Taylor's conjecture on magnetic helicity conservation in magnetohydrodynamics

Sauli Lindberg University of Helsinki

Joint work with Daniel Faraco (Universidad Autónoma de Madrid and ICMAT)

Webinar on magnetic topology April 23, 2020

The mathematical setting of the talk

The (homogeneous,) incompressible, viscous, resistive MHD equations consist of

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nu \Delta u - (\nabla \times B) \times B = 0,$$
 (1)

$$\nabla \cdot \mathbf{u} = \mathbf{0},\tag{2}$$

$$\partial_t \mathbf{B} + \nabla \times (\mathbf{B} \times \mathbf{u}) + \eta \nabla \times (\nabla \times \mathbf{B}) = 0,$$
 (3)

$$\nabla \cdot \mathbf{B} = \mathbf{0},\tag{4}$$

where $\nu, \eta > 0$.

In ideal MHD, $\nu = \eta = 0$.

Given a bounded, simply connected domain $\mathcal{V} \subset \mathbb{R}^3$ with $\partial \mathcal{V} = \mathcal{S}$ we set the boundary conditions $u|_{\mathcal{S}} = 0$; $B \cdot n|_{\mathcal{S}} = 0$; $E \times n|_{\mathcal{S}} = 0$, which leads to $(\nabla \times B) \times n|_{\mathcal{S}} = 0$.

In ideal MHD, we set $u \cdot n|_{\mathcal{S}} = B \cdot n|_{\mathcal{S}} = 0$.

Conserved integral quantities of ideal MHD

Continuously differentiable solutions u, B of ideal MHD conserve

$$\begin{split} &\int_{\mathcal{V}} \frac{|\mathsf{u}|^2 + |\mathsf{B}|^2}{2} \, \mathsf{dx} \qquad \text{(total energy)}, \\ &\int_{\mathcal{V}} \mathsf{u} \cdot \mathsf{B} \, \mathsf{dx} \qquad \text{(cross helicity)}, \\ &\int_{\mathcal{V}} \mathsf{A} \cdot \mathsf{B} \, \mathsf{dx} \qquad \text{(magnetic helicity)}, \end{split}$$

where $\nabla \times A = B$.

However, simulations point towards **anomalous dissipation** of total energy: when viscosity and resistivity tend to zero, the energy dissipation rate tends to a *positive* constant:

- Mininni-Pouquet (Phys. Rev. Lett. 2009),
- Dallas-Alexakis (Astrophys. J. Lett. 2014),
- Linkmann-Berera-McComb-McKay (Phys. Rev. E 2015).

Taylor's conjecture (Phys. Rev. Lett. 1974): magnetic helicity is approximately conserved in \mathcal{V} for very small resistivities $\eta > 0$.

Berger's solution

Berger (Geophys. Astrophys. Fluid Dynamics 1984) solved physically Taylor's conjecture by showing that for small resistivities $\eta > 0$, magnetic helicity dissipates much slower than magnetic energy.

When $\nu, \eta > 0$, the dissipation rates of total energy and magnetic helicity are

$$\begin{split} \partial_{t}\mathcal{H}(t) &= \partial_{t}\int_{\mathcal{V}}\mathsf{A}\cdot\mathsf{B}\,\mathsf{dx} = -2\eta\int_{\mathcal{V}}\mathsf{B}\cdot\nabla\times\mathsf{B}\,\mathsf{dx},\\ \partial_{t}\mathcal{E}(t) &= \partial_{t}\int_{\mathcal{V}}(|\mathsf{B}|^{2}+|\mathsf{u}|^{2})/2\,\mathsf{dx} = -\nu\int_{\mathcal{V}}|\nabla\times\mathsf{u}|^{2}\,\mathsf{dx} - \eta\int_{\mathcal{V}}|\nabla\times\mathsf{B}|^{2}\,\mathsf{dx}. \end{split}$$

The part of Berger's argument most relevant for this talk is the use of the Cauchy-Schwarz inequality $|\int_{\mathcal{V}} f \cdot g|^2 \leq \int_{\mathcal{V}} |f|^2 \int_{\mathcal{V}} |\mathsf{B}|^2$ on $f = \sqrt{\eta}\mathsf{B}$ and $g = \sqrt{\eta}\nabla \times \mathsf{B}$:

$$\begin{split} \left| \partial_t \mathcal{H}(t) \right|^2 &= 4 \left| \int_{\mathcal{V}} \eta \mathsf{B} \cdot \nabla \times \mathsf{B} \, \mathsf{dx} \right|^2 \\ &\leq 4 \int_{\mathcal{V}} \eta \left| \mathsf{B} \right|^2 \mathsf{dx} \int_{\mathcal{V}} \eta \left| \nabla \times \mathsf{B} \right|^2 \mathsf{dx} \\ &\leq 4 \eta \int_{\mathcal{B}} \left| \mathsf{B} \right|^2 \mathsf{dx} \left| \partial_t \mathcal{E}(t) \right|. \end{split}$$

A mathematical programme

The following mathematical version of Taylor's conjecture was presented in Caflisch-Klapper-Steele (Comm. Math. Phys. 1997):

Conjecture

Magnetic helicity does not dissipate in the ideal limit.

At $\eta =$ 0, does there exist a natural class of solutions of ideal MHD that

- dissipate total energy,
- conserve magnetic helicity,
- arise as limits of solutions of resistive MHD when $\nu, \eta \searrow 0$ (e.g. when keeping initial datas u_0 and B_0 fixed)?

Fix u_0 and B_0 . When $\nu, \eta > 0$, denote a solution of viscous, resistive MHD with initial data (u_0, B_0) by $(u^{\nu,\eta}, B^{\nu,\eta})$. If the dissipation rate

$$\nu \int_{\mathcal{V}} \left| \nabla \mathsf{u}^{\nu,\eta} \right|^2 \mathsf{d} \mathsf{x} + \eta \int_{\mathcal{V}} \left| \nabla \mathsf{B}^{\nu,\eta} \right|^2 \mathsf{d} \mathsf{x} \longrightarrow \epsilon_* > \mathsf{0},$$

one expects

$$\int_{\mathcal{V}} |\nabla \mathsf{u}^{\nu,\eta}|^2 \, \mathrm{d} \mathsf{x} \sim \tfrac{1}{\nu} \longrightarrow \infty, \qquad \int_{\mathcal{V}} |\nabla \mathsf{B}^{\nu,\eta}|^2 \, \mathrm{d} \mathsf{x} \sim \tfrac{1}{\eta} \longrightarrow \infty.$$

Onsager's theory of turbulence

Onsager (Nuovo Cimento 1949) suggested singular/weak solutions of Euler equations as a model of hydrodynamic turbulence at the limit $\text{Re} \to \infty \ (\nu \searrow 0)$.

The singularity of the solutions would cause kinetic energy dissipation even in the absence of viscosity(!).

In order to define weak solutions, suppose now u is a solution of Euler equations and $\varphi \in C_0^{\infty}(\mathcal{V} \times [0, \mathcal{T}))$. Integrating by parts,

$$\int_{0}^{T} \int_{\mathcal{V}} (\partial_{t} \mathbf{u} + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) + \nabla p) \cdot \varphi \, d\mathbf{x} \, dt =$$

$$- \int_{0}^{T} \int_{\mathcal{V}} (\mathbf{u} \cdot \partial_{t} \varphi + (\mathbf{u} \otimes \mathbf{u}) \cdot \nabla \varphi + p \nabla \cdot \varphi) \, d\mathbf{x} \, dt - \int_{\mathcal{V}} \mathbf{u}_{0} \cdot \varphi(\cdot, 0) \, d\mathbf{x} = 0,$$

$$\int_{0}^{T} \int_{\mathcal{V}} \mathbf{u} \cdot \nabla \varphi \, d\mathbf{x} = 0.$$

$$(7)$$

If $\int_0^T \int_{\mathcal{V}} |u|^2 dx dt < \infty$ and u satisfies (6)–(7) for all φ , then u is called a **weak** solution of Euler equations.

For reviews of Onsager's theory and modern work on it see Eyink-Sreenivasan (Rev. Modern Phys. 2008), Eyink (Physica D 2008), Eyink (arXiv 2018).

'Turbulent' weak solutions of viscous, resistive MHD

Given $\nu, \eta > 0$ and smooth initial datas u_0 and B_0 , it is wide open whether the Cauchy problem for MHD has a *smooth* solution.

However, a weak 'Leray-Hopf solution' or 'turbulent solution' exists, see Sermange-Temam (Commun. Pure Appl. Math. 1984). For Navier-Stokes, see Leray (Acta Math. 1934) and Hopf (Math. Nachr. 1950/1951).

Definition

 $\text{Suppose } \int_{\mathcal{V}} \left|u_{0}\right|^{2} + \int_{\mathcal{V}} \left|B_{0}\right|^{2} < \infty, \ \nabla \cdot u_{0} = \nabla \cdot B_{0} = 0 \text{ and } u_{0} \cdot n|_{\mathcal{S}} = B_{0} \cdot n|_{\mathcal{S}} = 0.$

Then (u, B) is called a Leray-Hopf solution if

• (u, B) is a (weak) solution of viscous, resistive MHD with initial datas u_0, B_0 , • u and B satisfy the **energy inequality**

 $\begin{array}{l} \frac{1}{2} \int_{\mathcal{V}} (|\mathsf{u}(\mathsf{x},t)|^2 + |\mathsf{B}(\mathsf{x},t)|^2) \; \mathsf{d}\mathsf{x} + \int_0^t \int_{\mathcal{V}} (\nu \, |\nabla \mathsf{u}(\mathsf{x},\tau)|^2 + \eta \, |\nabla \mathsf{B}(\mathsf{x},\tau)|^2) \, \mathsf{d}\mathsf{x} \, \mathsf{d}\tau \\ \leq \quad \frac{1}{2} \int_{\mathcal{V}} (|\mathsf{u}_0(\mathsf{x})|^2 + |\mathsf{B}_0(\mathsf{x})|^2) \, \mathsf{d}\mathsf{x}. \end{array}$

If a smooth solution exists, then it coincides with the Leray-Hopf solution.

Uniqueness of Leray-Hopf solutions is open for general initial datas.

Sauli Lindberg

Solution of (the mathematical version of) Taylor's conjecture

We say that $v_j \rightarrow v$ in $L^2([0, T) \times \mathcal{V})$ if $\int_0^T \int_{\mathcal{V}} v_j \cdot \varphi \, dx \, dt \rightarrow \int_0^T \int_{\mathcal{V}} v \cdot \varphi \, dx \, dt$ for every $\varphi \in L^2([0, T) \times \mathcal{V})$.

Theorem (Faraco-L. (Comm. Math. Phys. 2020))

Suppose

•
$$\nu_j, \eta_j \searrow 0$$
 when $j \to \infty$.

• At each j, (u_j, B_j) is a Leray-Hopf solution with initial data $(u_{0,j}, B_{0,j})$,

•
$$u_j \rightarrow u$$
, $B_j \rightarrow B$ in $L^2([0, T) \times V)$,

•
$$u_{0,j} \rightarrow u_0, B_{0,j} \rightarrow B_0 \text{ in } L^2(\mathcal{V}).$$

Then (u, B) conserves magnetic helicity in time.

Other mathematical results on magnetic helicity conservation in ideal MHD:

- u and B in suitable Besov spaces: Caflisch-Klapper-Steele (Comm. Math. Phys. 1997),
- $\int_0^T \int_{\mathbb{T}^3} (|\mathbf{u}|^3 + |\mathbf{B}|^3) d\mathbf{x} dt < \infty$: Kang-Lee (Nonlinearity 2007) and Aluie (Ph.D. dissertation 2009) with Eyink.
- Magnetic helicity is *not* in general conserved when $\int_0^T \int_\Omega (|u|^2 + |B|^2) dx dt < \infty$: Beekie-Buckmaster-Vicol (arXiv 2019).

Sauli Lindberg

The difference between second and third moments

Consider a solution (u, B) of ideal MHD on $\mathbb{T}^3 = [0, 2\pi]^3$ (2π -periodic in x_1, x_2, x_3) with $\int_0^T \int_{\mathcal{V}} (|u|^3 + |B|^3) dx dt < \infty$. The time derivative $\partial_t \int_{\mathbb{T}^3} A \cdot B dx = \int_{\mathbb{T}^3} A \cdot \partial_t B + \int_{\mathbb{T}^3} \partial_t A \cdot B dx$ does not make immediate sense (since $\partial_t B = -\nabla \times (B \times u)$).

For every $\ell > 0$, consider regularisations B_ℓ of B (e.g. mollifications $B_\ell = B * g_\ell$ with a filtering kernel $g \in C_0^{\infty}(\mathbb{R}^3)$ with $\int_{\mathbb{R}^3} g(x) dx = 1$, $g_\ell(x) := \ell^{-3}g(x/\ell)$.

Now $\partial_t B_\ell + \nabla \times (B \times u)_\ell = 0$ implies that $\partial_t A_\ell + (B \times u)_\ell = \nabla g^\ell$, and

$$\begin{split} \partial_t \int_{\mathbb{T}^3} \mathsf{A}_\ell \cdot \mathsf{B}_\ell \, \mathrm{dx} &= 2 \int_{\mathbb{T}^3} \partial_t \mathsf{A}_\ell \cdot \mathsf{B}_\ell \, \mathrm{dx} = \int_{\mathbb{T}^3} (\nabla g^\ell - (\mathsf{B} \times \mathsf{u})_\ell) \cdot \mathsf{B}_\ell \\ &= - \int_{\mathbb{T}^3} (\mathsf{B} \times \mathsf{u})_\ell \cdot \mathsf{B}_\ell \, \mathrm{dx} \to - \int_{\mathbb{T}^3} \mathsf{B} \times \mathsf{u} \cdot \mathsf{B} = 0. \end{split}$$

Furthermore, $\partial_t \int_{\mathbb{T}^3} A_\ell \cdot B_\ell \, dx \to \partial_t \int_{\mathbb{T}^3} A \cdot B \, dx$ e.g. in the sense of distributions.

However, the limit of the integrals $\int_{\mathbb{T}^3} (B\times u)_\ell \cdot B_\ell$ need not exist if only $\int_0^T \int_{\mathcal{V}} (|u|^2 + |B|^2) \, dx \, dt < \infty!$

Some ideas of our proof

The proof of the Faraco-L. Theorem has two parts: 1) the dissipation rates $\partial_t \int_{\mathcal{V}} A_j \cdot B_j dx$ tend to zero when $\nu_j, \eta_j \searrow 0$, 2) the dissipation rate of the limit is the limit of the dissipation rates.

1): Recall that $\partial_t \int_{\mathcal{V}} A_j \cdot B_j dx = -2\eta \int_{\mathcal{V}} B_j \cdot \nabla \times B_j dx$. By the inequality $cd \leq c^2/2 + d^2/2$ with $c = |B_j|$ and $d = \sqrt{\mu} |\nabla \times B_j|$ and the energy inequality,

$$\begin{split} &\mu_j \int_0^T \int_\Omega |\mathsf{B}_j(\mathsf{x},t) \cdot \nabla \times \mathsf{B}_j(\mathsf{x},t)| \, \mathsf{d} \mathsf{x} \, \mathsf{d} t \\ &\leq \sqrt{\eta_j} \int_0^T \int_\Omega (|\mathsf{B}_j(\mathsf{x},t)|^2 + \mu_j \, |\nabla \times \mathsf{B}_j(\mathsf{x},t)|^2) \, \mathsf{d} \mathsf{x} \, \mathsf{d} t \\ &\leq \sqrt{\eta_j} (T+1) (\|\mathsf{B}_{j,0}\|_{L^2}^2 + \|\mathsf{u}_{j,0}\|_{L^2}^2) \longrightarrow 0, \end{split}$$

since $\eta_j \rightarrow 0$, $B_{j,0} \rightharpoonup B_0$ and $u_{j,0} \rightharpoonup u_0$.

2): $B_j \rightarrow B$ in $L^2([0, T) \times V)$ and the Aubin-Lions Lemma are used to show that $\int_0^T \int_V |A_j - A|^2 dx dt \rightarrow 0$ for suitable potentials A_j and A.

Thus, $A_j \cdot B_j \rightarrow A \cdot B$ in $L^1([0, T) \times V)$. It follows that the magnetic helicity dissipation rate of the limit is the (distributional) limit of the dissipation rates.

Energy dissipative solutions of ideal MHD have been constructed recently:

- Bronzi-Lopes-Nussenzveig (Commun. Math. Sci. 2015), solutions 'not genuinely 3D'.
- Beekie-Buckmaster-Vicol (arXiv 2019): $\int_0^T \int_\Omega (|u|^2 + |B|^2) dx dt < \infty$,
- Faraco-L.-Székelyhidi (to appear in Arch. Ration. Mech Anal.): |u| and |B| bounded in space and time (in particular $\int_0^T \int_{\Omega} (|u|^3 + |B|^3) dx dt < \infty$).

Onsager's theory of turbulence ||

Let $0 < \alpha < 1$. We say that u is C^{α} (Hölder) continuous if

 $\left|\mathsf{u}(\mathsf{x},t)-\mathsf{u}(\mathsf{y},t)\right|\leq C\left|\mathsf{x}-\mathsf{y}\right|^{\alpha}\qquad\text{for all $\mathsf{x},\mathsf{y}\in\mathcal{V}$, $t\in[0,T)$.}$

Conjecture (Onsager, 1949)

1 Suppose $\alpha > 1/3$. Then every C^{α} solution conserves kinetic energy.

2 Suppose $\alpha < 1/3$. Then there exist C^{α} solutions dissipating kinetic energy.

Part 1: Eyink (Phys. D 1994), Constantin-E-Titi (Comm. Math. Phys. 1994).

Part 2:

- Scheffer (J. Geom. Anal. 1993): the first solutions violating energy conservation,
- de Lellis & Székelyhidi (Ann. Math. 2009): solutions via John Nash's method of convex integration,
- lsett (Ann. Math. 2018): solutions violating energy conservation for every $\alpha < 1/3$,
- Buckmaster-de Lellis-Székelyhidi-Vicol (CPAM 2018): energy dissipating solutions for every $\alpha < 1/3$.

Thank you for your attention!