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On the solar surface, the interaction of the magnetic field and surrounding
plasmas creates complex structures—often seen as entangled bundles of

field lines.

NASA/GSFC/Solar Dynamics Observatory

Coronal loops illuminated by
charged particles spinning
along the magnetic field lines.
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Complex magnetic fields can relax into simpler patterns, sometimes but not
always 1involving eruptions. This 1s 1n an interesting regime where the
topology 1s quasi-conserved.




One way of characterising the topology in a mathematical language 1s to
use the field line helicity.

Suppose the magnetic field B can be
described by a vector potential A,

B=VxA
and the (magnetic) field line helicity
(FLH) is
A(x) = A -dl
F(x)

where F(x) is the magnetic field line

Russell et. al. (2015) through point x

We use the field line helicity to trace the evolution of magnetic structures.



Conceptually, topological dissipation was discussed by Parker (1972) and
reduction of complex structures to simple flux tubes by Parker (1983).
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Numerical experiments of braided magnetic field show the simplification of
FLH as complexity of the magnetic field reduces (Yeates et al. 2010, 2015).

¢.g, E3 case which relaxes to two flux tubes (Russell ef al. 2015).
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T=3 model with four regions of

twists relaxes into four tubes
(Yeates et al. 2010).

FLHofB,zp =-24,t =0
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We can translate the dynamics to a reduced model 1n order to better
understand the topological evolution.

wla) = [ nged

\ S N

[N

(Yeates 2017 research notes)

E=—vxB+nj Separate current into parallel and
_ ( v+ u) xB + V4 perpendicular components when there 1s a

\ , small resistivity.
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0A

= _E-V¢

ot

Then use the (uncurled) induction equation
with a scalar potential ¢

Use the definition of field line helicity A= [ A-dl ,
and set = (0 for a fixed gauge

0A

ot

w- - VA =w—A— o

Hypothesis: to first order approximation the evolution of FLH
behaves mostly as 1f 1t 1s being advected by a fictitious flow



Problem set-up

Define a Dirichlet functional to measure the complexity of a 2D density

function B(t) — <|Vf|2>

where <...>:A—1// .- dxdy
D

Suppose 1t 1s being advected by an 1deal incompressible fluid

of B
E—F’w'Vf—O,

V-w=0

We want to find a flow field w such that it minimises E(T),
1.e., optimally reduce complexity to match with the relaxed state.

With some algebra (Moffatt 1990, Arnold & Khesin 1998, they studied
similar fluid models) one can show the optimal state satisfies:

Vir xV (Vifr) =0



Two optimal approaches:

1. Variational method (VM)

adjust norm

= (|V? fr|?) + sgn(0)(ITV - w>+sgn(9)/0 <F(g{+w Vf)>

AN

Objective Constraints

Solve a coupled system of PDE until the optimal solution is found

5£:<§—i 5w> <§—§5n> /()T<6F§I€>dt+/0 <f f> <;Ti5fT> —0



2. Magnetic relaxation method (MR)

Define a 2D magnetic field from the flux function B =V x f(z,y,t)2
evolve as if 1t 1s being relaxed resistively

uV2w+ (Vx B)x B—VP =0,

coupled with the advection equation by an incompressible flow

of B
E—I—’w-Vf—O,

V-w=0

After some manipulation, one can show the energy 1s monotonically

decreasing
AOE(t) 5
_ — <
> ,LL//Dwa\dXdy_O

Similar methods have been mentioned by Moffatt (1990), Linardatos
(1993), Moftatt & Dormy (2019). We set p = 1.




Simple test results
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a=0.1 a=0.3 a=0.5
"
0.5 0.5 0.5 g 0.5
> 0 0 0 0
»
-0.5 -0.5 05" -0.5
-0.5 0 0.5 -0.5 0 0.5
X X X
Expected final state error VM 0 — —1 error MR

for all values of a

0.5 0.5
> 0
-0.5 -0.5
-0.5 0 0.5
X

o

(Chen et al. 2020. To be submitted to JFM)
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Simple test results
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(Chen et al. 2020. To be submitted to JFM)



Complex cases

E3 braid T=3 model

X X

(Chen et al. 2020. To be submitted to JFM)



Complex cases

E3 braid T=3 model

t=0.20791 t=1.1478
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(Chen et al. 2020. To be submitted to JFM)




Convergence of the energy
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(Chen et al. 2020. To be submitted to JFM)



Conservation of topology:

A consequence of advection by an incompressible fluid 1s that the area enclosed by
cach 1so-contour remains constant. This 1s measured by the signature function

r 2 .
S(F) = < ,qu,f(x’nyC d”z, i ﬁ z 8’ where min f(z,y) < f. < max f(x,y)
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(Chen et al. 2020. To be submitted to JFM)



Summary

Topology of magnetic field can be tracked through field line helicity
during magnetic relaxation. It behaves as 1f 1t’s mainly been advected
by a fictitious fluid.

Two approaches have been developed to find the optimal flow field in
order to predict the final state: variational method (VM) and magnetic
relaxation method (MR). We find MR 1s numerically more stable.

With MR, we tested the E3 and T=3 cases of braided magnetic
field, we find the overall topology of the final state matches the 3D
results. This then validates our hypothesis.

Next step: test more configurations, study detailed configuration of
the final state (with “w.A” term)?



Thank you



