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Complex magnetic fields can relax into simpler patterns, sometimes but not 
always involving eruptions. This is in an interesting regime where the 
topology is quasi-conserved. 

On the solar surface, the interaction of the magnetic field and surrounding 
plasmas creates complex structures—often seen as entangled bundles of 
field lines.



“field line helicity” contains all available topological infor-
mation and can therefore distinguish between magnetic fields
with the same total helicity. The primary aim is to investi-
gate how this measure of helicity evolves in the broad re-
gime between ideal evolution (for which every field line has
its own helicity invariant) and Taylor relaxation (for which
the only helicity invariant is total helicity). The results char-
acterize changes to the composition of magnetic helicity and
are expected to advance our understanding of 3D magnetic
reconnection across a broad variety of applications including
turbulent magnetic relaxation.

This paper is organized as follows. Section II describes
the model, recaps the concept of field line helicity, and dis-
cusses gauge considerations. In Sec. III, the evolution equa-
tion for field line helicity is derived and its terms are
examined. We then focus on cases where dynamics are local-
ized within the domain (Sec. IV) and show that evolution of
field line helicity for a given field line is dominated by a
work-like term, which has a well-organized structure of pairs
of positive and negative rates of change. Kinematic exam-
ples in Sec. V confirm our analytic results. The paper ends
with a summary in Sec. VI.

II. PRELIMINARIES

A. Model

Much of what we discuss in this paper applies generally,
but for concreteness we will consider a flux tube model
sketched in Fig. 1. All field lines enter through a single sur-
face D0 and exit through a different surface D1. The remain-
der of the boundary is a magnetic surface, DS, that joins the
edge of D0 with the edge of D1. There are no magnetic null
points in the domain, hence we consider finite-B reconnec-
tion.28 This model can describe closed flux tubes (in which
case magnetic field is periodic on D0 and D1) as well as open

flux tubes. More general magnetic fields can be partitioned
into a collection of such domains, which increases the gener-
ality of this model.

For simplicity, some of our results will be presented
using a restricted version of the model. The first simplifica-
tion is to take D0 and D1 planar with outward surface nor-
mals, ~n, pointing in the 6z-direction. In these cases, we also
assume that the boundary is line-tied and ideal so that elec-
tric field ~E ¼ 0 and ~B "~n is constant in time. This restriction
is appropriate to solar physics where the restricted model
may, for example, represent the magnetic field in a coronal
loop under assumptions that the coronal magnetic field is
evolving more rapidly than the photospheric convection
timescale and that dynamics are concentrated away from the
side boundary, DS. The simplified model is therefore of
direct relevance to the relaxation of magnetic braids, mag-
netic instabilities, coronal heating, and confined solar flares.

B. Field line helicity

Field line helicity, A, assigns a helicity value to every
field line. Physically, it measures the winding of magnetic
flux with the field line of interest7 and can also be viewed as
a topological flux function.29–32 It is defined as

Að~xÞ ¼
ð

Fð~xÞ
~A " d~l; (1)

where ~x is a point on a cross-section of our flux tube (e.g.,
the lower boundary, D0), Fð~xÞ is the magnetic field line
through that point, and d~l is the line element along the field
line. Since our domain is free of null points, the integral is
always well defined.

Field-line helicity retains all topological information, in
contrast to the volume-integrated total magnetic helicity.31 It
can therefore distinguish between topologically different
magnetic fields with the same total helicity, while the total
magnetic helicity is easily recovered from A since

Hð~AÞ ¼
ð

V

~A " ~B d3x ¼
ð

D0

ABi d2x ¼
ð

D1

ABo d2x; (2)

where Bi is the magnetic field component parallel to the
inward normal on D0 and Bo is the magnetic field component
parallel to the outward normal on D1. Note that this formula
justifies the name field line helicity since total helicity is the
flux integral of A. Provided the gauge is suitably restricted,
A has the desirable property of being an ideal invariant, save
for changes of field line connectivity caused by motions on
the boundaries. The gauge condition under which this is true
is discussed in Sec. II C and the result is derived in
Sec. III B. At the same time, A is considerably easier to
work with than the helicity density, ~A " ~B, which depends on
all three coordinates and changes under ideal evolutions.

C. Gauge considerations

Magnetic helicity and field line helicity are in general
gauge-dependent for open domains, i.e., they change under
gauge transformations of the vector potential. Referring to

FIG. 1. Sketch of the flux tube model with all field lines connecting D0 to
D1. The side of the domain, DS, is a magnetic surface and the domain con-
tains no magnetic nulls.
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Russell et. al. (2015) where F(x) is the magnetic field line 
through point x.

B = r⇥A

Suppose the magnetic field  B can be 
described by a vector potential A, 

and the (magnetic) field line helicity 
(FLH) is 

We use the field line helicity to trace the evolution of magnetic structures.

One way of characterising the topology in a mathematical language is to 
use the field line helicity.  

A(x) =

Z

F (x)
A · dl
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A VARIATIONAL APPROACH TO SELF-ORGANIZATION IN CONDUCTING FLUIDS

Background

A central challenge in modern fluid dynamics is to understand how radically disparate phenomena all 
emerge from the same basic governing equations. Coherent structures often form on a global scale, yet 
the equations themselves prescribe only interactions at a local level. How does such large-scale 
organization emerge, and can it be predicted in a given system?

We will address this question in magneto-hydrodynamics (MHD), a rich system where a magnetic field 
both drives and constrains the motion of the fluid. This nonlinear coupling can produce striking large-
scale structures, for example the global magnetic field of our own planet [1]. This project will focus on 
model configurations where the magnetic field is braided in a complex pattern, because numerical MHD 
simulations of such systems by the PI and collaborators have shown striking self-organization [2-4]. 
These simulations were initially motivated by solar coronal loops (with line-tied boundary conditions), but 
we have shown that such self-organization also occurs in periodic systems akin to the toroidal fields of 
laboratory plasmas [3]. Similar behaviour has been found in simulations of “knotted” magnetic 
configurations [5-6].

Objectives

We will use a variational approach to test the hypothesis that approximate conservation of field line 
helicity determines the organized structures that form in rapidly relaxing MHD systems. This is a 
novel and unexpected idea, because field line helicity (which quantifies the linkage of each magnetic 
field line) was previously thought to play no role in resistive MHD. It was thought to be totally destroyed 
by even a small amount of resistivity [7]. However, careful analysis of MHD simulations by the PI and 
collaborators has found that, though field line helicity is not conserved on each individual magnetic field 
line, neither is it destroyed overall. Rather, it is observed to be efficiently redistributed throughout the 
domain, in a manner consistent with organization of the structure [8], as illustrated in Figure 1.

Following these observations, we propose to go a step further: could this “quasi-conservation” actually 
explain the self-organization? In other words, is there a causal link?

Figure 1. A braided MHD simulation [from 8], showing magnetic field lines before and after self-
organization into two twisted flux tubes. Contours on the cross-section show the initial and final 
distributions of field line helicity (FLH), which differ due to magnetic reconnection.

If such a causal link is found, this would give fundamental new insight into the behaviour of these 
complex MHD systems. We will test this directly by taking advantage of modern computational 
capabilities in dynamically-constrained optimization. Namely, we will test whether the organized 

Numerical experiments of braided magnetic field show the simplification of 
FLH as complexity of the magnetic field reduces (Yeates et al. 2010, 2015). 

e.g, E3 case which relaxes to two flux tubes (Russell et al. 2015). 

Conceptually, topological dissipation was discussed by Parker (1972) and 
reduction of complex structures to simple flux tubes by Parker (1983).
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We can translate the dynamics to a reduced model in order to better 
understand the topological evolution. 

Figure 3: Interpretation of our chosen �eld line velocityw .

Now, since the �eld line L(x+, t ) is frozen in to the �oww , we can write

dA (x+, t )

dt
=

d
dt

⌅

L(x+,t )
A · dl =

⌅

L(x+,t )

 
@A
@t
+ r(w ·A) �w ⇥ r ⇥A

!
· dl .

Since w = 0 on z = 0 and we chose wz = 0 on z = 1, the advected line L will continue to
connect z = 0 and z = 1, so we avoid some additional boundary terms.

To rewrite this expression, we have the (uncurled) induction equation

@A
@t
= �E � r�

for some scalar potential �. Substituting this and our Ohm’s law gives

dA (x+, t )

dt
=

⌅

L(x+,t )
dl · r

⇣
w ·A �� � �

⌘
= w (x+) ·A?(x+) �� (x+) � � (x+) + � (x�). (3.1)

Here x� is the footpoint of the �eld line L(x+, t ) on z = 0, and A? is the horizontal part of A.

What do the terms in (3.1) mean?

Firstly, w (x+) · A?(x+) represents the additional �ux that will pass through our surface as
the �eld line endpoint on z = 1 slips with the �eld line velocity w (x+). It is the additional
contribution to the line integral of A due to the lengthening (or shortening) of the line, as
illustrated in Figure 4. �is could in principle be quite large if the �eld line has changed its
connectivity appreciably.

Secondly,� (x+) represents the change in �ux through our surface that occurs due to the mo-
tion of other �eld lines within the domain. (�is is the usual parallel electric �eld of General
Magnetic Reconnection theory.)

�irdly, the di�erence in � arises if we change the gauge ofA over time. In our case with �xed
end-points we can simply keep A ⇥ n �xed on the boundary, so that � ⌘ 0 and

dA (x+, t )

dt
= w (x+) ·A?(x+) �� (x+).

Since all of the terms on the right-hand side are on the upper boundary z = 1, it is useful to
think of A (x+) as a two-dimensional function on the plane z = 1. Since the point x+ is being
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New magnetic relaxation hypothesis

Anthony Yeates, Alexander Russell, Gunnar Hornig
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Abstract

�is is an outline of our modi�ed relaxation hypothesis. Namely, in a magnetic �eld with su�ciently complex
�eld line mapping, the �eld line helicity is e�ciently redistributed betweenmagnetic �eld lines, but not destroyed
on a dynamical timescale.

1 Introduction

We consider the classic Parker problem: a magnetic �eld B (x , t ) extends between two planes
z = 0 and z = 1 and is initially tangled (Figure 1). If it is allowed to relax holding the endpoints
�xed (E = 0), what is the minimum energy state?

Here we will assume for simplicity that Bz > 0 everywhere.

It makes a big di�erence what sort of evolution we are allowing:

1. Ideal MHD, E = �v ⇥ B: minimum-energy state is non-linear force-free r ⇥ B = � (x )B.
2. Resistive MHD, E = �v ⇥ B + �j: minimum-energy state is potential r ⇥ B = 0.

In practice, we always have � , 0, yet a potential state is o�en not reached on a dynamical
timescale, since � is very small. So the question is, what relaxed state is reached on a dynamical
timescale?

We expect a force-free equilibrium, but is � (x ) somehow simpler than in the ideal case?

Figure 1: �e setup that we consider.

1
E =� v ⇥B + ⌘j

=� (v + u)| {z }
w

⇥B +r 
Separate current into parallel and 
perpendicular components when there is a 
small resistivity. 

 (x+) =

Z x+

x�

⌘j · dl

(Yeates 2017 research notes)



@A
@t

+w ·rA = w ·A�  

Use the definition of field line helicity                       ,  
and set              for a fixed gauge

Hypothesis: to first order approximation the evolution of FLH 
behaves mostly as if it is being advected by a fictitious flow 

A =

Z
A · dl

@A

@t
= �E �r�

Then use the (uncurled) induction equation 
with a scalar potential �

� = 0



Problem set-up

E(t) = h|rf |2i

@f

@t
+w ·rf = 0,

r ·w = 0

Define a Dirichlet functional to measure the complexity of a 2D density 
function 

rfT ⇥r
�
r2fT

�
= 0

h· · · i = A�1

ZZ

D
· · · dxdywhere

Suppose it is being advected by an ideal incompressible fluid

With some algebra (Moffatt 1990, Arnold & Khesin 1998, they studied 
similar fluid models) one can show the optimal state satisfies:

We want to find a flow field       such that it minimises          , 
i.e., optimally reduce complexity to match with the relaxed state.

E(T )w



1. Variational method (VM) 

Two optimal approaches:

4

so that r2fT = F (fT ) for some function F . Unfortunately, this is a purely formal result
in that it is not possible a priori to determine the form of the function F (f), which
depends in a complicated way on the initial f0 distribution (Mo↵att & Dormy 2019).
Thus we need an alternative approach to determine fT .
The aforementioned two approaches to find w are complementary: (1) the variational

method imposes fewer restrictions on w but has no guarantee of convergence; (2) the
magnetic relaxation method uses a specified form of w to guarantee monotonically
decreasing E(t), as we will show in Section 2.2. It turns out that both methods can find
the expected minimal energy state of fT for simple initial states f0, but for complicated
cases the second method with guaranteed convergence outperforms the first. We will
describe each method in more detail below.

2.1. Variational method

Given an initial distribution f0 = f(x, y, 0), the variational method searches for the
optimal incompressible flow which will minimize the complexity of the final state E(T ) =
h|rfT |2i where fT = f(x, y, T ). For simple examples, we assume the flow w(x, y) is time-
independent. Although it would be intuitive to use E(T ) as the objective for optimization,
as pointed out by several authors in Thi↵eault (2012); Marcotte & Caulfield (2018), the
“mix-norm” h|r✓ · · · |2i1/2 where ✓ < 0 is more suitable in the absence of di↵usion, and
leads to weak convergence in certain cases (Mathew et al. 2005). We therefore define a
generic Lagrangian as

L = h|r✓fT |2i+ sgn(✓)h⇧r ·wi+ sgn(✓)

Z T

0

⌧
�

✓
@f

@t
+w ·rf

◆�
dt, (2.7)

where h|r✓ · · · |2i is a measure of the mixing level, sgn(✓) can be either positive or negative
depending on the norm we choose: ✓ = 1 represents the Dirichlet norm and ✓ = �1
represents the mix-norm. When f becomes homogeneous, i.e. more mixed, the Dirichlet
norm goes down while the mix-norm goes up. Thus, we minimize the Lagrangian when
✓ > 0, and maximize the Lagrangian when ✓ < 0.

Meanwhile, � (x, y, t) and ⇧(x, y) are Lagrange multipliers which impose constraints
(2.2) and (2.3) respectively, and w(x, y) is a time-independent vector field which we
optimize. Note that we can also formulate (2.7) with a general flow field ew(x, y, t), but
the pressure term needs to be time-dependent e⇧(x, y, t), too, to satisfy the constraint
(2.3). This increases the numerical cost but does not alter other terms in the Lagrangian,
so we choose a steady flow w to simplify the test. Unlike similar models where the flow
scale w⇤ carries important physical meaning (Pringle et al. 2012; Chen et al. 2015),
in our case, the flow can always be rescaled with arbitrary time and length scales as
w⇤ ⇠ L⇤/t⇤, while still giving the same final state of f . There is then no need to impose
the normalization of w as a separate constraint in (2.7).

Each of the variational derivatives of L has to vanish separately for the optimal
solution, since

�L =

⌧
�L
�w

· �w
�
+

⌧
�L
�⇧

�⇧

�
+

Z T

0

D
��

�L
��

E
dt+

Z T

0

D
�f

�L
�f

E
dt+

⌧
�L
�fT

�fT

�
. (2.8)

In the expression above, we have already taken into account that the boundary terms
vanish when w and f satisfy our chosen boundary conditions. By setting all variational
derivatives to zero except that of w, we obtain a coupled system of Euler-Lagrange
equations. For more details, see Appendix A. We repeat the following steps until �L/�w
converges to zero: (1) integrate forwards in time from t = 0 to t = T using the advection

ConstraintsObjective

adjust norm

Solve a coupled system of PDE until the optimal solution is found 
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2. Magnetic relaxation method (MR) 

eB = r⇥ f(x, y, t)ẑ

Similar methods have been mentioned by Moffatt (1990), Linardatos 
(1993), Moffatt & Dormy (2019). We set            .µ = 1

µr2w + (r⇥ eB)⇥ eB �rP = 0,

@f

@t
+w ·rf = 0,

r ·w = 0

coupled with the advection equation by an incompressible flow

Define a 2D magnetic field from the flux function 

After some manipulation, one can show the energy is monotonically 
decreasing 

A

2

@E(t)

@t
= �µ

ZZ

D
|r⇥w|2dxdy  0

evolve as if it is being relaxed resistively 
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Simple test results

Initial state

Expected final state 
for all values of α

error VM error MR✓ = �1

α =0.1 α =0.1

(Chen et al. 2020. To be submitted to JFM)



Simple test results

VR MR✓ = �1

(Chen et al. 2020. To be submitted to JFM)



Complex cases

E3 braid T=3 model

(Chen et al. 2020. To be submitted to JFM)



Complex cases

E3 braid T=3 model

(Chen et al. 2020. To be submitted to JFM)
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Convergence of the energy 

(Chen et al. 2020. To be submitted to JFM)



Conservation of topology:
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2, including the equations solved by both the variational (Section 2.1) and magnetic
relaxation (Section 2.2) models. The numerical methods are described in Section 2.3. In
Section 3, we first present the results from simple test cases, then move on to show the
results for more complex initial distributions using the magnetic relaxation method. A
summary and discussion of the results are presented in Section 4.

2. Problem setup

Given a density function f(x, y, t) in a domain D 2 R2, with initial distribution
f(x, y, 0) = f0, we define the measure of complexity, which is similar to the Dirichlet
functional (1.1), as

E(t) = h|rf |2i, (2.1)

where h· · · i = A�1
RR

D · · · dx dy, and A is the area of D. We search for a flow w(x, y, t)
that will unstir f according to the advection equation,

@f

@t
+w ·rf = 0, (2.2)

such that E(t) decreases as t : 0 ! T for some late time T , although not necessarily
monotonically. The flow field is taken to be incompressible,

r ·w = 0, (2.3)

so that it has an invariant signature function

S(fc) =

8
><

>:

RR
f(x,y)>fc

d2x, if fc > 0

A, if fc = 0,RR
f(x,y)6fc

d2x, if fc < 0,

(2.4)

which measures the area enclosed by all isocontours with f(x, y) = fc (Mo↵att 1990). In
section 3.2 we assume the examples have the boundary condition f

��
@D

= 0, as well as

|rf |@D ⇡ 0. There we take no-slip conditions w
��
@D

= 0. However, in Section 3.1 we will
also illustrate cases where f and w obey periodic boundary conditions. In essence, the
boundary does not play an important role in our examples.

States that minimise E(t) are known to satisfy the Grad-Shafranov equation r2f =
F (f) for some function F while preserving S(fc) (Mo↵att 1990; Arnold & Khesin 1998).
One way to see this is to consider variations of E(t) under small displacements of the
form �f = ⇠ · rf where ⇠ = r ⇥ ⇣(x, y)ẑ. Using the boundary conditions mentioned
above,
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⇣rf ·r⇥ (r2f ẑ) d2x =
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⇣ẑ ·rf ⇥r(r2f) d2x. (2.5)

A state fT that minimises E(t) under (2.2) and (2.3) must therefore satisfy

rfT ⇥r
�
r2fT

�
= 0, (2.6)

min f(x, y)  fc  max f(x, y)

A consequence of advection by an incompressible fluid is that the area enclosed by 
each iso-contour remains constant. This is measured by the signature function  

where

(Chen et al. 2020. To be submitted to JFM)



Summary 

Topology of magnetic field can be tracked through field line helicity 
during magnetic relaxation. It behaves as if it’s mainly been advected 
by a fictitious fluid.

Two approaches have been developed to find the optimal flow field in 
order to predict the final state: variational method (VM) and magnetic 
relaxation method (MR). We find MR is numerically more stable.

With MR, we tested the E3 and T=3 cases of braided magnetic 
field, we find the overall topology of the final state matches the 3D 
results. This then validates our hypothesis.

Next step: test more configurations, study detailed configuration of 
the final state (with “w.A” term)? 



Thank you 


