieger algebras and graph C∗-
algebras [12], [15], [22], [29], and introduce a free variant of these algebras. Our
conventions for graphs and graph C∗-algebras will follow [22].

2.1. Graphs. A directed graph E = (E0, E1) consists of a set E0 of vertices and
a set E1 of edges, together with source and range maps s, r : E1 → E0. A vertex
v ∈ E0 is called a sink iff s−1(v) is empty, and a source iff r−1(v) is empty. That
is, a sink is a vertex which emits no edges, and a source is a vertex which receives
no edges. A self-loop is an edge with s(e) = r(e). The graph E is called simple if
the map E1 → E0 × E0, e 7→ (s(e), r(e)) is injective.

The line graph LE of E is the directed graph with vertex set EL0 = E, edge set

EL1 = {(e, f) | r(e) = s(f)} ⊂ E × E,

and the source and range maps s, r : LE1 → LE0 given by projection to the first
and second coordinates, respectively. By construction, the line graph LE is simple.

The adjacency matrix of E = (E0, E1) is the E0 × E0-matrix

BE(v, w) = |{e ∈ E1 | s(e) = v, r(e) = w}|,
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and the edge matrix of E is the E1 × E1-matrix with entries

AE(e, f) =

{
1 r(e) = s(f)

0 else.

Note that the edge matrix AE of E equals the adjacency matrix BLE of LE.
We will only be interested in finite directed graphs in the sequel, that is, directed

graphs E = (E0, E1) such that both E0 and E1 are finite sets. This requirement
can be substantially relaxed [22].

2.2. Graph C∗-algebras and Cuntz-Krieger algebras. We recall the definition of the
graph C∗-algebra of a finite directed graph E = (E0, E1).

A Cuntz-Krieger E-family in a C∗-algebra D consists of mutually orthogonal
projections pv ∈ D for all v ∈ E0 together with partial isometries se ∈ D for all
e ∈ E1 such that

a) s∗ese = pr(e) for all edges e ∈ E1

b) pv =
∑
s(e)=v ses

∗
e whenever v ∈ E0 is not a sink.

The graph C∗-algebra of E can then be defined as follows.

Definition 2.1. Let E = (E0, E1) be a finite directed graph. The graph C∗-algebra
C∗(E) is the universal C∗-algebra generated by a Cuntz-Krieger E-family. We
write Pv and Se for the corresponding projections and partial isometries in C∗(E),
associated with v ∈ E0 and e ∈ E1, respectively.

That is, given any Cuntz-Krieger E-family in a C∗-algebra D, with projec-
tions pv for v ∈ E0 and partial isometries se for e ∈ E1, there exists a unique
∗-homomorphism φ : C∗(E)→ D such that φ(Pv) = pv and φ(Se) = se.

Next we recall the definition of Cuntz-Krieger algebras [12]. If A ∈ MN (Z) is a
matrix with entries A(i, j) ∈ {0, 1} then a Cuntz-Krieger A-family in a C∗-algebra
D consists of partial isometries s1, . . . , sN ∈ D with mutually orthogonal ranges
such that the Cuntz-Krieger relations

s∗i si =

N∑
j=1

A(i, j)sjs
∗
j

hold for all 1 ≤ i ≤ N .

Definition 2.2. Let A ∈ MN (Z) be a matrix with entries A(i, j) ∈ {0, 1}. The
Cuntz-Krieger algebra OA is the C∗-algebra generated by a universal Cuntz-Krieger
A-family, that is, it is the universal C∗-algebra generated by partial isometries
S1, . . . , SN with mutually orthogonal ranges, satisfying

S∗i Si =

N∑
j=1

A(i, j)SjS
∗
j

for all 1 ≤ i ≤ N .

In contrast to [12], we do not make any further assumptions on the matrix A in
Definition 2.2 in the sequel, except that it should have entries in {0, 1}. Accordingly,
the algebras OA may sometimes be rather degenerate or even trivial, as for instance
if A = 0. However, we have adopted this setting for the sake of consistency with
our definitions in the quantum case further below.

If E is a graph with no sinks and no sources then the graph C∗-algebra C∗(E)
can be canonically identified with the Cuntz-Krieger algebra associated with the
edge matrix AE of E. In particular, the projections in C∗(E) associated to vertices
of E need not be mentioned explicitly in this case.
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We note that the graph C∗-algebra of a graph E with no sinks and no sources
is completely determined by the line graph LE of E, keeping in mind that the
edge matrix AE equals the adjacency matrix BLE , see also [23]. Viewing C∗(E)
as being associated with the line graph of E motivates our generalizations further
below, where we will replace the matrix A in Definition 2.2 with the quantum
adjacency matrix of a directed quantum graph.

Remark 2.3. It is known that all graph C∗-algebras of finite directed graphs without
sinks are isomorphic to Cuntz-Krieger algebras [1].

2.3. Free graph C∗-algebras and free Cuntz-Krieger algebras. Borrowing terminol-
ogy from [5], we shall now consider “liberated” analogues of graph C∗-algebras and
Cuntz-Krieger algebras.

In the case of graphs, the input for this construction is a finite directed graph
E = (E0, E1) as above. By a free Cuntz-Krieger E-family in a C∗-algebra D we
shall mean a collection of projections pv ∈ D for all v ∈ E0 together with partial
isometries se ∈ D for all e ∈ E1 such that

a) s∗ese = pr(e) for all edges e ∈ E1

b) pv =
∑
s(e)=v ses

∗
e whenever v ∈ E0 is not a sink.

That is, the only difference to an ordinary Cuntz-Krieger E-family is that the
projections pv are no longer required to be mutually orthogonal.

Stipulating that the pv are mutually orthogonal is equivalent to saying that the
C∗-algebra generated by the projections pv is commutative. In the same way as
in the liberation of matrix groups [5], removing commutation relations of this type
leads to the following free version of the notion of a graph C∗-algebra.

Definition 2.4. Let E = (E0, E1) be a finite directed graph. The free graph C∗-
algebra FC∗(E) is the universal C∗-algebra generated by a free Cuntz-Krieger E-
family. We write Pv and Se for the corresponding projections and partial isometries
in FC∗(E), associated with v ∈ E0 and e ∈ E1, respectively.

Of course, a similar definition can be made in the Cuntz-Krieger case as well.
For the sake of definiteness, let us say that a free Cuntz-Krieger A-family in a
C∗-algebra D, associated with a matrix A ∈ MN (Z) with entries A(i, j) ∈ {0, 1},
consists of partial isometries s1, . . . , sN ∈ D such that the Cuntz-Krieger relations

s∗i si =

N∑
j=1

A(i, j)sjs
∗
j

hold for all 1 ≤ i ≤ N .

Definition 2.5. Let A ∈ MN (Z) be a matrix with entries A(i, j) ∈ {0, 1}. The
free Cuntz-Krieger algebra FOA is the universal C∗-algebra generated by partial
isometries S1, . . . , SN , satisfying the relations

S∗i Si =

N∑
j=1

A(i, j)SjS
∗
j

for all i.

We note that free graph C∗-algebras and free Cuntz-Krieger algebras always
exist, keeping in mind that the norms of all generators are uniformly bounded in
any representation of the universal ∗-algebra generated by a free Cuntz-Krieger
family. Let us also remark that the free graph C∗-algebra of a finite directed
graph E with no sinks and no sources agrees with the free Cuntz-Krieger algebra
associated with the edge matrix AE .
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For any finite directed graph E and any matrix A as above there are canon-
ical surjective ∗-homomorphisms π : FC∗(E) → C∗(E) and π : FOA → OA,
respectively, obtained directly from the universal property. These maps are not
isomorphisms in general.

For instance, if E is the graph with two vertices and no edges then C∗(E) = C⊕C,
whereas FC∗(E) = C∗C is the non-unital free product of two copies of C. However,
we note that if E is the graph with a single vertex and N self-loops then the
canonical projection induces an isomorphism FC∗(E) ∼= C∗(E), identifying the free
graph C∗-algebra with the Cuntz algebra ON .

Let us now elaborate on the relation between FC∗(E) and C∗(E) for an arbitrary
finite directed graph E, and similarly on the relation between FOA and OA.

Theorem 2.6. Let E be a finite directed graph. Then the canonical projection map
FC∗(E) → C∗(E) is a KK-equivalence. Similarly, if A ∈ MN (Z) is a matrix
with entries A(i, j) ∈ {0, 1} then the canonical projection FOA → OA is a KK-
equivalence.

Proof. The proof is analogous for graph algebras and Cuntz-Krieger algebras, there-
fore we shall restrict attention to the case of graph algebras.

Adapting a well-known argument from [11], we will show more generally that
C∗(E) and FC∗(E) cannot be distinguished by any homotopy invariant functor
on the category of C∗-algebras which is stable under tensoring with finite matrix
algebras.

Firstly, we claim that there exists a ∗-homomorphism φ : C∗(E)→ME0(FC∗(E))
satisfying

φ(Pv)xy = δx,vδy,vPv,

φ(Se)xy = δx,s(e)δy,r(e)Se

for v ∈ E0 and e ∈ E1. For this it suffices to show that the elements φ(Pv), φ(Se)
in ME0(FC∗(E)) given by the above formulas define a Cuntz-Krieger E-family.
Clearly, the elements Pv are mutually orthogonal projections, and the elements
φ(Se) are partial isometries such that

(φ(Se)
∗φ(Se))xy = δx,r(e)δy,r(e)S

∗
eSe = δx,r(e)δy,r(e)Pr(e) = φ(Pr(e))xy

and

φ(Pv)xy = δx,vδy,vPv = δx,vδy,v
∑

s(f)=v

SfS
∗
f

=
∑

s(f)=v

δx,s(f)δy,s(f)SfS
∗
f

=
∑

s(f)=v

∑
z∈E0

φ(Sf )xz(φ(Sf )yz)
∗

=
∑

s(f)=v

(φ(Sf )φ(Sf )∗)xy

if v ∈ E0 is not a sink, as required.
Recall that we write π : FC∗(E) → C∗(E) for the canonical projection. Fixing

a vertex w ∈ E0, we claim that ME0(π) ◦ φ is homotopic to the embedding ι of
C∗(E) into the corner of ME0(C∗(E)) corresponding to w. For this we consider
the ∗-homomorphisms µt : C∗(E)→ME0(C∗(E)) for t ∈ [0, 1] given by

µt(Pv) = uvt ι(Pv)(u
v
t )
∗, µt(Se) = u

s(e)
t ι(Se)(u

r(e)
t )∗,
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where uxt for x ∈ E0 with x 6= w is the rotation matrix

ut =

(
cos(2πt) sin(2πt)
− sin(2πt) cos(2πt)

)
placed in the block corresponding to the indices w and x, and uxt = id for x = w.
In a similar way as above one checks that µt preserves the relations for C∗(E).
Indeed, the elements µt(Pv) are mutually orthogonal projections since Pv, Pw for
v 6= w are orthogonal in C∗(E) and the unitaries uxt have scalar entries. Moreover,
for t ∈ [0, 1] the elements µt(Se) are partial isometries such that

µt(Se)
∗µt(Se) = u

r(e)
t ι(S∗eSe)(u

r(e)
t )∗ = u

r(e)
t ι(Pr(e))(u

r(e)
t )∗ = µt(Pr(e)),

and

µt(Pv) = uvt ι(Pv)(u
v
t )
∗ =

∑
s(f)=v

u
s(f)
t ι(SfS

∗
f )(u

s(f)
t )∗ =

∑
s(f)=v

µt(Sf )µt(Sf )∗

if v is not a sink. By construction we have µ0 = ι and µ1 = ME0(π) ◦ φ.
The composition φ◦π looks the same as ME0(π)◦φ on generators, and a similar

homotopy shows that φ◦π is homotopic to the embedding FC∗(E)→ME0(FC∗(E))
associated with a fixed vertex w. This finishes the proof. �

3. Quantum Cuntz-Krieger algebras

In this section we define our quantum analogue of Cuntz-Krieger algebras. Since
the input for this construction is the quantum adjacency matrix of a directed quan-
tum graph, we shall first review the concept of a quantum graph.

3.1. Quantum graphs. The notion of a quantum graph has been considered with
some variations by a number of authors, see [16], [34], [14], [27], [7]. We will follow
the approach in [27], [7], and adapt it to the setting of directed graphs.

Assume that B is a finite dimensional C∗-algebra B and let ψ : B → C be
a faithful state. We denote by L2(B) = L2(B,ψ) the Hilbert space obtained by
equipping B with the inner product 〈x, y〉 = ψ(x∗y). Moreover let us write m :
B ⊗B → B for the multiplication map of B and m∗ for its adjoint, noting that m
can be viewed as a linear operator L2(B)⊗ L2(B)→ L2(B).

If B = C(X) is the algebra of functions on a finite set X then states on B
correspond to probability measures on X. The most natural choice is to take for ψ
the state corresponding to the uniform measure in this case. For an arbitrary finite
dimensional C∗-algebra B we have the following well-known condition, singling out
certain natural choices among all possible states on B in a similar way [3].

Definition 3.1. Let B be a finite dimensional C∗-algebra and δ > 0. A faithful state
ψ : B → C is called a δ-form if mm∗ = δ2 id. By a finite quantum space (B,ψ) we
shall mean a finite dimensional C∗-algebra B together with a δ-form ψ : B → C.

If B is a finite dimensional C∗-algebra then we have B ∼=
⊕d

a=1MNa(C) for some
N1, . . . , Nd. A state ψ on B can be written uniquely in the form

ψ(x) =

d∑
a=1

Tr(Q(a)xi)

for x = (x1, . . . , xd), where the Q(a) ∈ MNa(C) are positive matrices satisfying∑d
a=1 Tr(Q(a)) = 1. Then ψ is a δ-form iff Q(a) is invertible and Tr(Q−1(a)) = δ2 for

all a. Here Tr denotes the natural trace, given by summing all diagonal terms of a
matrix.
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Note that we may assume without loss of generality that all matrices Q(a) in the
definition of ψ are diagonal. We shall say that (B,ψ) as above is in standard form
in this case.

Any finite dimensional C∗-algebraB admits a unique tracial δ-form for a uniquely
determined value of δ. Explicitly, this is the tracial state given by

tr(x) =
1

dim(B)

d∑
a=1

Na Tr(xi),

and we have δ2 = dim(B). Note that if B = C(X) is commutative then this
corresponds to the uniform measure on X, and δ2 is the cardinality of X.

For later purposes it will be useful to record an explicit formula for the adjoint
of the multiplication map in a finite quantum space.

Lemma 3.2. Let (B,ψ) be a finite quantum space in standard form as described
above, and consider the linear basis of B given by the adapted matrix units

f
(a)
ij = (Q

−1/2
(a) )iie

(a)
ij (Q

−1/2
(a) )jj ,

where e
(a)
ij in MNa(C) are the standard matrix units. Then we have (f

(a)
ij )∗ = f

(a)
ji

and
m∗(f

(a)
ij ) =

∑
k

f
(a)
ik ⊗ f

(a)
kj

for all a, i, j.

Proof. Since the matrices Q(a) are positive we clearly have (f
(a)
ij )∗ = f

(a)
ji . More-

over, observing
f (b)rs f

(c)
pq = δbc(Q

−1
(b))spf

(b)
rq

and ψ(f
(a)
kl ) = δkl, we compute

〈f (a)ij ,m(f (b)rs ⊗ f (c)pq )〉 = δbcψ(f
(a)
ji (Q−1(b))spf

(b)
rq ) = δabc(Q

−1
(a))sp(Q

−1
(a))irδjq

and ∑
k

〈f (a)ik ⊗ f
(a)
kj , f

(b)
rs ⊗ f (c)pq 〉 =

∑
k

ψ(f
(a)
ki f

(b)
rs )ψ(f

(a)
jk f

(c)
pq )

= δabδac
∑
k

(Q−1(a))ir(Q
−1
(a))kpψ(f

(a)
ks )ψ(f

(a)
jq )

= δabc(Q
−1
(a))ir(Q

−1
(a))spδjq.

This yields the claim. �

Let us now discuss the concept of a quantum graph. We shall be interested in
directed quantum graphs in the following sense.

Definition 3.3. Let B be a finite dimensional C∗-algebra and ψ : B → C a δ-form.
A linear operator A : L2(B)→ L2(B) is called a quantum adjacency matrix if

m(A⊗A)m∗ = δ2A.

A directed quantum graph G = (B,ψ,A) is a finite quantum space (B,ψ) together
with a quantum adjacency matrix.

In order to explain Definition 3.3 let us consider the case that B = C(X) is the
quantum space associated with a finite set X, with ψ being given by the uniform
measure. A linear operator A : L2(B) → L2(B) can be identified canonically with
a matrix in MX(C). Moreover, a straightforward calculation shows that

1

|X|
m(A⊗B)m∗
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is the Schur product of A,B ∈ MX(C), given by entrywise multiplication. Hence
A is a quantum adjacency matrix iff it is an idempotent with respect to the Schur
product in this case, which is equivalent to saying that A has entries in {0, 1}.

According to the above discussion, every simple finite directed classical graph
E = (E0, E1) gives rise to a directed quantum graph in a natural way. More pre-
cisely, if AE denotes the adjacency matrix of E then we obtain a directed quantum
graph structure on B = C(E0) by taking the state ψ which corresponds to count-
ing measure, and the operator A : L2(B) → L2(B) given by A(ei) =

∑
j A(i, j)ej .

Conversely, every directed quantum graph structure on a finite dimensional com-
mutative C∗-algebra B = C(X) arises from a simple finite directed graph on the
vertex set X.

For a general finite quantum space (B,ψ) it will be convenient for our consid-
erations further below to write down the quantum adjacency matrix condition in
terms of bases.

Lemma 3.4. Let (B,ψ) be a finite quantum space in standard form. Then a linear
operator A : L2(B)→ L2(B), given by

A(f
(a)
ij ) =

∑
brs

Arsbijaf
(b)
rs

in terms of the adapted matrix units, is a directed quantum adjacency matrix iff∑
ks

(Q−1(b))ssA
rsb
ikaA

snb
kja = δ2Arnbija

for all a, b, i, j, r, n.

Proof. Using Lemma 3.2 we calculate

m(A⊗A)m∗(f
(a)
ij ) =

∑
k

A(f
(a)
ik )A(f

(a)
kj )

=
∑
k

∑
brs

∑
cmn

Arsbikaf
(b)
rs A

mnc
kja f

(c)
mn

=
∑
k

∑
brsn

(Q−1(b))ssA
rsb
ikaA

snb
kjaf

(b)
rn ,

so that comparing coefficients yields the claim. �

We point out that there is a rich supply of directed quantum adjacency matrices
and quantum graphs. Let B be a finite dimensional C∗-algebra and let tr be the
unique tracial δ-form on B. Every element P ∈ B ⊗ Bop has a Choi-Jamio lkowski
form, that is, there exists a unique linear map A : B → B such that

P = PA =
1

dim(B)
(1⊗A)m∗(1),

where m∗ : B → B ⊗B is the adjoint of multiplication with respect to tr. Then A
is a quantum adjacency matrix with respect to (B, tr) iff P is idempotent, that is,
iff P 2 = P .

Moreover, idempotents in B⊗Bop can be naturally obtained as follows. Assume
that B ↪→ B(H) is unitally embedded into the algebra of bounded operators on
some finite dimensional Hilbert space H, and let B′ ⊂ B(H) be the commutant
of B. Then B ⊗ Bop identifies with the space of all completely bounded B′-B′-
bimodule maps from B(H) to itself. In particular, idempotents in B ⊗Bop are the
same thing as direct sum decompositions B(H) = S ⊕R of B′-B′-bimodules.

Taking B = MN (C) and the identity embedding into B(CN ) = MN (C) we
see that there is a bijective correspondence between quantum graph structures on
(MN (C), tr) and vector space direct sum decompositions MN (C) = S ⊕R.



10 MICHAEL BRANNAN, KARI EIFLER, CHRISTIAN VOIGT, AND MORITZ WEBER

Remark 3.5. One could work more generally with arbitrary faithful positive linear
functionals ψ instead of δ-forms, by modifying the defining relation of a quantum
adjacency matrix in Definition 3.3 to

m(A⊗A)m∗ = Amm∗.

We will however restrict ourselves to δ-forms in the sequel, as this will allow us to
remain closer to the classical theory in the commutative case.

Remark 3.6. The definition of a quantum graph in [27], [7] contains further condi-
tions on the quantum adjacency matrix. If B = C(X) is commutative then these
conditions correspond to requiring that the matrix A ∈ MX(C) is symmetric and
has entries 1 on the diagonal, respectively. That is, the quantum graphs considered
in these papers are undirected and have all self-loops. Neither of these conditions
is appropriate in connection with Cuntz-Krieger algebras.

3.2. Quantum Cuntz-Krieger algebras. Let us now define the quantum Cuntz-
Krieger algebra associated to a directed quantum graph. Comparing with the
definition of graph C∗-algebras, we note that the quantum graph used as an in-
put in our definition may be thought of as an analogue of the line graph of a
classical graph.

If G = (B,ψ,A) is a directed quantum graph then we shall say that a quantum
Cuntz-Krieger G-family in a C∗-algebra D is a linear map s : B → D such that

a) µD(id⊗µD)(s⊗ s∗ ⊗ s)(id⊗m∗)m∗ = s
b) µD(s∗ ⊗ s)m∗ = µD(s⊗ s∗)m∗A,

where µD : D ⊗ D → D is the multiplication map for D and s∗(b) = s(b∗)∗ for
b ∈ B. We also recall that m∗ denotes the adjoint of the multiplication map for B
with respect to the inner product given by ψ.

Definition 3.7. Let G = (B,ψ,A) be a directed quantum graph. The quantum
Cuntz-Krieger algebra FO(G) is the universal C∗-algebra generated by a quantum
Cuntz-Krieger G-family S : B → FO(G).

In other words, the quantum Cuntz-Krieger algebra FO(G) satisfies the following
universal property. If D is a C∗-algebra and s : B → D a quantum Cuntz-Krieger
G-family, then there exists a unique ∗-homomorphism ϕ : FO(G) → D such that
ϕ(S(b)) = s(b) for all b ∈ B.

Remark 3.8. We note that Definition 3.7 makes sense for a finite dimensional C∗-
algebraB together with a faithful positive linear functional ψ and an arbitrary linear
map A : L2(B)→ L2(B). At this level of generality one can shift information from
ψ into the matrix A and vice versa, without changing the resulting C∗-algebra. Our
definition will allow us to remain closer to the standard setup for Cuntz-Krieger
algebras.

It is not difficult to check that the quantum Cuntz-Krieger algebra FO(G) always
exists. This is done most easily by rewriting Definition 3.7 in terms of a linear
basis for the algebra B. In the sequel we shall say that a directed quantum graph
G = (B,ψ,A) is in standard form if its underlying finite quantum space is, compare
paragraph 3.1.

Proposition 3.9. Let G = (B,ψ,A) be a directed quantum graph in standard form,
and let

A(f
(a)
ij ) =

∑
brs

Arsbijaf
(b)
rs

be the quantum adjacency matrix written in terms of the adapted matrix units as
discussed further above. Then the quantum Cuntz-Krieger algebra FO(G) identifies
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with the universal C∗-algebra FOA with generators S
(a)
ij for 1 ≤ a ≤ d and 1 ≤

i, j ≤ Na, satisfying the relations∑
rs

S
(a)
ir (S(a)

sr )∗S
(a)
sj = S

(a)
ij∑

l

(S
(a)
li )∗S

(a)
lj =

∑
brs

Arsbija
∑
l

S
(b)
rl (S

(b)
sl )∗

for all a, i, j.

Proof. Let us first consider the elements S
(a)
ij = S(f

(a)
ij ) in FO(G). If µ denotes the

multiplication map for FO(G), then according to Lemma 3.2 we get∑
rs

S
(a)
ir (S(a)

sr )∗S
(a)
sj =

∑
rs

S(f
(a)
ir )S∗(f (a)rs )S(f

(a)
sj )

=
∑
rs

µ(id⊗µ)(S ⊗ S∗ ⊗ S)(f
(a)
ir ⊗ f

(a)
rs ⊗ f

(a)
sj )

= µ(id⊗µ)(S ⊗ S∗ ⊗ S)(id⊗m∗)m∗(f (a)ij )

= S(f
(a)
ij ) = S

(a)
ij ,

and similarly ∑
r

(S
(a)
ri )∗S

(a)
rj =

∑
r

µ(S∗ ⊗ S)(f
(a)
ir ⊗ f

(a)
rj )

= µ(S∗ ⊗ S)m∗(f
(a)
ij )

= µ(S ⊗ S∗)m∗A(f
(a)
ij )

=
∑
brs

Arsbijaµ(S ⊗ S∗)m∗(f (b)rs )

=
∑
brsl

Arsbijaµ(S ⊗ S∗)(f (b)rl ⊗ f
(b)
ls )

=
∑
brsl

ArsbijaS
(b)
rl (S

(b)
sl )∗.

Hence, by the definition of FOA, there exists a unique ∗-homomorphism φ : FOA →
FO(G) such that φ(S

(a)
ij ) = S(f

(a)
ij ) for all a, i, j.

Conversely, let us define a linear map s : B → FOA by s(f
(a)
ij ) = S

(a)
ij . Essentially

the same computation as above shows that s defines a quantum Cuntz-Krieger G-
family in FOA, so that there exists a unique ∗-homomorphism ψ : FO(G) → FOA
satisfying ψ(S(b)) = s(b) for all b ∈ B.

It is straightforward to check that the maps φ and ψ are mutually inverse iso-
morphisms. �

Using matrix notation we can rephrase the relations from Proposition 3.9 in a
very concise way. More precisely, writing S(a) ∈ MNa(FO(G)) for the matrix with

entries S
(a)
ij = S(f

(a)
ij ) and Â for the d × d-matrix with coefficients Âba = Arsbija we

obtain

S(a)(S(a))∗S(a) = S(a)

(S(a))∗S(a) =
∑
b

ÂbaS
(b)(S(b))∗

for all 1 ≤ a ≤ d. The first formula says that the elements S(a) ∈MNa(FO(G)) are
partial isometries. This means in particular that their entries are bounded in norm
by 1, which implies in turn that the universal C∗-algebras FOA and FO(G) always
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exist. The second formula can be viewed as a matrix-valued version of the classical
Cuntz-Krieger relation.

Remark 3.10. From Proposition 3.9 and the above remarks it may appear at first
sight that FO(G) ∼= FOA does not depend on the δ-form ψ in G = (B,ψ,A).
However, recall from Lemma 3.4 that the choice of ψ is reflected in the defining
relations for the coefficients Arsbija of the quantum adjacency matrix.

Remark 3.11. As will be discussed in more detail at the start of the next section,
the notation FOA used in Proposition 3.9 is compatible with our notation for free
Cuntz-Krieger algebras introduced in Definition 2.5.

4. Examples

In this section we take a look at some examples of quantum graphs and their
associated quantum Cuntz-Krieger algebras in the sense of Definition 3.7.

4.1. Classical graphs. Assume that E = (E0, E1) is a finite simple directed graph
with N vertices. The directed quantum graph G associated with E has B =
C(E0) = CN as underlying C∗-algebra. We work with the canonical basis e1, . . . , eN
of minimal projections in B and the normalized standard trace tr : B → C. That
is, tr(ei) = 1/N for all i, and we have m(ei ⊗ ej) = δijei and m∗(ei) = Nei ⊗ ei. If
BE denotes the adjacency matrix of E then

A(ei) =

N∑
j=1

BE(i, j)ej

determines a quantum adjacency matrix A : L2(B)→ L2(B).

Proposition 4.1. Let E be a finite simple directed graph and let G = (B,ψ,A) be the
quantum graph corresponding to E as above. Then the free Cuntz-Krieger algebra
associated with the adjacency matrix BE of E is canonically isomorphic to the
quantum Cuntz-Krieger algebra FO(G).

Proof. This can be viewed as a special case of Proposition 3.9, but let us write
down the key formulas explicitly. Note that tr is a δ-form with δ2 = N and consider
Si = NS(ei) ∈ FO(G). Then the defining relations for a free Cuntz-Krieger BE-
family are obtained from

SiS
∗
i Si = N3µ(id⊗µ)(S(ei)⊗ S∗(ei)⊗ S(ei))

= Nµ(id⊗µ)(S ⊗ S∗ ⊗ S)(id⊗m∗)m∗(ei)
= NS(ei) = Si

and

S∗i Si = N2µ(S∗ ⊗ S)(ei ⊗ ei)
= Nµ(S∗ ⊗ S)m∗(ei)

= Nµ(S ⊗ S∗)m∗(A(ei))

= N2
N∑
j=1

BE(i, j)µ(S ⊗ S∗)(ej ⊗ ej)

=

N∑
j=1

BE(i, j)SjS
∗
j
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for all i. This yields a ∗-homomorphism FOBE → FO(G). Similarly, one checks
that the linear map s : B → FOBE given by s(ei) = 1

N Si is a quantum Cuntz-
Krieger G-family, which induces a ∗-homomorphism FO(G)→ FOBE . These maps
are mutually inverse isomorphisms. �

It follows from the remarks after Definition 3.3 that every quantum Cuntz-
Krieger algebra FO(G) over a directed quantum graph G = (B,ψ,A) with B abelian
is a free Cuntz-Krieger algebra associated to some 0, 1-matrix, and conversely, all
free Cuntz-Krieger algebras arise in this way.

Let us also point out that already quantum Cuntz-Krieger algebras associated
with classical graphs as in Proposition 4.1 may fail to be unital. This is of course
in contrast to the situation for ordinary Cuntz-Krieger algebras.

4.2. Complete quantum graphs and quantum Cuntz algebras. Let us next consider
an arbitrary finite quantum space (B,ψ) in standard form, using the same notation
as after Definition 3.1. Following [7], we can form the complete quantum graph on
(B,ψ), which is the directed quantum graph K(B,ψ) = (B,ψ,A) with quantum
adjacency matrix A : L2(B) −→ L2(B) given by A(b) = δ2ψ(b)1. In terms of the

adapted matrix units f
(a)
ij ∈ B defined in Lemma 3.2 we get

A(f
(a)
ij ) = δijδ

21 =
∑
b

∑
k

δijδ
2(Q(a))kkf

(b)
kk .

Therefore, relative to this basis, we have the matrix representation A = (Aklbija),
where

Aklbija = δijδklδ
2(Q(b))kk.

It follows from Proposition 3.9 and the preceding discussion that the quantum
Cuntz-Krieger algebra FO(K(B,ψ)) is the universal C∗-algebra with generators

S
(a)
ij for 1 ≤ a ≤ d, 1 ≤ i, j ≤ Na and relations∑

rs

S
(a)
ir (S(a)

sr )∗S
(a)
sj = S

(a)
ij ,∑

r

(S
(a)
ri )∗S

(a)
rj = δijδ

2
∑
b

∑
kl

(Q(b))kkS
(b)
kl (S

(b)
kl )∗

for all a, i, j.

Example 4.2. Let us consider explicitly the special case of the complete quan-
tum graph K(MN (C), tr) on a full matrix algebra B = MN (C). The C∗-algebra
FO(K(MN (C), tr)) has generators Sij for 1 ≤ i, j ≤ N satisfying the relations∑

kl

SikS
∗
lkSlj = Sij∑

r

S∗riSrj = δijN
∑
rs

SrsS
∗
rs

for all i, j.

Note that when B = Cd is abelian, Proposition 4.1 implies that FO(K(Cd, tr))
is nothing other than the free Cuntz-Krieger algebra associated to the complete
graph Kd, or equivalently, the free graph C∗-algebra associated to the graph with a
single vertex and d self-loops. Thus FO(K(Cd, tr)) identifies with the Cuntz algebra
Od, compare the remarks after Definition 2.5. With this in mind, we may call any
quantum Cuntz-Krieger algebra of the form FO(K(B,ψ)) a quantum Cuntz algebra.

The algebras obtained in this way are in fact rather closely related to Cuntz
algebras, as we discuss next.
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Lemma 4.3. Let FO(K(B,ψ)) be as above and write n = dim(B). Then there exists
a surjective ∗-homomorphism φ : FO(K(B,ψ))→ On such that

φ(S
(a)
ij ) =

1

(Q(a))
1/2
ii δ

s
(a)
ij

for all a, i, j, where s
(a)
ij are standard generators of the Cuntz algebra On.

Proof. We just have to check that the elements φ(S
(a)
ij ) satisfies the defining rela-

tions of FO(K(B,ψ)) from above. Indeed, we obtain∑
rs

φ(S
(a)
ir )φ(S(a)

sr )∗φ(S
(a)
sj ) =

∑
rs

1

(Q(a))
1/2
ii (Q(a))ssδ3

s
(a)
ir (s(a)sr )∗s

(a)
sj

=
∑
s

1

(Q(a))
1/2
ii (Q(a))ssδ3

s
(a)
ij

=
1

(Q(a))
1/2
ii δ

s
(a)
ij

= φ(S
(a)
ij ),

and similarly ∑
r

φ(S
(a)
ri )∗φ(S

(a)
rj ) =

∑
r

1

(Q(a))rrδ2
(s

(a)
ri )∗s

(a)
rj

= δij

= δij
∑
bkl

s
(b)
kl (s

(b)
kl )∗

= δijδ
2
∑
bkl

(Q(b))kkφ(S
(b)
kl )φ(S

(b)
kl )∗

as required. �

Remark 4.4. Lemma 4.3 implies in particular that the canonical linear map S :
B → FO(K(B,ψ)) is injective. This is not always the case for general quantum
Cuntz-Krieger algebras. An explicit example will be given in Example 4.9 further
below.

Our main structure result regarding the quantum Cuntz algebras FO(K(B,ψ))
can be stated as follows.

Theorem 4.5. Let B be an n-dimensional C∗-algebra and let ψ : B → C be a δ-form
satisfying δ2 ∈ N. Then FO(K(B,ψ)) ∼= On.

We will prove Theorem 4.5 using methods from the theory of quantum groups
in section 8. Under the hypothesis δ2 ∈ N, Theorem 4.5 implies that the ∗-
homomorphism φ : FO(K(B,ψ)) → On constructed in Lemma 4.3 is an isomor-
phism.

It seems remarkable that the relations defining FO(K(B,ψ)) do indeed charac-
terize the Cuntz algebra On, at least when we restrict to δ-forms satisfying the
above integrality condition. Already in the special case (B,ψ) = (MN (C), tr) from
Example 4.2 it seems not even obvious that FO(K(B,ψ)) is unital. In fact, an
easy argument shows that the element e = N2

∑
kl Skl(Skl)

∗ ∈ FO(K(MN (C), tr))
satisfies Sije = Sij for all 1 ≤ i, j ≤ N . In section 8 we will verify in particular the
less evident relation eSij = Sij for all i, j.

We note at the same time that FO(K(MN (C), tr)) is very different from the
universal C∗-algebra generated by the coefficients of a N × N -matrix S = (Sij)
satisfying S∗S = id, as the latter algebra admits many characters.
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4.3. Trivial quantum graphs. If (B,ψ) is a finite quantum space as above, then
the trivial quantum graph T (B,ψ) on (B,ψ) is given by the quantum adjacency
matrix A = id, so that we have the matrix representation Aklbija = δabδikδjl. Using
Proposition 3.9 we see that the quantum Cuntz-Krieger algebra FO(T (B,ψ)) is

the universal C∗-algebra with generators S
(a)
ij for 1 ≤ a ≤ d, 1 ≤ i, j ≤ Na, and

relations ∑
kl

S
(a)
ik (S

(a)
lk )∗S

(a)
lj = S

(a)
ij∑

k

(S
(a)
ki )∗S

(a)
kj =

∑
k

S
(a)
ik (S

(a)
jk )∗

for all a, i, j. We note that FO(T (B,ψ)) is independent of the δ-form ψ on B, and
we will therefore also write FO(TB) instead of FO(T (B,ψ)) in the sequel.

Example 4.6. Let us consider explicitly the special case of the trivial quantum graph
TMN = TMN (C) on a full matrix algebra B = MN (C). The C∗-algebra FO(TMN )
has generators Sij for 1 ≤ i, j ≤ N satisfying the relations∑

kl

SikS
∗
lkSlj = Sij∑

k

S∗kiSkj =
∑
k

SikS
∗
jk

for all i, j.
It is easy to check that FO(TMN ) maps onto Brown’s algebra [8], that is, the

universal C∗-algebra UncN generated by the entries of a unitary N ×N -matrix u =
(uij), by sending Sij to uij . This shows in particular that FO(TMN ) for N > 1 is
not nuclear. We may also map FO(TMN ) onto the non-unital free product C∗· · ·∗C
of N copies of C, by sending Sij to δij1i, where 1i denotes the unit element in the
i-th copy of C. It follows that FO(TMN ) is not unital for N > 1.

In our study of amplifications in section 5 we will obtain the following result on
the structure of FO(TMN ) as a special case of Theorem 5.3.

Theorem 4.7. Let TMN be the trivial quantum graph as above. Then there exists a
∗-isomorphism

MN (FO(TMN )+) ∼= MN (C) ∗1 (C(S1)⊕ C),

and the quantum Cuntz-Krieger algebra FO(TMN ) is KK-equivalent to C(S1) for
all N ∈ N. In particular

K0(FO(TMN )) = Z,
K1(FO(TMN )) = Z.

Here ∗1 denotes the unital free product and FO(TMN )+ is the minimal unita-
rization of FO(TMN ).

With little extra effort one can also determine generators for the K-groups in
Theorem 4.7. More precisely, if we write S = (Sij) for the matrix of generators of
FO(TMN ), then these are represented by the projection S∗S ∈ MN (FO(TMN ))
and the unitary S − (1− S∗S) ∈MN (FO(TMN )+), respectively.

Remark 4.8. Combining Theorem 4.7 and Proposition 4.10 below one can determine

the K-theory of FO(TB) for general B. More precisely, if B ∼=
⊕d

a=1MNa(C) then
we obtain

K0(FO(TB)) = Zd,

K1(FO(TB)) = Zd,
taking into account [11].
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4.4. Diagonal quantum graphs. A natural generalization of the trivial quantum
graphs described in the previous paragraph are the diagonal quantum graphs. Here,
we take (B,ψ) again to be an arbitrary finite quantum space in standard form, but
replace the trivial quantum adjacency matrix A = id with a map of the form

A(f
(a)
ij ) = x

(a)
ij f

(a)
ij

for some suitable complex numbers x
(a)
ij ∈ C for 1 ≤ a ≤ d, 1 ≤ i, j ≤ Na. Note

that if B is abelian then the associated adjacency matrix is a diagonal matrix with
entries in {0, 1}. That is, the only edges possible are self-loops, and we recover
precisely the classical notion of a diagonal graph.

In the non-commutative setting the notion of a diagonal graph is somewhat
richer. Namely, Lemma 3.4 shows that the only requirements on the coefficients

x
(a)
ij are ∑

s

(Q−1(b))ssx
(b)
ks x

(b)
sl = δ2x

(b)
kl

for all 1 ≤ b ≤ d, 1 ≤ k, l ≤ Nb.

Example 4.9. Let B = MN (C) be equipped with the δ-form ψ corresponding to the
diagonal matrix Q with entries q1, . . . , qN satisfying q1 + · · · + qN = 1. Moreover
let A be the diagonal quantum adjacency matrix with coefficients Aijkl = xijδikδjl
for some scalars xij satisfying

∑
s q
−1
s xksxsl = δ2xkl. The quantum Cuntz-Krieger

algebra FO(G) associated with the diagonal quantum graph G = (B,ψ,A) has
generators Sij for 1 ≤ i, j ≤ N satisfying the relations∑

kl

SikS
∗
lkSlj = Sij∑

k

S∗kiSkj =
∑
k

xijSikS
∗
jk

for all i, j.
Consider the special case x11 = q1δ

2 and xij = 0 else. From the second relation
above we get

∑
i S
∗
ijSij = 0 for j > 1, and hence Sij = 0 for all 1 ≤ i ≤ N and

j > 1. This shows that the canonical linear map S : B → FO(G) in the definition
of a quantum Cuntz-Krieger algebra need not be injective.

One may interpret this as a reflection of the fact that we work with rather general
quantum adjacency matrices. It would be interesting to identify a suitable condition
on directed quantum graphs G which ensures that the map S : B → FO(G) is
injective.

Note also that we have
∑
l Si1S

∗
l1Sl1 = Si1 and

∑
k S
∗
k1Sk1 = x11S11S

∗
11 in the

above special case. Hence for all complex numbers ε1, . . . , εN satisfying |ε1|2 + · · ·+
|εN |2 = 1 and x11|ε1|2 = 1 there exists a ∗-homomorphism ε : FO(G)→ C satisfying

ε(Sij) =

{
εi j = 1

0 j > 1.

It follows in particular that the C∗-algebra FO(G) admits a trace.

4.5. Direct sums and tensor products of quantum graphs. Assume that G1 =
(B1, ψ1, A1) and G2 = (B2, ψ2, A2) are directed quantum graphs. We obtain a
finite quantum space structure on the direct sum B1 ⊕B2 by considering the state

ψ =
δ21
δ2
ψ1 ⊕

δ22
δ2
ψ2,

with δ2 = δ21 +δ22 . It is easy to check that A = A1⊕A2 defines a quantum adjacency
matrix on (B1 ⊕ B2, ψ), so that G1 ⊕ G2 = (B1 ⊕ B2, ψ,A) is a directed quantum
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graph. Classically, this construction corresponds to taking the disjoint union of
graphs.

Proposition 4.10. Let G1 = (B1, ψ1, A1) and G2 = (B2, ψ2, A2) be directed quantum
graphs. Then

FO(G1 ⊕ G2) ∼= FO(G1) ∗ FO(G2)

is the non-unital free product of FO(G1) and FO(G2).

Proof. This follows directly from the universal properties of the algebras involved,
noting that the quantum adjacency matrix A1 ⊕ A2 does not mix generators from
B1 and B2. �

We can also form tensor products in a natural way. If G1 = (B1, ψ1, A1) and
G2 = (B2, ψ2, A2) are directed quantum graphs then ψ = ψ1⊗ψ2 is a δ-form on the
tensor product B1 ⊗ B2 with δ = δ1δ2. Moreover A = A1 ⊗ A2 defines a quantum
adjacency matrix on (B1 ⊗ B2, ψ). We let G1 ⊗ G2 be the corresponding directed
quantum graph.

Compared to the case of direct sums, it seems less obvious how to describe the
structure of FO(G1 ⊗ G2) in terms of FO(G1) and FO(G2) in general. We shall
discuss a special case in the next section.

5. Amplification

In this section we study examples of quantum Cuntz-Krieger algebras obtained
from classical graphs by replacing the vertices with matrix blocks. This amplifi-
cation procedure is a special case of the tensor product construction for quantum
graphs described in paragraph 4.5.

Given a directed quantum graph G = (B,ψ,A) and N ∈ N we define the ampli-
fication MN (G) of G to be the tensor product MN (G) = G ⊗ TMN , where TMN

is the trivial quantum graph on MN (C) as defined in paragraph 4.3. Explicitly,
MN (G) is the directed quantum graph with underlying C∗-algebra B ⊗MN (C),
state φ = ψ ⊗ tr, and quantum adjacency matrix A(N) = A⊗ id.

In the sequel we shall restrict ourselves to the case that G is associated with a
classical graph. Recall from paragraph 4.1 that if E = (E0, E1) is a simple finite
directed classical graph then the adjacency matrix BE of E induces canonically a
directed quantum graph structure on C(E0) with its unique δ-form.

Lemma 5.1. Let E = (E0, E1) be a simple finite directed classical graph and denote
by G = (C(E0), tr, BE) the directed quantum graph corresponding to E. Then
the quantum Cuntz-Krieger algebra FO(MN (G)) associated with the amplification
MN (G) is the universal C∗-algebra with generators Seij for e ∈ E0 and 1 ≤ i, j ≤ N ,
satisfying the relations∑

rs

SeirS
∗
esrSesj = Seij∑

k

S∗ekiSekj =
∑
k

∑
f∈E0

BE(e, f)SfikS
∗
fjk.

Proof. Consider the generators Seij = S(f
(e)
ij ) in FO(MN (G)) associated with the

adapted matrix units f
(e)
ij = nNδe ⊗ eij , where e ∈ E0 and n is the number of

vertices of E. Noting that the quantum adjacency matrix of MN (G) is given by

A(N)(f
(e)
ij ) =

∑
f∈E0

BE(e, f)f
(f)
ij ,

the assertion is a direct consequence of Proposition 3.9. �
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We will follow arguments of McClanahan [25] to study the structure of the quan-
tum Cuntz-Krieger algebras in Lemma 5.1. As a first step we discuss a slight
strengthening of Theorem 2.3 in [25]. If A is a C∗-algebra we write A+ for the
unital C∗-algebra obtained by adjoining an identity element to A, and if A,B are
unital C∗-algebras we denote by A ∗1 B their unital free product.

Proposition 5.2. Let A be a separable C∗-algebra. Then MN (C) ∗1 A+ is KK-
equivalent to A+.

Proof. This fact is certainly known to experts, but we shall give the details for the
convenience of the reader.

Note first that A+ is KK-equivalent to the direct sum A⊕C. This equivalence is
implemented by taking the direct sum of the canonical ∗-homomorphisms A→ A+

and C→ A+ at the level of KK-theory.
We consider the unital ∗-homomorphism φ : MN (C)∗1A+ →MN (C)⊗A+ given

by

φ(eij) = eij ⊗ 1, φ(a) = e11 ⊗ a,
for 1 ≤ i, j ≤ N and a ∈ A, and view this as a class [φ] ∈ KK(MN (C) ∗1 A+, A+).

In the opposite direction we define a map ψA : A → MN (C) ⊗ (MN (C) ∗1 A+)
by

ψA(a) =
∑
kl

ekl ⊗ e1kael1.

Then

ψA(a)ψA(b) =
∑
klrs

eklers ⊗ e1kael1e1rbes1

=
∑
kls

eks ⊗ e1kael1e1lbes1

=
∑
ks

eks ⊗ e1kabes1 = ψA(ab)

and ψA(a∗) = ψA(a)∗, so that the map ψA is a ∗-homomorphism.
Consider also the ∗-homomorphism ψC : C → MN (C) ⊗ (MN (C) ∗1 A+) given

by ψC(1) = e11 ⊗ e11. Combining the maps ψA and ψC, and using that A+ is
KK-equivalent to A ⊕ C, we obtain a class in KK(A+,MN (C) ∗1 A+), which we
shall denote by [ψ].

We claim that the classes [φ] and [ψ] are mutually inverse. In order to determine
the composition [φ] ◦ [ψ] ∈ KK(A+, A+) it suffices to compute MN (φ) ◦ ψA and
MN (φ) ◦ ψC, respectively.

We calculate

(MN (φ) ◦ ψA)(a) =
∑
kl

ekl ⊗ φ(e1kael1) =
∑
kl

ekl ⊗ e1ke11el1 ⊗ a = e11 ⊗ e11 ⊗ a

for a ∈ A and (MN (φ)◦ψC)(1) = MN (φ)(e11⊗e11) = e11⊗e11⊗1. This immediately
yields [φ] ◦ [ψ] = id.

Next consider [ψ] ◦ [φ] ∈ KK(MN (C) ∗1 A+,MN (C) ∗1 A+). Let us write jA+ :
A+ → MN (C) ∗1 A+ and jMN (C) : MN (C) → MN (C) ∗1 A+ for the canonical

inclusion homomorphisms. Moreover write u : C → MN (C) ⊕ A+ for the unit
map. According to [20], [18], the suspension of MN (C) ∗1 A+ is KK-equivalent
to the cone of u. In order to show [ψ] ◦ [φ] = id it therefore suffices to verify
[ψ] ◦ [φ] ◦ [jA+ ] = [jA+ ] and [ψ] ◦ [φ] ◦ [jMN (C)] = [jMN (C)].

We calculate

(MN (ψA) ◦ φ)(a) = MN (ψ)(e11 ⊗ a) =
∑
kl

e11 ⊗ ekl ⊗ e1kael1
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for a ∈ A. Pick a continuous path of unitaries Ut in MN (C) ⊗MN (C) such that
U0 = id and

U1(ek ⊗ e1) = e1 ⊗ ek

for all k, and push this into the last two tensor factors of MN (C) ⊗ MN (C) ⊗
(MN (C) ∗1 A+) via the obvious map. Then conjugating (MN (ψA) ◦ φ)(a) by U1

gives e11⊗e11⊗a for all a ∈ A. It follows that [ψ]◦ [φ]◦ [jA] = [jA], where we write
jA for the restriction of jA+ to A ⊂ A+.

Next we calculate

(MN (ψC) ◦ φ)(1) = MN (ψC)(1⊗ 1) = 1⊗ e11 ⊗ e11.

Conjugating this with the unitary U1 from above, pushed into the first and third
tensor factors, gives e11⊗ e11⊗ 1. Hence [ψ] ◦ [φ] ◦ [jC] = [jC], where jC denotes the
restriction of jA+ to C ⊂ A+. Combining these two observations gives [ψ] ◦ [φ] ◦
[jA+ ] = [jA+ ].

Finally, we have

(MN (ψC) ◦ φ)(eij) = MN (ψC)(eij ⊗ 1) = eij ⊗ e11 ⊗ e11,

so that conjugating (MN (ψC) ◦ φ)(eij) by U1 in the first and third tensor factors
gives e11⊗ e11⊗ eij for all i, j. We conclude [ψ] ◦ [φ] ◦ [jMN (C)] = [jMN (C)], and this
finishes the proof. �

With these preparations in place let us now present our main result on amplified
quantum Cuntz-Krieger algebras.

Theorem 5.3. Assume that E = (E0, E1) is a finite directed simple graph and
let G = (C(E0), tr, BE) be the corresponding directed quantum graph. Then the
following holds.

a) We have an isomorphism MN (FO(MN (G))+) ∼= MN (C) ∗1 (FO(G)+).
b) FO(MN (G)) is KK-equivalent to the classical Cuntz-Krieger algebra OBE .

Proof. a) In the sequel we shall write C = MN (C)∗1(FO(G)+) andD = FO(MN (G)).
We define a ∗-homomorphism g : D → C by

g(Seij) =
∑
k

ekiSeejk

on generators. To check that this is well-defined we use Lemma 5.1 to calculate∑
kl

g(Seik)g(Selk)∗g(Selj) =
∑
rstkl

eriSeekreskS
∗
eelsetlSeejt

=
∑
rkl

eriSeekkS
∗
eellSeejr

=
∑
r

eriSeS
∗
eSeejr

=
∑
r

eriSeejr

= g(Seij)
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and ∑
k

g(Seki)
∗g(Sekj) =

∑
rsk

eriS
∗
eekreskSeejs

=
∑
r

eriS
∗
eSeejr

=
∑
r

∑
f∈E0

BE(e, f)eriSfS
∗
fejr

=
∑
k

∑
f∈E0

BE(e, f)g(Sfik)g(Sfjk)∗

for e ∈ E0 and 1 ≤ i, j ≤ N .
Let g+ : D+ → C be the unital extension of g. It is easy to see that the image

of g+ is contained in the relative commutant MN (C)′ of MN (C) inside the free
product. In fact, we have

g(Seij)ekl =
∑
r

eriSeejrekl = ekiSeejl =
∑
r

ekleriSeejr = eklg(Seij)

for all i, j, k, l. We can thus extend g+ to a unital ∗-homomorphism G : MN (D+)→
C by setting G(eij) = eij and G(x) = g(x) for x ∈ D+.

Let us also define a unital ∗-homomorphism F : C →MN (D+) = D+ ⊗MN (C)
by

F (eij) = 1⊗ eij

F (Se) =
∑
ij

Seij ⊗ eij .

To see that this is well-defined we only need to check that these formulas define
unital ∗-homomorphisms from MN (C) and FO(G)+ into MN (D+), respectively.
For MN (C) this is obvious. For FO(G)+ we need to check the free Cuntz-Krieger
relations for the elements F (Se). In fact, each F (Se) is a partial isometry by
construction, and using Lemma 5.1 we calculate

F (Se)
∗F (Se) =

∑
ijkl

S∗eijSekl ⊗ ejiekl

=
∑
ijl

S∗eijSeil ⊗ ejl

=
∑
ijl

∑
f∈E0

BE(e, f)SfjiS
∗
fli ⊗ ejl

=
∑
f∈E0

BE(e, f)
∑
ijkl

SfjiS
∗
flk ⊗ ejiekl

=
∑
f∈E0

BE(e, f)F (Sf )F (Sf )∗

as required.
Next observe that F ◦G : MN (D+)→MN (D+) satisfies

(F ◦G)(Seij ⊗ 1) =
∑
k

F (eki)F (Se)F (ejk)

=
∑
krs

(1⊗ eki)(Sers ⊗ ers)(1⊗ ejk) = Seij ⊗ 1
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for all e ∈ E0 and (F ◦G)(eij) = eij for all i, j. This implies F ◦G = id. Similarly,
we have

(G ◦ F )(Se) =
∑
ij

G(Seij ⊗ eij) =
∑
ij

eiiSeejj = Se

for all e ∈ E0, and (G ◦ F )(eij) = eij for all i, j. We conclude that G ◦ F = id.
b) Clearly MN (FO(MN (G))+) is KK-equivalent to FO(MN (G))+. According

to Proposition 5.2, we also know that MN (C) ∗1 (FO(G)+) is KK-equivalent to
FO(G)+. It is easy to check that these equivalences are both compatible with the
canonical augmentation morphisms to C. Hence FO(MN (G)) is KK-equivalent
to FO(G). Finally, recall from Theorem 2.6 that the free Cuntz-Krieger algebra
FO(G) = FOBE is KK-equivalent to OBE . �

Under some mild extra assumptions, Theorem 5.3 allows one to compute the
K-theory of FO(MN (G)) in terms of the graph E, see [10] and chapter 7 in [29].

Finally, remark that if E is the graph with one vertex and one self-loop then
we have FO(G) = FOBE = C(S1), and FO(MN (G)) = FO(TMN ) is the quantum
Cuntz-Krieger algebra of the trivial quantum graph on MN (C). Therefore Theorem
5.3 implies Theorem 4.7.

6. Quantum symmetries of quantum Cuntz-Krieger algebras

In this section we study how quantum symmetries and quantum isomorphisms
of directed quantum graphs induce symmetries of their associated quantum Cuntz-
Krieger algebras. This will be useful in particular to exhibit relations between the
C∗-algebras corresponding to quantum isomorphic quantum graphs.

6.1. Gauge actions. Before discussing quantum symmetries, let us first show that
there is a canonical gauge action on quantum Cuntz-Krieger algebras, thus provid-
ing very natural classical symmetries. This is analogous to the well-known gauge
action on Cuntz-Krieger algebras and graph C∗-algebras, which plays a crucial role
in the analysis of the structure of these C∗-algebras, compare [29].

Let G = (B,ψ,A) be a directed quantum graph, and let FO(G) be the corre-
sponding quantum Cuntz-Krieger algebra. For λ ∈ U(1) consider the linear map
Sλ : B → FO(G) given by

Sλ(b) = λS(b),

where S : B → FO(G) is the canonical linear map. Then we have S∗λ(b) =

(λS(b∗))∗ = λS∗(b) for all b ∈ B, and using this relation it is easy to check that
Sλ : B → FO(G) is a quantum Cuntz-Krieger G-family. By the universal property
of FO(G) we obtain a corresponding automorphism αλ ∈ Aut(FO(G)), and these
automorphisms combine to a strongly continuous action of U(1) on FO(G).

In terms of the generators of FO(G) as in Proposition 3.9 the gauge action is
given by

αλ(S
(a)
ij ) = λS

(a)
ij ,

from which it is easy to determine the action on arbitrary noncommutative poly-
nomials in the generators, and the decomposition into spectral subspaces.

In some cases one may define more general gauge type actions. For instance,
for the complete quantum graph K(MN (C), tr) from paragraph 4.2 and the trivial
quantum graph TMN from paragraph 4.3 we have an action of U(1)×U(1)N , given
by

αλµ(Sij) = λ
µi
µj

Sij
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on generators. In fact, one may even extend this to an action of U(1) × U(N) by
setting

αλU (S) = λUSU∗,

where S = (Sij) is the generating matrix partial isometry.
However, none of the above actions seems to suffice to obtain structural informa-

tion about quantum Cuntz-Krieger algebras in the same way as for classical graph
algebras. In particular, the corresponding fixed point algebras tend to have a more
complicated structure than in the classical setting.

It turns out that this deficiency can be compensated to some extent by consider-
ing actions of compact quantum groups instead, and in particular symmetries aris-
ing from suitable monoidal equivalences between quantum automorphism groups
of directed quantum graphs. We will explain these constructions in the following
paragraphs.

6.2. Compact quantum groups. Let us first give a quick review of the definition of
compact quantum groups and their action on C∗-algebras. For more background
and further information we refer to [36], [28].

A compact quantum group G is given by a unital C∗-algebra C(G) together
with a unital ∗-homomorphism ∆ : C(G) → C(G) ⊗ C(G) such that (∆ ⊗ id)∆ =
(id⊗∆)∆ and the density conditions

[∆(C(G))(C(G)⊗ 1)] = C(G)⊗ C(G) = [∆(C(G))(1⊗ C(G))]

hold.
We will mainly work with the canonical dense Hopf ∗-algebra O(G) ⊂ C(G),

consisting of the matrix coefficients of all finite dimensional unitary representations
of G. For the definition of unitary representations and their intertwiners see [28].
The collection of all finite dimensional unitary representations of G forms naturally
a C∗-tensor category Rep(G).

On the C∗-level we will only consider the universal completions of O(G) in the
sequel, and always denote them by C(G). With this in mind, a morphism H → G
of compact quantum groups is nothing but a ∗-homomorphism C(G) → C(H)
compatible with the comultiplications. Equivalently, such a morphism is given by a
homomorphism O(G)→ O(H) of Hopf ∗-algebras. One says that H is a quantum
subgroup of G if there exists a morphism H → G such that the corresponding
homomorphism of Hopf ∗-algebras O(G)→ O(H) is surjective.

By definition, an action of a compact quantum group G on a C∗-algebra A
is a ∗-homomorphism α : A → A ⊗ C(G) satisfying (α ⊗ id)α = (id⊗∆)α and
the density condition [(1 ⊗ C(G))α(A)] = A ⊗ C(G). A C∗-algebra A equipped
with an action of G will also be called a G-C∗-algebra. Every G-C∗-algebra A
contains a canonical dense ∗-subalgebra A ⊂ A, given by the algebraic direct sum
of the spectral subspaces of the action. Moreover, the map α restricts to a ∗-
homomorphism α : A → A ⊗ O(G), and this defines an algebra coaction in the
sense of Hopf algebras. In particular, one has (id⊗ε)α(a) = a for all a ∈ A, where
ε : O(G)→ C is the counit.

If A is a G-C∗-algebra then the fixed point subalgebra of A is defined by

AG = {a ∈ A | α(a) = a⊗ 1},

and a unital G-C∗-algebra A is called ergodic if AG = C1. The same terminology
is also used for ∗-algebras equipped with algebra coactions of O(G).

Let us now review the definition of quantum automorphism groups of finite quan-
tum spaces in the sense of Definition 3.1. These quantum groups were introduced by
Wang [33] and studied further by Banica [2] and others. If G is a compact quantum
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group and ω : A→ C a state on a G-C∗-algebra A with action α : A→ A⊗C(G),
then we say that the action preserves ω if

(ω ⊗ id)α(a) = ω(a)1

for all a ∈ A.

Definition 6.1. Let (B,ψ) be a finite quantum space. The quantum automorphism
group of (B,ψ) is the universal compact quantum group G+(B,ψ) equipped with
an action β : B → B ⊗ C(G+(B,ψ)) which preserves ψ.

In other words, if G is a compact quantum group and γ : B → B⊗C(G) an action
of G preserving ψ, then there exists a unique ∗-homomorphism π : C(G+(B,ψ))→
C(G), compatible with the comultiplications, such that the diagram

B
β //

γ
&&

B ⊗ C(G+(B,ψ))

id⊗π
��

B ⊗ C(G)

is commutative.
The most prominent example of a quantum automorphism group is the quantum

permutation group S+
N . This is the quantum automorphism group of B = CN with

its unique δ-form. The corresponding C∗-algebra C(S+
N ) = C(G+(CN , tr)) is the

universal C∗-algebra generated by projections uij for 1 ≤ i, j ≤ N such that∑
k

uik = 1 =
∑
k

ukj

for all i, j. These relations can be phrased by saying that the matrix u = (uij) is a
magic unitary. The comultiplication ∆ : C(S+

N )→ C(S+
N )⊗ C(S+

N ) is defined by

∆(uij) =

n∑
k=1

uik ⊗ ukj

on generators.

Remark 6.2. Quantum automorphism groups can always be described explicitly in
terms of generators and relations, see Proposition 2.10 in [26]. More precisely, let
us assume that (B,ψ) is a finite quantum space in standard form as in section 3.1,
so that

B =

d⊕
a=1

MNa(C), ψ(x) =

d∑
a=1

Tr(Q(a)xa)

for x = (x1, . . . , xd) ∈ B. Then the Hopf ∗-algebra O(G+(B,ψ)) is generated by
elements vrsbija for 1 ≤ a, b ≤ d and 1 ≤ i, j ≤ Na, 1 ≤ r, s ≤ Nb, satisfying the
relations

(A1a)
∑
w v

xwc
kla v

wyc
rsb = δabδlrv

xyc
ksa

(A1b)
∑
w(Q(c))

−1
wwv

srb
ywcv

lka
wxc = δlrδab(Q(a))

−1
ll v

ska
yxc

(A2) (vxyckla )∗ = vyxclka

(A3a)
∑
xb(Q(b))xxv

xxb
kla = δkl(Q(a))kk

(A3b)
∑
ka v

xyb
kka = δxy.

In terms of the standard matrix units e
(a)
ij for B and the generators vrsbija , the

defining action β : B → B ⊗O(G+(B,ψ)) is given by

β(e
(a)
ij ) =

∑
bkl

e
(b)
kl ⊗ v

klb
ija,
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and the matrix v = (vrsbija ) is also called the fundamental matrix of G+(B,ψ).

We will reobtain the above description of the ∗-algebra O(G+(B,ψ)) as a special
case of Proposition 6.10 below.

6.3. Quantum symmetries of quantum graphs. In this paragraph we discuss the
quantum automorphism group of a directed quantum graph, and also quantum
isomorphisms relating a pair of directed quantum graphs.

Recall first that if E = (E0, E1) is a simple finite graph then the automorphism
group Aut(E) consists of all bijections of E0 which preserves the adjacency relation
in E. If |E0| = N and A ∈ MN (Z) is the adjacency matrix of E, then this can be
expressed as

Aut(E) = {σ ∈ SN | σA = Aσ} ⊂ SN ,
where one views elements of the symmetric group as permutation matrices. In [4],
Banica defined the quantum automorphism group G+(E) of the graph E via the
C∗-algebra

C(G+(E)) = C(S+
N )/〈uA = Au〉,

where u = (uij) ∈ MN (C(S+
N )) denotes the defining magic unitary matrix. This

yields a quantum subgroup of S+
N , which contains the classical automorphism group

Aut(E) as a quantum subgroup.
If G = (B,ψ,A) is a directed quantum graph we shall say that an action β :

B → B ⊗ C(G) of a compact quantum group G is compatible with A : B → B if
β ◦A = (A⊗ id) ◦β. Motivated by the considerations in [4], we define the quantum
automorphism group of a directed quantum graph as follows, compare [7].

Definition 6.3. Let G = (B,ψ,A) be a directed quantum graph. The quantum
automorphism group G+(G) of G is the universal compact quantum group equipped
with a ψ-preserving action β : B → B ⊗ C(G+(G)) which is compatible with the
quantum adjacency matrix A.

That is, if G is a compact quantum group and γ : B → B ⊗ C(G) an action
of G which preserves ψ and is compatible with A, then there exists a unique ∗-
homomorphism π : C(G+(G)) → C(G), compatible with the comultiplications,
such that the diagram

B
β //

γ
%%

B ⊗ C(G+(G))

id⊗π
��

B ⊗ C(G)

is commutative.
Comparing this with Definition 6.1, it is straightforward to check that C(G+(G))

can be identified with the quotient of C(G+(B,ψ)) obtained by imposing the rela-
tion (1⊗A)v = v(1⊗A) on the fundamental matrix v of G+(B,ψ).

Remark 6.4. If G = K(MN (C), tr) or G = TMN is the complete or the trivial quan-
tum graph on MN (C), then it is easy to see that compatibility with the quantum
adjacency matrix is in fact automatic. That is, we have G+(G) = G+(MN (C), tr)
in either case.

Let us recall that two compact quantum groups G1, G2 are called monoidally
equivalent if their representation categories Rep(G1) and Rep(G2) are unitarily
equivalent as C∗-tensor categories [6], [28]. A monoidal equivalence is a unitary
tensor functor F : Rep(G+(G1)) → Rep(G+(G2)) whose underlying functor is an
equivalence.

Assume that Gi = (Bi, ψi, Ai) are directed quantum graphs for i = 1, 2. Then
the quantum automorphism group G+(Gi) is a quantum subgroup of G+(Bi, ψi)
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such that the quantum adjacency matrix Ai is an intertwiner for the defining
representation Bi = L2(Bi) of G+(Gi). Note also that the multiplication map
mi : Bi ⊗Bi → Bi and the unit map ui : C→ Bi are intertwiners for the action of
G+(Gi), so that Bi becomes a monoid object in the tensor category Rep(G+(Gi)).

In analogy to [7] we give the following definition.

Definition 6.5. Two directed quantum graphs Gi = (Bi, ψi, Ai) for i = 1, 2 are
quantum isomorphic if there exists a monoidal equivalence F : Rep(G+(G1)) →
Rep(G+(G2)) such that

a) F maps the monoid object B1 to the monoid object B2.
b) F (A1) = A2.

We will write G1 ∼=q G2 in this case.

From Definition 6.5 it is easy to see that the notion of quantum isomorphism
is an equivalence relation on isomorphism classes of directed quantum graphs. For
concrete computations it is however more convenient to describe quantum isomor-
phisms in terms of bi-Galois objects [7], sometimes also called linking algebras.

Concretely, if Gi = (Bi, ψi, Ai) for i = 1, 2 are directed quantum graphs then
O(G+(G2,G1)) is the bi-Galois object generated by the coefficients of a unital ∗-
homomorphism

βji : Bi −→ Bj ⊗O(G+(Gj ,Gi))
satisfying the conditions

(ψj ⊗ id)βji(x) = ψi(x)1

for all x ∈ Bi and
(Aj ⊗ id)βji = βjiAi.

Note that these conditions generalize the requirements on the action of the quantum
automorphism group of a quantum graph to be state-preserving and compatible
with the quantum adjacency matrix, respectively.

We write C(G+(Gj ,Gi)) for the universal enveloping C∗-algebra ofO(G+(Gj ,Gi)).
In exactly the same way as in [7] one then arrives at the following characterization
of quantum isomorphisms.

Theorem 6.6. Let G1,G2 be directed quantum graphs. Then the following conditions
are equivalent.

a) G1 and G2 are quantum isomorphic.
b) O(G+(G2,G1)) is non-zero.
c) O(G+(G2,G1)) admits a nonzero faithful state.
d) C(G+(G2,G1)) is non-zero.

If the equivalent conditions in Theorem 6.6 are satisfied then O(G+(G2,G1))
is a O(G+(G2))-O(G+(G1)) bi-Galois object in a natural way [30]. In particular,
there exist ergodic left and right actions of G+(G2) and G+(G1) on O(G+(G2,G1)),
respectively. Moreover, O(G+(G2,G1)) is equipped with a unique faithful state
which is invariant with respect to both actions.

For G1 = G2 and the identity monoidal equivalence, the ∗-algebra O(G+(G2,G1))
equals O(G+(G1)) = O(G+(G2)), both actions are implemented by the comultipli-
cation, and the invariant faithful state is nothing but the Haar state.

Remark 6.7. The abelianization of O(G+(G2,G1)) is the algebra of coordinate func-
tions on the space of “classical isomorphisms” between the quantum graphs G1 and
G2, that is, the space of unital ∗-isomorphisms ϕ : B1 −→ B2 satisfying

ψ2 ◦ ϕ = ψ1, A2 ◦ ϕ = ϕ ◦A1.

If moreover each Gi is associated with a classical directed graph Ei = (E0
i , E

1
i ) as

in paragraph 4.1, then by Gelfand duality such a map ϕ corresponds precisely to
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a graph isomorphism ϕ∗ : E2 −→ E1 via ϕ(f) = f ◦ ϕ∗ for f ∈ C(E0
1). This is the

reason for the ordering of the quantum graphs in our notation O(G+(G2,G1)).

Remark 6.8. There is a canonical algebra isomorphism S : O(G+(G2,G1)) −→
O(G+(G1,G2))op, which can be viewed as a generalization of the antipode of the
Hopf ∗-algebra associated to a compact quantum group. More precisely, if (em) and
(fn) are orthonormal bases for B1 and B2, respectively, and we write β21(em) =∑
n fn ⊗ unm, then u = (uij) ∈ End(B1, B2)⊗O(G+(G2,G1)) is a unitary matrix,

and there is an algebra isomorphism S : O(G+(G2,G1)) −→ O(G+(G1,G2))op given
by

(id⊗S)(u) = u∗ = u−1, (id⊗S)(u∗) = (J t2ū(J−11 )t),

where (ū)kl = (u∗kl), Ji : Bi −→ Bi is the anti-linear involution map given by Ji(b) =
b∗ and t denotes the transpose map. We refer to [7] for more details.

Remark 6.9. We have a wealth of examples quantum isomorphisms between the
complete quantum graphs K(B,ψ) introduced in paragraph 4.2, and also between
the trivial quantum graphs T (B,ψ) introduced in paragraph 4.3. Recall that
K(B,ψ) (resp. T (B,ψ)) is defined by equipping the finite quantum space (B,ψ)
with the quantum adjacency matrix A : L2(B) → L2(B) given by A(b) = δ2ψ(b)1
(resp. A = id). More precisely, if (Bi, ψi) are finite quantum spaces for i = 1, 2,
with δi-forms ψi, then

K(B1, ψ1) ∼=q K(B2, ψ2) ⇐⇒ T (B1, ψ1) ∼=q T (B2, ψ2) ⇐⇒ δ1 = δ2.

These equivalences follow from work of DeRijdt and Vander Vennet in [13], where
unitary fiber functors on quantum automophism groups of finite quantum spaces
equipped with δ-forms were classified.

Let Gi = (Bi, ψi, Ai) be directed quantum graphs in standard form, in the sense
explained in paragraph 3.1. Explicitly, we fix multimatrix decompositions

Bi =

di⊕
a=1

MNia
(C)

and diagonal positive invertible matrices Qi(a) implementing ψi. Let us express the

quantum adjacency matrices relative to the standard matrix units e
(a)
kl ∈MNia

(C),
so that

Ai(e
(a)
kl ) =

∑
brs

(Ai)
rsb
klae

(b)
rs .

We then obtain the following result, compare [26] for the case G1 = G2.

Proposition 6.10. Let G1 and G2 be directed quantum graphs given as above. Then
O(G+(G2,G1)) is the universal unital ∗-algebra with generators vklbija for 1 ≤ i, j ≤
N1
a , 1 ≤ k, l ≤ N2

b , 1 ≤ a ≤ d1, 1 ≤ b ≤ d2, satisfying the relations

(A1a)
∑
w v

xwc
kla v

wyc
rsb = δabδlrv

xyc
ksa

(A1b)
∑
l(Q

1
(a))
−1
ll v

xwb
mlav

zyc
lka = δbcδwz(Q

2
(c))
−1
zz v

xyc
mka

(A2) (vxybkla )∗ = vyxblka

(A3a)
∑
xb(Q

2
(b))xxv

xxb
kla = δkl(Q

1
(a))kk

(A3b)
∑
ka v

xyb
kka = δxy

(A4)
∑
rsb(A2)xycrsb v

rsb
kla =

∑
rsb(A1)rsbklav

xyc
rsb

for all admissible indices.

Proof. The following argument is analogous to the one for Proposition 2.10 in [26],
compare [33]. Expressing the universal morphism β21 : B1 −→ B2 ⊗O(G+(G2,G1))
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relative to the bases chosen as above, we can write

β21(e
(a)
kl ) =

∑
xyb

e(b)xy ⊗ v
xyb
kla .

Then O(G+(G2,G1)) is generated as a ∗-algebra by the elements vxybkla . Now the
conditions on this implementing a bi-Galois object are equivalent to the equations
listed above. More precisely, we have

• (A1a) ⇐⇒ β21 is an algebra homomorphism. This follows from

β21(e
(a)
kl )β21(e(b)rs ) =

∑
xwcmyd

e(c)xwe
(d)
my ⊗ vxwckla v

myd
rsb =

∑
xwcn

e(c)xy ⊗ vxwckla v
wyc
rsb

and

β21(e
(a)
kl e

(b)
rs ) = δabδlrβji(e

(a)
ks ) =

∑
xyc

δabδlre
(c)
xy ⊗ v

xyc
ksa.

• (A1b) ⇐⇒ S : O(G+(G1,G2)) −→ O(G+(G2,G1)) given by

S(vklarsb) = (Q2
(b))ss(Q

1
(a))
−1
ll v

srb
lka

defines an algebra anti-isomorphism. Indeed, we have∑
l

S(vlmawxb)S(vklayzc) =
∑
l

(Q2
(b))xx(Q1

(a))
−1
mmv

xwb
mla(Q2

(c))zz(Q
1
(a))
−1
ll v

zyc
lka

and

δbcδwzS(vkmayxc ) = δbcδwz(Q
2
(c))xx(Q1

(a))
−1
mmv

xyc
mka,

so this statement follows in combination with (A1a).

• (A2) ⇐⇒ β21 is involutive. This follows immediately from (e
(a)
kl )∗ = e

(a)
lk .

• (A3a) ⇐⇒ (ψ2 ⊗ id) ◦ β21(b) = ψ1(b)1 for all b ∈ B1. This follows from

(ψ2 ⊗ id) ◦ β21(e
(a)
kl ) =

∑
xyb

ψ2(e(b)xy )vxybkla =
∑
xb

(Q2
(b))xxv

xxb
kla

and

ψ1(e
(a)
kl )1 = (Q1

(a))kkδkl.

• (A3b) ⇐⇒ β21 is unital. This follows from

β21(1) =
∑
ak

β21(e
(a)
kk ) =

∑
xybak

e(b)xy ⊗ v
xyb
kka.

• (A4) ⇐⇒ β21 ◦A1 = (A2 ⊗ id) ◦ β21. This follows from

(β21 ◦A1)(e
(a)
kl ) =

∑
rsb

(A1)rsbklaβ21(e(b)rs ) =
∑
rsbxyc

(A1)rsbklae
(c)
xy ⊗ v

xyc
rsb

and

(A2 ⊗ id) ◦ β21(e
(a)
kl ) =

∑
rsb

A2(e(b)rs )⊗ vrsbkla =
∑
rsbxyc

(A2)xycrsb e
(c)
xy ⊗ vrsbkla.

Combining these observations yields the claim. �
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6.4. Quantum symmetries of quantum Cuntz-Krieger algebras. We shall now show
that quantum automorphisms and quantum isomorphisms of directed quantum
graphs lift naturally to the level of their associated C∗-algebras.

Firstly, we have the following lifting result for quantum symmetries, compare
the work in [31] on classical graph C∗-algebras.

Theorem 6.11. Let G = (B,ψ,A) be a directed quantum graph. Then the canonical
action β : B → B ⊗ C(G+(G)) of the quantum automorphism group of G induces

an action β̂ : FO(G)→ FO(G)⊗ C(G+(G)) such that

β̂(S(b)) = (S ⊗ id)β(b)

for all b ∈ B.

The proof of Theorem 6.11 will be obtained as a special case of the more general
Theorem 6.13 on quantum isomorphisms below. Nonetheless, for the sake of clarity
we have decided to state this important special case separately.

Remark 6.12. There are typically plenty of quantum automorphisms of FO(G), and
in fact, even ∗-automorphisms, which do not arise from quantum automorphisms as
in Theorem 6.11. For instance, the gauge action on the free Cuntz-Krieger algebra
associated with a classical directed graph cannot be described this way, compare
paragraph 6.1.

Now assume that G1,G2 are quantum isomorphic directed quantum graphs in
standard form, with corresponding linking algebras O(G+(Gj ,Gi)). The associated
∗-homomorphisms βji : Bi −→ Bj ⊗O(G+(Gj ,Gi)) for 1 ≤ i, j ≤ 2 are given by

βji(e
(a)
kl ) =

∑
xyb

e(b)xy ⊗ v
xyb
kla

in terms of the standard matrix units. Here vxybkla are the generators ofO(G+(Gj ,Gi))
as in Proposition 6.10.

Theorem 6.13. Let Gi = (Bi, ψi, Ai) for i = 1, 2 be directed quantum graphs and
assume that G1 ∼=q G2. Then there exists ∗-homomorphisms

β̂ji : FO(Gi) −→ FO(Gj)⊗ C(G+(Gj ,Gi))

for 1 ≤ i, j ≤ 2 such that

β̂ji(Si(b)) = (Sj ⊗ id)βji(b)

for all b ∈ Bi.

Proof. Observe first that for i = j we are precisely in the situation of Theorem
6.11, so that Theorem 6.11 is indeed a special case of the claim at hand.

Let us write mO : O⊗O → O for the multiplication in O = O(G+(Gj ,Gi)). We
claim that

(m∗j ⊗ id)βji = (id⊗ id⊗mO)(id⊗σ ⊗ id)(βji ⊗ βji)m∗i ,

where mi : Bi → Bi → Bi denotes multiplication in Bi and σ is the flip map.
Indeed, rewriting Lemma 3.2 in terms of the standard matrix units yields

m∗i (e
(a)
kl ) =

∑
r

(Qi(a))
−1
rr e

(a)
kr ⊗ e

(a)
rl ,
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and using relation (A1b) from Proposition 6.10 we get

(m∗j ⊗ id)βji(e
(a)
kl ) =

∑
xnb

m∗j (e
(b)
xn)⊗ vxnbkla

=
∑
xybn

(Qj(b))
−1
yy e

(b)
xy ⊗ e(b)yn ⊗ vxnbkla

=
∑

xybmnc

(Qj(b))
−1
yy δbcδyme

(b)
xy ⊗ e(c)mn ⊗ vxnbkla

=
∑

wxybmnc

(Qi(a))
−1
wwe

(b)
xy ⊗ e(c)mn ⊗ v

xyb
kwav

mnc
wla

=
∑
w

(Qi(a))
−1
ww(id⊗ id⊗mO)(id⊗σ ⊗ id)(βji ⊗ βji)(e(a)kw ⊗ e

(a)
wl )

= (id⊗ id⊗mO)(id⊗σ ⊗ id)(βji ⊗ βji)m∗i (e
(a)
kl )

as required.
Now consider the linear map s : Bi → FO(Gj) ⊗ C(G+(Gj ,Gi)) = D given by

s = (Sj ⊗ id)βji. Then

s∗(b) = s(b∗)∗ = (Sj ⊗ id)βji(b
∗)∗ = (S∗j ⊗ id)βji(b),

and we claim that s is a quantum Cuntz-Krieger Gi-family in D. Writing µ for the
multiplication in FO(Gj) and µD for the one in D, our above considerations yield

µD(id⊗µD)(s⊗ s∗ ⊗ s)(id⊗m∗i )m∗i
= µD(id⊗µD)(Sj ⊗ id⊗S∗j ⊗ id⊗Sj ⊗ id)(βji ⊗ βji ⊗ βji)(id⊗m∗i )m∗i
= µD(id⊗ id⊗µ⊗ id)(Sj ⊗ id⊗S∗j ⊗ Sj ⊗mO)σ45(βji ⊗ βji ⊗ βji)(id⊗m∗i )m∗i
= µD(id⊗ id⊗µ⊗ id)(Sj ⊗ id⊗S∗j ⊗ Sj ⊗ id)(id⊗ id⊗m∗j ⊗ id)(βji ⊗ βji)m∗i
= (µ⊗ id)(id⊗µ⊗ id)(Sj ⊗ S∗j ⊗ Sj ⊗mO)(id⊗m∗j ⊗ id)(id⊗σ ⊗ id)(βji ⊗ βji)m∗i
= (µ⊗ id)(id⊗µ⊗ id)(Sj ⊗ S∗j ⊗ Sj ⊗ id)(id⊗m∗j ⊗ id)(m∗j ⊗ id)βji

= (Sj ⊗ id)βji = s,

and similarly

µD(s∗ ⊗ s)m∗i = (µ⊗mO)σ23(S∗j ⊗ id⊗Sj ⊗ id)(βji ⊗ βji)m∗i
= (µ⊗ id)(S∗j ⊗ Sj ⊗mO)σ23(βji ⊗ βji)m∗i
= (µ⊗ id)(S∗j ⊗ Sj ⊗ id)(m∗j ⊗ id)βji

= (µ⊗ id)(Sj ⊗ S∗j ⊗ id)(m∗j ⊗ id)(Aj ⊗ id)βji

= (µ⊗ id)(Sj ⊗ S∗j ⊗ id)(m∗j ⊗ id)βjiAi

= µD(s⊗ s∗)m∗iAi,

using the quantum Cuntz-Krieger relation for Sj . Hence the universal property of
FO(Gi) yields the claim. �

Remark 6.14. If we denote by Ci ⊂ FO(Gi) the dense ∗-subalgebra generated by

Si(Bi), then the restriction of the map β̂ji in Theorem 6.13 to Ci is injective. Indeed,
there exists a canonical unital ∗-isomorphism

θji : O(G+(Gi)) −→ O(G+(Gi,Gj))�O(Gj)O(G+(Gj ,Gi)),

where

O(G+(Gi,Gj))�O(Gj)O(G+(Gj ,Gi)) = {x | (ρj ⊗ id)(x) = (id⊗λj)(x)}
⊂ O(G+(Gi,Gj))⊗O(G+(Gj ,Gi)),
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and

ρj : O(G+(Gi,Gj))→ O(G+(Gi,Gj))⊗O(G+(Gj))
λj : O(G+(Gj ,Gi))→ O(G+(Gj))⊗O(G+(Gj ,Gi))

are the canonical ergodic actions of G+(Gj) on the linking algebras. The map θji
satisfies

(β̂ij ⊗ id)β̂ji(x) = (id⊗θji )β̂ii(x)

for all x ∈ Ci. If εi : O(G+(Gi,Gj))�O(Gj)O(G+(Gj ,Gi)) ∼= O(G+(Gi)) −→ C is the

character given by the counit of O(G+(Gi)), this implies

(id⊗εi)(β̂ij ⊗ id)β̂ji(x) = x

for x ∈ Ci. Hence the restriction of β̂ji to Ci is indeed injective.

However, it is not clear whether the map β̂ji : FO(Gi) −→ FO(Gj)⊗C(G+(Gj ,Gi))
itself is injective. In the following section we show that this is at least sometimes
the case.

7. Unitary error bases and finite dimensional quantum symmetries

In this section we apply the general results of the previous section to certain
pairs of complete quantum graphs and trivial quantum graphs, respectively. More
precisely, we fix N ∈ N and consider

GK1 (N) = KN2 = K(CN
2

, tr)

GK2 (N) = K(MN (C), tr)

and

GT1 (N) = TN2 = T (CN
2

, tr)

GT2 (N) = T (MN (C), tr) = TMN ,

compare section 4. The similarity between these pairs stems from the fact that we
have canonical identifications

G+(GK1 (N)) = G+(GT1 (N)) = S+
N2 ,

G+(GK2 (N)) = G+(GT2 (N)) = G+(MN (C), tr),

respectively. We will therefore also use the short hand notation G+(G1(N)) and
G+(G2(N)) for these quantum automorphism groups.

We recall that G+(G1(N)) and G+(G2(N)) are monoidally equivalent, and that
we have quantum isomorphisms GK1 (N) ∼=q GK2 (N) and GT1 (N) ∼=q GT2 (N), see the
remarks in paragraph 6.3. This means in particular that there exists a bi-Galois
object O(G+(G2(N),G1(N))) linking G+(G1(N)) and G+(G2(N)). If X is a set of
cardinality N2, then this ∗-algebra can be described in terms of generators vrsx with
1 ≤ r, s ≤ N and x ∈ X, satisfying the relations as in Proposition 6.10.

7.1. Representations from unitary error bases. With some inspiration from quan-
tum information theory, we shall now construct unital ∗-homomorphisms from the
linking algebra O(G+(G2(N),G1(N))) to MN (C). The key tool in this construction
is the notion of a unitary error basis [35].

Definition 7.1. Let N ∈ N and let X be a finite set of cardinality N2. A unitary
error basis for MN (C) is a basis W = {wx}x∈X for MN (C) consisting of unitary
matrices that are orthonormal with respect to the normalized trace inner product,
so that

tr(w∗xwy) = δxy

for all x, y ∈ X.
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Unitary error bases play a fundamental role in quantum information theory. In
particular, they form a one-to-one correspondence with “tight” quantum teleporta-
tion and superdense coding schemes [35].

Proposition 7.2. Let N ∈ N and assume that W = {wx}x∈X is a unitary error
basis for MN (C). With the notation as above, there exists a unital ∗-representation
πW : O(G+(G2(N),G1(N))) −→MN (C) such that

πW(vrsx ) =
1

N
w∗xerswx

for all r, s, x.

Proof. Recalling that we write ers ∈ MN (C) for the standard matrix units, let us
define

V rsx =
1

N
w∗xerswx

for all 1 ≤ r, s ≤ N and x ∈ X. It suffices to check that the elements V rsx ∈MN (C)
satisfy the relations in Proposition 6.10.

In order to do this, we recall from Theorem 1 in [35] that a unitary error basis can
be equivalently characterized by the following properties for a family of unitaries
W = {wx}x∈X ⊂MN (C):

a) (Depolarizing property):
∑
x∈X w

∗
xawx = N Tr(a)1 for a ∈MN (C).

b) (Maximally entangled basis property): If Ω = 1√
N

∑N
i=1 ei ⊗ ei ∈ CN ⊗ CN is a

maximally entangled state and Ωx = (wx⊗1)Ω, then {Ωx}x∈X is an orthonormal
basis for CN ⊗ CN .

Observing that Q1 = N−2 id and Q2 = N−1 id we therefore we have to verify
the following relations:

• (A1a) ⇐⇒
∑
w V

rw
x V wsy = δxyV

rs
x . This follows from∑

t

V rtx V tsy = N−2
∑
t

w∗xertwxw
∗
yetswy

= N−2 Tr(wxw
∗
y)w∗x(ers)wy = δxyN

−1w∗x(ers)wx = δxyV
rs
x .

• (A1b) ⇐⇒ V jix V
sr
x = δisN

−1V jrx . This follows directly from

(w∗xejiwx)(w∗xesrwx) = δisw
∗
xejrwx.

• (A2) ⇐⇒ (V ijx )∗ = V jix . This is immediate.
• (A3a) ⇐⇒

∑
iNV

ii
x = 1. This follows from∑
i

NV iix =
∑
i

w∗xeiiwx = w∗xwx = 1.

• (A3b) ⇐⇒
∑
z V

ij
z = δij1. This is the depolarizing property of W.

• (A4) ⇐⇒
∑
rs(A2)ijrsV

rs
x =

∑
y(A1)yxV

ij
y . For the trivial quantum graphs

this is obvious. In the case of complete quantum graphs we have (A1)xy =

1, (A2)ijkl = Nδijδkl for all x, y, i, j, k, l. Combining this with relations (A3a)
and (A3b) yields the claim. More precisely, using (A3a) we obtain

(A4) ⇐⇒ δij
∑
s

NV ssx =
∑
y

V ijy

⇐⇒ δij1 =
∑
y

V ijy

⇐⇒ (A3b)

as required.

This completes the proof. �
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Remark 7.3. It is easy to construct examples of unitary error bases. Let X,Z ∈
MN (C) be the generalized Pauli matrices given by their action on the standard
basis |0〉, . . . , |N − 1〉 of CN according to the formulas

X|j〉 = ωj |j〉, Z|j〉 = |j + 1〉,

where we write ω = e
2πi
N and calculate modulo N . Then W = {XjZk}0≤j,k≤N−1

is a unitary error basis for MN (C).

7.2. Applications. We shall use Proposition 7.2 to study the structure of the quan-
tum Cuntz-Krieger algebras FO(GK2 (N)) = FO(K(MN , tr)) and FO(GT2 (N)) =
FO(TMN ), by comparing them with FO(GK1 (N)) and FO(GT1 (N)), respectively.
Recall from paragraph 4.2 that FO(GK1 (N)) identifies canonically with the Cuntz
algebra ON2 . Note also that FO(GT1 (N)) = ∗N2C(S1) is the non-unital free product
of N2 copies of C(S1), compare Proposition 4.10.

Proposition 7.4. There are injective ∗-homomorphisms

πKN : ON2 ↪→MN (FO(K(MN , tr)))

σKN : FO(K(MN , tr)) ↪→MN (ON2)

and

πTN : ∗N2C(S1) ↪→MN (FO(TMN ))

σTN : FO(TMN ) ↪→MN (∗N2C(S1))

for all N ∈ N.

Proof. The construction of these maps for trivial quantum graphs is virtually iden-
tical to the one for complete quantum graphs. In order to treat both cases simul-
taneously we will therefore write G1(N) and G2(N) to denote either GK1 (N) and
GK2 (N), or GT1 (N) and GT2 (N), respectively. Our task is then to define injective
∗-homomorphisms

πN : FO(G1(N)) ↪→MN (FO(G2(N)))

σN : FO(G2(N)) ↪→MN (FO(G1(N)))

for N ∈ N.
Since the quantum graphs G1(N) and G2(N) are quantum isomorphic, Theorem

6.13 yields natural ∗-homomorphisms

β̂ : FO(G1(N)) −→ FO(G2(N))⊗ C(G+(G2(N),G1(N)))

γ̂ : FO(G2(N)) −→ FO(G1(N))⊗ C(G+(G2(N),G1(N)))op,

taking into account that C(G+(G1(N),G2(N))) ∼= C(G+(G2(N),G1(N)))op.
In order to give explicit formulas for these maps let X be a set of cardinality

N2 and denote the standard generators of FO(G1(N)) by Sx = S1(N2ex) for x ∈
X. Similarly, write Srs = S2(Ners) for the standard generators of FO(G2(N)) =

FO(G2). Here S1 : CN2 → FO(G1(N)) and S2 : MN (C) → FO(G2(N)) are the
canonical linear maps. Then we calculate

β̂(Sx) = N
∑
rs

Srs ⊗ vrsx ,

γ̂(Srs) =
∑
x

Sx ⊗ vsrx ,

where vrsx for 1 ≤ r, s ≤ N, x ∈ X are the standard generators of the linking algebra
O(G+(G2(N),G1(N))), see Proposition 6.10.
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Consider now the ∗-homomorphism πW : O(G+(G2(N),G1(N))) −→ MN (C) ob-

tained in Proposition 7.2. Slicing the maps β̂, γ̂ with πW , we define the desired
∗-homomorphims πN , σN by

πN = (id⊗πW)β̂,

σN = (id⊗t)(id⊗πopW)γ̂,

using the isomorphism t : MN (C)op ∼= MN (C) given by sending a matrix Y to its
transpose Y t. Concretely, if we let V rsx be constructed out of a unitary error basis
as in Proposition 7.2 then we have

πN (Sx) = N
∑
rs

Srs ⊗ V rsx ,

σN (Srs) =
∑
x

Sx ⊗ (V srx )t.

Let us denote by m : MN (C)op ⊗MN (C) −→MN (C),m(aop ⊗ b) = ab the multipli-
cation map. Using the relations in Proposition 7.2 we readily see that

(id⊗m)(id⊗t⊗ id)(σN ⊗ id)πN (a) = a⊗ 1

for all a contained in the ∗-algebra generated by the elements Sx for x ∈ X. Simi-
larly, we have

(id⊗m)(id⊗t⊗ id)(πN ⊗ id)σN (b) = b⊗ 1

for all b contained in the ∗-algebra generated by the elements Srs. Since m is
completely bounded, it follows by continuity that πN and σN are injective. �

Let us continue to use the notation from above and denote the embeddings
obtained in Proposition 7.4 by πN and σN , referring to either the trivial or complete
quantum graphs G1(N),G2(N). Following ideas of Gao, Harris and Junge [19], we
shall refine these embeddings and realize each of FO(G1(N)) and FO(G2(N)) as an
iterated crossed product of the other algebra with respect to certain ZN -actions,
up to tensoring with matrices. This is indeed very much related to the work in [19],
which exhibited a similar connection between free group C∗-algebras and Brown’s
universal non-commutative unitary algebras.

In the sequel we write again ω = e
2πi
N and calculate modulo N . We relabel

the generators of FO(Gi(N)) in the proof of Proposition 7.4 by S
(i)
kl for i = 1, 2,

with indices 0 ≤ k, l ≤ N − 1, and let X,Z be the generalized Pauli matrices from
Remark 7.3.

Let us consider the following order N automorphisms αj ∈ Aut(FO(G2(N))) for
j = 1, 2 given on generators by

α1(S
(2)
kl ) = ωk−lS

(2)
kl α2(S

(2)
kl ) = S

(2)
k−1,l−1.

Note that α1 and α2 can be viewed as examples of gauge automorphisms as in
paragraph 6.1. More precisely, they are the gauge automorphisms associated with
the unitaries X,Z in the sense that

(α1 ⊗ id)(S) = (1⊗X)S(1⊗X∗) (α2 ⊗ id)(S) = (1⊗ Z∗)S(1⊗ Z)

for S = (S
(2)
ij ) ∈ FO(G2(N))⊗MN (C). Similarly, we define order N automorphisms

βj ∈ Aut(FO(G1(N))) for j = 1, 2 by

β1(S
(1)
kl ) = S

(1)
k−1,l β2(S

(1)
kl ) = S

(1)
k,l−1.

Clearly, all these automorphisms define actions of ZN on FO(G2(N)) and FO(G1(N)),
respectively. From the relation XZ = ωZX it follows that both pairs of actions
α1, α2 and β1, β2 mutually commute.
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Let us now consider the iterated crossed products

FO(G2(N)) oα1 ZN oα2 ZN , FO(G1(N)) oβ1 ZN oβ2 ZN ,

where α2, β2 are naturally extended to the crossed products by letting ZN act on
itself through appropriate dual actions. More precisely, given a ∈ FO(G2(N)), b ∈
FO(G1(N)) and g ∈ ZN ∼= {0, . . . , N − 1}, we let

α2(aug) = α2(a)ωgug, β2(bug) = β2(g)ωgug.

Abstractly, the algebra FO(G2(N)) oα1 ZN oα2 ZN is the universal C∗-algebra
spanned by elements of the form

x =

N−1∑
j,k=0

ajkv
jwk,

where ajk ∈ FO(G2(N)) and v, w are unitaries, such that the relations

vN = wN = 1, vajk = α1(ajk)v, wajk = α2(ajk)w = ajk, wv = ωvw

are satisfied. A similar description holds for FO(G1(N)) oβ1
ZN oβ2

ZN .
Our aim is to establish the following description of the iterated crossed products

obtained in this way.

Theorem 7.5. For the double crossed products with respect to the actions of ZN
introduced above one obtains ∗-isomorphisms

MN (FO(K(MN (C), tr))) ∼= ON2 oβ1
ZN oβ2

ZN
MN (ON2) ∼= FO(K(MN (C), tr)) oα1

ZN oα2
ZN

and

MN (FO(TMN )) ∼= (∗N2C(S1)) oβ1 ZN oβ2 ZN
MN (∗N2C(S1)) ∼= FO(TMN )) oα1

ZN oα2
ZN

for all N ∈ N.

In order to prove Theorem 7.5 we will construct the required isomorphisms ex-
plicitly, using again uniform notation to treat the cases of trivial and complete
quantum graphs simultaneously.

Consider the unitary error basis W = {XjZk}0≤j,k≤N−1 for MN (C) described
in Remark 7.3. Moreover let πN : FO(G1(N)) −→ FO(G2(N)) ⊗MN (C) and σN :
FO(G2(N)) −→ FO(G1(N))⊗MN (C) be the corresponding embeddings constructed
in the proof of Proposition 7.4. That is, if we set

V rslm =
1

N
(X lZm)∗ers(X

lZm) =
1

N
ω−(r−s)ler−m,s−m,

and use our previous notation for the generators of FO(Gj(N)), then we obtain

πN (S
(1)
lm ) = N

∑
0≤r,s≤N−1

S(2)
rs ⊗ V rslm =

∑
0≤r,s≤N−1

S(2)
rs ⊗ ω−(r−s)ler−m,s−m

and

σN (S
(2)
jk ) =

∑
0≤l,m≤N−1

S
(1)
lm ⊗ (V kjlm )t =

1

N

∑
0≤l,m≤N−1

S
(1)
lm ⊗ ω

(j−k)lej−m,k−m.

From the above formulas we can easily see that

(1⊗X)σN (S
(2)
jk )(1⊗X∗) = σN (α1(S

(2)
jk ))

(1⊗X)πN (S
(1)
jk )(1⊗X∗) = πN (β1(S

(1)
jk )).
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Hence (σN , (1 ⊗ X)) defines a covariant representation of the dynamical system
(FO(G2(N)),ZN , α1), and similarly (πN , 1⊗X) defines a covariant representation
of (FO(G1(N)),ZN , β1). As a consequence, we obtain ∗-homomorphisms

σ′N : FO(G2(N)) oα1
ZN −→ FO(G1(N))⊗MN (C)

π′N : FO(G1(N)) oβ1
ZN −→ FO(G2(N))⊗MN (C)

satisfying

σ′N (a) = σN (a), σ′N (v) = 1⊗X,
π′N (b) = πN (b), π′N (v) = 1⊗X,

where a ∈ FO(G2(N)) and b ∈ FO(G1(N)), respectively. Similarly, we compute

(1⊗ Z∗)σN (S
(2)
jk )(1⊗ Z) = σN (α2(S

(2)
jk )),

(1⊗ Z∗)(1⊗X) = ω(1⊗X)(1⊗ Z∗),

(1⊗ Z∗)πN (S
(1)
jk )(1⊗ Z) = πN (β2(S

(1)
jk )).

Hence (σ′N , (1 ⊗ Z∗)) defines a covariant representation of the dynamical system
(FO(G2(N))oα1

ZN ,ZN , α2), and (π′N , (1⊗Z∗)) defines a covariant representation
of (FO(G1(N)) oβ1

ZN ,ZN , β2). In the same way as before we obtain associated
∗-homomorphisms

σ′′N : FO(G2(N)) oα1
ZN oα2

ZN −→ FO(G1(N))⊗MN (C)

π′′N : FO(G1(N)) oβ1 ZN oβ2 ZN −→ FO(G2(N))⊗MN (C),

satisfying

σ′′N (a) = σN (a), σ′′N (v) = σ′N (v) = 1⊗X, σ′′N (w) = 1⊗ Z∗,
π′′N (b) = πN (b), π′′N (v) = π′N (v) = 1⊗X, π′′N (w) = 1⊗ Z∗,

respectively, where a ∈ FO(G2(N)), b ∈ FO(G1(N)).
With these constructions in place, Theorem 7.5 is a consequence of the following

assertion.

Theorem 7.6. The maps σ′′N and π′′N are isomorphisms.

Proof. Using C∗(X,Z∗) = MN (C) and the description of σ′′N given above it is easy
to see that σ′′N is surjective. Explicitly, the range of σ′′N contains σN (FO(G2(N)))
and 1⊗MN (C), and these two algebras generate FO(G1(N))⊗MN (C).

To show that σ′′N is injective consider the ∗-homomorphism

(πN ⊗ id)σN : FO(G2(N)) −→ FO(G2(N))⊗MN (C)⊗MN (C).

If we denote by {|ξjk〉}0≤j,k≤N−1 ⊂ CN ⊗ CN the orthonormal basis of maximally
entangled vectors given by

ξjk =
1√
N

N−1∑
r=0

XjZk|r〉 ⊗ |r〉,
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then one obtains

(πN ⊗ id)σ′′N (S
(2)
jk ) =

1

N

∑
lmrs

S(2)
rs ⊗ ω−(r−s)ler−m,s−m ⊗ ω(j−k)lej−m,k−m

=
∑
sm

S
(2)
s+j−k,s ⊗ es+j−k−m,s−m ⊗ ej−m,k−m

=
∑
nm

S
(2)
n+j,n+k ⊗ en+j−m,n+k−m ⊗ ej−m,k−m

=
∑
ln

α−l1 α−n2 (S
(2)
jk )⊗ |ξl,n〉〈ξl,n|.

Next, we define a unitary V on CN ⊗CN by setting V (|j〉⊗ |k〉) = ω−jk|ξjk〉. Then
we have

V ∗(1⊗X)V = Z ⊗ 1, V ∗(1⊗ Z∗)V = X ⊗ Z.
Thus, if we consider the ∗-homomorphism

Φ : FO(G2(N)) oα1
ZN oα2

ZN −→ FO(G2(N))⊗MN (C)⊗MN (C)

given by Φ = ad(1⊗ V ∗)(πN ⊗ id)σ′′N , then we get

Φ(a) =
∑
l,n

α−l1 α−n2 (a)⊗ ell ⊗ enn

for all a ∈ FO(G2(N)), and also

Φ(v) = (1⊗ V ∗)(πN ⊗ id)σ′′N (v)(1⊗ V ) = 1⊗ V ∗(1⊗X)V = 1⊗ Z ⊗ 1

and

Φ(w) = (1⊗ V ∗)(πN ⊗ id)σ′′N (w)(1⊗ V ) = 1⊗ V ∗(1⊗ Z∗)V = 1⊗X ⊗ Z.

From these formulas it follows that the image of Φ is exactly the reduced crossed
product FO(G2(N)) oα1,r ZN oα2,r ZN , and Φ is none other than the canonical
quotient map from the full crossed product to the reduced crossed product. Since
ZN is finite, and hence amenable, the map Φ is an isomorphism, forcing σ′′N to be
injective. This proves the claim for σ′′N .

For π′′N one proceeds in a similar way, essentially by swapping the roles of the
maps πN and σN and repeating the above arguments. �

Remark 7.7. The first pair of isomorphisms in Theorem 7.5 should not come as a
great surprise, given that Theorem 4.5 in section 4 already asserts an isomorphism
FO(K(MN (C), tr)) ∼= ON2 . In fact, the latter isomorphism can be verified by
considering the injective ∗-homomorphism σKN : FO(K(MN (C), tr)) −→ MN (ON2)
obtained in Proposition 7.4 and inspecting the relations in the proof of Proposition
7.2. In the next section we will prove Theorem 4.5 in full generality.

Remark 7.8. Taking into account the identification FO(K(MN (C), tr)) ∼= ON2 , the
statement for complete quantum graphs in Theorem 7.5 is reminiscent of Takesaki-
Takai duality. However, the isomorphisms are slightly different. Note also that
the C∗-algebras ∗N2C(S1) and FO(TMN ) are not even Morita equivalent, compare
Theorem 4.7.

Remark 7.9. Using the isomorphism from Theorem 4.7 we see that πTN induces an
embedding ∗N2C(S1) → MN (C) ∗1 (C(S1) ⊕ C). In the notation used above this

maps the generators S
(1)
kl to

∑
rs ω

k(s−r)er−l,rSes,s−l, where S denotes the standard
generator of C(S1) ⊂ C(S1)⊕ C.
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Remark 7.10. It seems natural to look at pairs of quantum Cuntz-Krieger algebras
associated to quantum isomorphic quantum graphs beyond the cases considered in
Theorem 7.5. Finding “small” representations of linking algebras could potentially
allow one to transfer properties like unitality, nuclearity, or existence of traces
from one algebra to the other, without a priori knowing whether the algebras are
isomorphic or not.

8. The structure of complete quantum Cuntz-Krieger algebras

In this final section we discuss our main result on the structure of complete
quantum Cuntz-Krieger algebras, that is, we provide the proof of Theorem 4.5
stated in section 4.

Let us begin with a simple lemma.

Lemma 8.1. Let A be a non-zero unital C∗-algebra and let n1, n ∈ N. Moreover
assume that u = (uxy) ∈Mn1,n(A) is a rectangular unitary matrix with coefficients
in A. Let sx for 1 ≤ x ≤ n1 be the standard generators of On1

and define elements
ŝy ∈ On1

⊗A for 1 ≤ y ≤ n by

ŝy =

n1∑
x=1

sx ⊗ uxy.

Then the elements ŝy satisfy the defining relations of On and

C∗(ŝ1, . . . , ŝn) ∼= On.

Proof. In order to verify the Cuntz relations we calculate

ŝ∗z ŝy =
∑
x1,x2

s∗x1
sx2
⊗ u∗x1zux2y

=
∑
x1

1⊗ u∗x1zux1y

= δy,z(1⊗ 1)

and ∑
y

ŝy ŝ
∗
y =

∑
y,x1,x2

sx1s
∗
x2
⊗ ux1yu

∗
x2y

=
∑
x1,x2

sx1
s∗x2
⊗ δx1,x2

1

= 1⊗ 1.

Since On is simple this yields the claim. �

Now let us fix a complete quantum graph K(B,ψ) satisfying the hypotheses of
Theorem 4.5, that is, (B,ψ) is a finite quantum space in standard form such that
ψ : B → C is a δ-form with δ2 ∈ N. We shall use the same notation that as

after Definition 3.1, so that B =
⊕d

a=1MNa(C) and ψ(x) =
∑d
a=1 Tr(Q(a)xi) for

x = (x1, . . . , xd).
By Remark 6.9, we have a quantum isomorphism K(B,ψ) ∼=q Kδ2 . Denote

by vxija for 1 ≤ a ≤ d, 1 ≤ i, j ≤ Na, 1 ≤ x ≤ δ2 the standard generators of

the C∗-algebra A = C(G+(Kδ2 ,K(B,ψ))) given in Proposition 6.10. Moreover let
n = dim(B) and consider the rectangular matrix u = (uxija) ∈Mδ2,n(A) given by

uxija = (Q(a))
−1/2
jj δ−1vxija.
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Using the relations in Proposition 6.10 one obtains

(u∗u)ija,klb =
∑
x

(Q(a))
−1/2
jj δ−1(vxija)∗(Q(b))

−1/2
ll δ−1vxklb

=
∑
x

(Q(a))
−1/2
jj (Q(b))

−1/2
ll δ−2vxjiav

x
klb

=
∑
x

(Q(a))
−1/2
jj (Q(a))

−1/2
ll δ−2δabδikv

x
jla

=
∑
x

(Q(a))
−1/2
jj (Q(a))

−1/2
ll (Q(a))jjδabδikδjl

= δabδikδjl

and

(uu∗)xy =
∑
ija

(Q(a))
−1/2
jj δ−1vxija(Q(a))

−1/2
jj δ−1(vyija)∗

=
∑
ija

(Q(a))
−1
jj δ
−2vxijav

y
jia

=
∑
ia

δxyv
x
iia

= δxy.

We conclude that u∗u = 1Mn(A) and uu∗ = 1Mδ2 (A), or equivalently, that u is
unitary.

Next, we consider the ∗-homomorphism β̂ : FO(K(B,ψ)) → Oδ2 ⊗ A from
Theorem 6.13, which satisfies

β̂(S(e
(a)
ij )) =

∑
x

S(ex)⊗ vxjia

in terms of the standard matrix units. Equivalently, if we write S
(a)
ij = S(f

(a)
ij ),

where f
(a)
ij = (Q(a))

−1/2
ii e

(a)
ij (Q(a))

−1/2
jj are the adapted matrix units for (B,ψ), and

sx = S(δ2ex) for the canonical Cuntz isometries generating Oδ2 , then

β̂(S
(a)
ij ) = (Q(a))

−1/2
ii (Q(a))

−1/2
jj δ−2

∑
x

sx ⊗ vxija

= (Q(a))
−1/2
ii δ−1

∑
x

sx ⊗ uxija.

Hence the unitarity of the matrix u = (uxija) combined with Lemma 8.1 implies

that the elements (Q(a))
1/2
ii δβ̂(S

(a)
ij ) form an n-tuple of Cuntz isometries in Oδ2⊗A.

According to Remark 6.14, the restriction of β̂ to the ∗-algebra generated by the

S
(a)
ij is injective. This shows that FO(K(B,ψ)) is unital with unit

e =
∑
ija

(Q(a))iiδ
2S

(a)
ij (S

(a)
ij )∗,

and that the elements (Q(a))
1/2
ii δS

(a)
ij form an n-tuple of Cuntz isometries generating

FO(K(B,ψ)). This completes the proof of Theorem 4.5.

Remark 8.2. It seems reasonable to expect that FO(K(B,ψ)) ∼= On for all choices
of δ-forms ψ, but we are unable to supply a proof. Note that when δ2 /∈ N, we
no longer have a quantum isomorphism between K(B,ψ) and a classical complete
graph, and therefore a different approach would be needed.
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