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The mathematical setting of the talk

The (homogeneous,) incompressible, viscous, resistive MHD equations
consist of

∂tu + (u · ∇)u +∇p − ν∆u − (∇× B)× B = 0, (1)

∇ · u = 0, (2)

∂tB +∇× (B× u) + η∇× (∇× B) = 0, (3)

∇ · B = 0, (4)

where ν, η > 0.

In ideal MHD, ν = η = 0.

Given a bounded, simply connected domain V ⊂ R3 with ∂V = S we set the
boundary conditions u|S = 0; B · n|S = 0; E× n|S = 0, which leads to
(∇× B)× n|S = 0.

In ideal MHD, we set u · n|S = B · n|S = 0.
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Conserved integral quantities of ideal MHD

Continuously di�erentiable solutions u, B of ideal MHD conserve∫
V

|u|2 + |B|2

2
dx (total energy),∫

V
u · B dx (cross helicity),∫
V
A · B dx (magnetic helicity),

where ∇× A = B.

However, simulations point towards anomalous dissipation of total energy: when
viscosity and resistivity tend to zero, the energy dissipation rate tends to a positive
constant:

Mininni-Pouquet (Phys. Rev. Lett. 2009),

Dallas-Alexakis (Astrophys. J. Lett. 2014),

Linkmann-Berera-McComb-McKay (Phys. Rev. E 2015).

Taylor's conjecture (Phys. Rev. Lett. 1974): magnetic helicity is approximately
conserved in V for very small resistivities η > 0.
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Berger's solution

Berger (Geophys. Astrophys. Fluid Dynamics 1984) solved physically Taylor's
conjecture by showing that for small resistivities η > 0, magnetic helicity
dissipates much slower than magnetic energy.

When ν, η > 0, the dissipation rates of total energy and magnetic helicity are

∂tH(t) = ∂t
∫
V A · B dx = −2η

∫
V B · ∇ × B dx,

∂tE(t) = ∂t
∫
V(|B|2 + |u|2)/2 dx = −ν

∫
V |∇ × u|2 dx− η

∫
V |∇ × B|2 dx.

The part of Berger's argument most relevant for this talk is the use of the

Cauchy-Schwarz inequality
∣∣∫
V f · g

∣∣2 ≤ ∫V |f |2 ∫V |B|2 on f =
√
ηB and

g =
√
η∇× B:

|∂tH(t)|2 = 4
∣∣∫
V ηB · ∇ × B dx

∣∣2
≤ 4

∫
V η |B|

2 dx
∫
V η |∇ × B|2 dx

≤ 4η
∫
B |B|

2 dx |∂tE(t)| .
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A mathematical programme

The following mathematical version of Taylor's conjecture was presented in
Ca�isch-Klapper-Steele (Comm. Math. Phys. 1997):

Conjecture

Magnetic helicity does not dissipate in the ideal limit.

At η = 0, does there exist a natural class of solutions of ideal MHD that

dissipate total energy,

conserve magnetic helicity,

arise as limits of solutions of resistive MHD when ν, η ↘ 0 (e.g. when
keeping initial datas u0 and B0 �xed)?

Fix u0 and B0. When ν, η > 0, denote a solution of viscous, resistive MHD with
initial data (u0,B0) by (uν,η,Bν,η). If the dissipation rate

ν
∫
V |∇u

ν,η|2 dx + η
∫
V |∇B

ν,η|2 dx −→ ε∗ > 0,

one expects∫
V |∇u

ν,η|2 dx ∼ 1

ν −→∞,
∫
V |∇B

ν,η|2 dx ∼ 1

η −→∞.
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Onsager's theory of turbulence

Onsager (Nuovo Cimento 1949) suggested singular/weak solutions of Euler
equations as a model of hydrodynamic turbulence at the limit Re→∞ (ν ↘ 0).

The singularity of the solutions would cause kinetic energy dissipation even in the
absence of viscosity(!).

In order to de�ne weak solutions, suppose now u is a solution of Euler equations
and ϕ ∈ C∞

0
(V × [0,T )). Integrating by parts,∫ T

0

∫
V(∂tu +∇ · (u⊗ u) +∇p) · ϕ dx dt = (5)

−
∫ T

0

∫
V(u · ∂tϕ+ (u⊗ u) · ∇ϕ+ p∇ · ϕ) dx dt −

∫
V u0 · ϕ(·, 0) dx = 0, (6)∫ T

0

∫
V u · ∇ϕ dx = 0. (7)

If
∫ T

0

∫
V |u|

2 dx dt <∞ and u satis�es (6)�(7) for all ϕ, then u is called a weak
solution of Euler equations.

For reviews of Onsager's theory and modern work on it see Eyink-Sreenivasan
(Rev. Modern Phys. 2008), Eyink (Physica D 2008), Eyink (arXiv 2018).
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'Turbulent' weak solutions of viscous, resistive MHD

Given ν, η > 0 and smooth initial datas u0 and B0, it is wide open whether the
Cauchy problem for MHD has a smooth solution.

However, a weak 'Leray-Hopf solution' or 'turbulent solution' exists, see
Sermange-Temam (Commun. Pure Appl. Math. 1984). For Navier-Stokes, see
Leray (Acta Math. 1934) and Hopf (Math. Nachr. 1950/1951).

De�nition

Suppose
∫
V |u0|

2 +
∫
V |B0|2 <∞, ∇ · u0 = ∇ ·B0 = 0 and u0 · n|S = B0 · n|S = 0.

Then (u,B) is called a Leray-Hopf solution if

(u,B) is a (weak) solution of viscous, resistive MHD with initial datas u0,B0,

u and B satisfy the energy inequality

1

2

∫
V(|u(x, t)|2 + |B(x, t)|2) dx +

∫ t

0

∫
V(ν |∇u(x, τ)|2 + η |∇B(x, τ)|2) dx dτ

≤ 1

2

∫
V(|u0(x)|2 + |B0(x)|2) dx.

If a smooth solution exists, then it coincides with the Leray-Hopf solution.

Uniqueness of Leray-Hopf solutions is open for general initial datas.
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Solution of (the mathematical version of) Taylor's conjecture

We say that vj ⇀ v in L2([0,T )× V) if
∫ T

0

∫
V vj · ϕ dx dt →

∫ T

0

∫
V v · ϕ dx dt for

every ϕ ∈ L2([0,T )× V).

Theorem (Faraco-L. (Comm. Math. Phys. 2020))

Suppose

νj , ηj ↘ 0 when j →∞.

At each j , (uj ,Bj) is a Leray-Hopf solution with initial data (u0,j ,B0,j),

uj ⇀ u, Bj ⇀ B in L2([0,T )× V),

u0,j ⇀ u0, B0,j ⇀ B0 in L2(V).

Then (u,B) conserves magnetic helicity in time.

Other mathematical results on magnetic helicity conservation in ideal MHD:

u and B in suitable Besov spaces: Ca�isch-Klapper-Steele (Comm. Math.
Phys. 1997),∫ T

0

∫
T3(|u|3 + |B|3) dx dt <∞: Kang-Lee (Nonlinearity 2007) and Aluie

(Ph.D. dissertation 2009) with Eyink.
Magnetic helicity is not in general conserved when∫ T

0

∫
Ω

(|u|2 + |B|2) dx dt <∞: Beekie-Buckmaster-Vicol (arXiv 2019).
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The di�erence between second and third moments

Consider a solution (u,B) of ideal MHD on T3 = [0, 2π]3 (2π-periodic in

x1, x2, x3) with
∫ T

0

∫
V(|u|3 + |B|3) dx dt <∞. The time derivative

∂t
∫
T3 A · B dx =

∫
T3 A · ∂tB +

∫
T3 ∂tA · B dx does not make immediate sense (since

∂tB = −∇× (B× u)).

For every ` > 0, consider regularisations B` of B (e.g. molli�cations B` = B ∗ g`
with a �ltering kernel g ∈ C∞

0
(R3) with

∫
R3 g(x) dx = 1, g`(x) := `−3g(x/`)).

Now ∂tB` +∇× (B× u)` = 0 implies that ∂tA` + (B× u)` = ∇g `, and

∂t

∫
T3

A` · B` dx = 2

∫
T3

∂tA` · B` dx =

∫
T3

(∇g ` − (B× u)`) · B`

= −
∫
T3

(B× u)` · B` dx→ −
∫
T3

B× u · B = 0.

Furthermore, ∂t
∫
T3 A` · B` dx→ ∂t

∫
T3 A · B dx e.g. in the sense of distributions.

However, the limit of the integrals
∫
T3(B× u)` · B` need not exist if only∫ T

0

∫
V(|u|2 + |B|2) dx dt <∞!
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Some ideas of our proof

The proof of the Faraco-L. Theorem has two parts: 1) the dissipation rates
∂t
∫
V Aj · Bj dx tend to zero when νj , ηj ↘ 0, 2) the dissipation rate of the limit is

the limit of the dissipation rates.

1): Recall that ∂t
∫
V Aj · Bj dx = −2η

∫
V Bj · ∇ × Bj dx. By the inequality

cd ≤ c2/2 + d2/2 with c = |Bj | and d =
√
µ |∇ × Bj | and the energy inequality,

µj

∫ T

0

∫
Ω

|Bj(x, t) · ∇ × Bj(x, t)| dx dt

≤ √ηj
∫ T

0

∫
Ω

(|Bj(x, t)|2 + µj |∇ × Bj(x, t)|2) dx dt

≤ √ηj(T + 1)(‖Bj,0‖2L2 + ‖uj,0‖2L2) −→ 0,

since ηj → 0, Bj,0 ⇀ B0 and uj,0 ⇀ u0.

2): Bj ⇀ B in L2([0,T )× V) and the Aubin-Lions Lemma are used to show that∫ T

0

∫
V |Aj − A|2 dx dt → 0 for suitable potentials Aj and A.

Thus, Aj · Bj ⇀ A · B in L1([0,T )× V). It follows that the magnetic helicity
dissipation rate of the limit is the (distributional) limit of the dissipation rates.
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Dissipation of total energy in ideal MHD

Energy dissipative solutions of ideal MHD have been constructed recently:

Bronzi-Lopes-Nussenzveig (Commun. Math. Sci. 2015), solutions 'not
genuinely 3D'.

Beekie-Buckmaster-Vicol (arXiv 2019):
∫ T

0

∫
Ω

(|u|2 + |B|2) dx dt <∞,

Faraco-L.-Székelyhidi (to appear in Arch. Ration. Mech Anal.): |u| and |B|
bounded in space and time (in particular

∫ T

0

∫
Ω

(|u|3 + |B|3) dx dt <∞).
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Onsager's theory of turbulence II

Let 0 < α < 1. We say that u is Cα (Hölder) continuous if

|u(x, t)− u(y, t)| ≤ C |x− y|α for all x, y ∈ V, t ∈ [0,T ).

Conjecture (Onsager, 1949)

1 Suppose α > 1/3. Then every Cα solution conserves kinetic energy.

2 Suppose α < 1/3. Then there exist Cα solutions dissipating kinetic energy.

Part 1: Eyink (Phys. D 1994), Constantin-E-Titi (Comm. Math. Phys. 1994).

Part 2:

Sche�er (J. Geom. Anal. 1993): the �rst solutions violating energy
conservation,

de Lellis & Székelyhidi (Ann. Math. 2009): solutions via John Nash's
method of convex integration,

Isett (Ann. Math. 2018): solutions violating energy conservation for every
α < 1/3,

Buckmaster-de Lellis-Székelyhidi-Vicol (CPAM 2018): energy dissipating
solutions for every α < 1/3.
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Thank you for your attention!
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