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Overview

• Observations on the sawtooth crash.

• X-points, O-points and the group that binds them.

• An ideal mode when q0 = 2/3.

• Transition to chaos.

• The alternating-hyperbolic sawtooth model.
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The Tokamak fusion reactor creates an equilibrium using current

in the plasma

• A tokamak fusion reactor confines plasma with an axisymmetric
magnetic field.

• The toroidal field is generated by external coils.

• The poloidal field is generated by currents in the plasma itself.

• The safety factor q quantifies the winding of the field lines

q = 1/ı =
# toroidal rotations

# poloidal rotations

• One might think this is incredibly unstable. One would be right
(see: stellarators)

• The sawtooth crash is one of these instabilities.
Source: S. Li et. al., Wikimedia commons
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The Sawtooth Oscillation consists of a repeated fast crash
Heat diffusion

Temperature

increases on axis

Current ac-
cumulation:
On axis due to
Spitzer resistivity

Decrease of q0:
on a (slow)

resistive timescale

CRASH!
an ideal mode erupts

at a specific value of q

Equilibration:
T p flattened.

Fluxes redistribute.
q0 increases • First observed in 1974.

• Observed in every tokamak built since.

• The precise cause has been debated since
1976.
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In the Kadomtsev model the crash is caused by a 1/1 mode
• q0 reaches slightly below 1, and an intact q = 1

surface exists.

• This is unstable to the 1/1 internal kink mode,
resistive tearing instability of the q = 1 surface, or
botha.

• Hot core plasma reconnects with cold plasma outside
the q = 1 surface and is deposited in a growing q/1
island. After the crash the q-profile is very flat.

• The Kadomtsev model predicts a crash when q0 ∼ 1,
and a re-set to q0 = 1 after the crash.

• Experiments often observe exactly thisb,c,d.

• But not always . . .

a
Coppi, B., et al. Fizika Plazmy 2 (1976): 961-966.

b
Weller, Phys. Rev. Lett. 59 2303 (1987)

c
Wroblewski Phys. Fluids B 3, 2877 (1991)

d
Nam, Y et al, NF 58 066009 (2018)

Kadomtsev-like reconnection in M3DC1 simulations
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Direct measurements can also find q0 ' 0.7

• Direct measurements of q0 have been made with
Motional Stark Effect (MSE), Faraday rotation
imaging (FR), and Lithium Fluorescence imaging (Li).

• Experiments have consistently been measuring crashes
when q0 = 0.7, and q < 1 for the entire cycle.

• Though every measurement constitutes a difficult
problem of translating pitch angle or polarization
rotation to safety factor, the agreement, using
different techniques, on many different machines,
cannot be ignored.

• These measurements are irreconcileable with the
Kadomtsev model.

Device q0 at crash Method
TEXTORa,b 0.7± 0.1 FR

TFTRc,d 0.7± 0.1 MSE
TEXTe 0.7− 0.8 Li

JETf 0.7− 0.8± 0.1 FR & MSE

a
Soltwisch, Rev. Sci. Instrum. 57, 1939 (1986)

b
Soltwisch, Rev. Sci. Inst. 59, 1599 (1988)

c
Levinton, F. et al Phys. Fluids B. 5 2554 (1993)

d
Yamada, Phys. Plasmas 1 3269 (1994)

e
West, Phys. Rev. Lett. 58 2758 (1987)

f
Wolf, Nuclear Fusion, 33 663 (1993)
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Snakes show the q = 1 surface is not removed

• Upon pellet injection in JET, persistent 1/1 density perturbations
were observed in soft x-rays.

• These snakes can appear double, occur where the q = 1 surface is
expected, and are postulated to be islands on the 1/1 surface.

• The snakes can survive a sawtooth crash.

• Such a crash can thus not remove the 1/1 surface, which is a
central prediction of the Kadomtsev model.
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Another model is needed

• There is no question that we see crashes that involve 1/1 (reset to q0 = 1 and and a crash occurring when q ∼ 1)
that indicate a Kadomtsev-like process.

• A large set of other measurements show q0 ∼ 0.7 at time of crash, q < 1 for the entire cycle, and crashes that do
not remove the q = 1 surface.

• These observations cannot be reconciled with the Kadomtsev model, and should be caused by a different
mechanism.

• The alternating-hyperbolic sawtooth model predicts a crash caused by a fast ideal mode when q0 = 2/3, that
q < 1 for the entire cycle, and that the q = 1 surface is not removed.
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The magnetic field in a tokamak defines a mapping

• Following a magnetic field line from the point x = (R0,Z0) once around to the same poloidal cross section defines
the mapping f (R0,Z0) = (R1,Z1)T .

• Brouwer’s fixed point theorem: Any map from the disk to the disk contains a fixed point f (x) = x .

• The magnetic axis is an example of a closed field line.

C. B. Smiet The alternating-hyperbolic sawtooth 9 / 27



The mapping around a fixed point corresponds to an element of

a Lie group

• Around a closed field line (where f(R0,Z0) = (R1,Z1) = (R0,Z0)), we construct the matrix of partial derivatives

M =


∂R1

∂R0
,

∂R1

∂Z0
∂Z1

∂R0
,

∂Z1

∂R0

.

• The mapping has to be area preserving: det(M) = 1.
M has real coefficients.

• The set of all 2× 2 real matrices with unit determinant forms the Lie group M ∈ SL2(R).

• Every possible configuration of the field around a fixed point corresponds with a matrix of this group.

• This matrix describes to first order the mapping around the fixed point: f (x0 + δx) ≈ f (x0) + M · δx .
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As the magnetic field changes continuously, so does the element

of SL(2,R)

• When the magnetic field changes continuously in
time, field line map changes continuously, as it is the
integration of the field over a finite distance.

• Every entry in the matrix M therefore changes
continuously in time.

• The matrix M, describing the structure of the field,
traces a continuous path through the group SL(2,R).
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The Lie group SL(2,R) has three subsets

• Elements of SL(2,R) can be classified into three subsets by
their action as linear transformation on the Euclidean plane:

◦ The elliptic subset constitutes rotations (magetic axis).
◦ The parabolic subset constitutes shear mappings (intact q-surface).
◦ The hyperbolic subset constitutes squeeze mappings (x-point).

• The subset a matrix is a part of is determined by its trace.
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The elliptic subset consists of matrices with |Tr(M)| < 2

• When |Tr(M)| < 2, the eigenvalues and
eigenvectors are complex:
λ± = (Tr(M)±

√
Tr(M)2 − 4)/2.

• Field lines stay on ellipses (which form closed
magnetic surfaces), and rotate over a certain
angle.

• The safety factor is related to the trace via:
cos(2π/q0) = 1

2
Tr(M).

• Because of their structure in a Poincaré plot,
fixed points like this are called O-points.
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The hyperbolic subset consists of matrices with Tr(M) > 2

• When Tr(M) > 2, the eigenvalues and
eigenvectors are real and positive:
λ± = (Tr(M)±

√
Tr(M)2 − 4)/2.

• These two real vectors determine the direction
field lines approach and leave the x-point
(f (x0 + δx) ≈ f (x0) + M · δx).

• Because of ther structure in a Poincaré plot,
fixed points of this type are called X-points.
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Alternating-hyperbolic points have Tr(M) < −2

• When Tr(M) < −2 both eigenvectors are real
and negative .

• The mapping is a combination of a pointwise
reflection in the fixed point (−I) and a squeeze
mapping. We call these points
alternaging-hyperbolic fixed points.

• When the field lines rotate exactly an integer
and a half times around the axis
(q0 = 1/(2 + n)) the mapping becomes a
pointwise reflection in the fixed point −I.

• An infinitesimal perturbation to this mapping
can then change the structure to
alternating-hyperbolic.

• When field lines wind around 1.5 times,

q0 = 2/3 = 0.66 . . . ' 0.7
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Ideal modes in the core region

• We use the NOVA code to analyze the ideal modes in
the core region.

• The NOVA code solves normal mode formulation of
the ideal MHD stability equation:

−ω2ρ ξ = F [ξ], (1)

where ω2 is the mode frequency squared, ρ is the
plasma density, F is the linerized MHD force
operator, and ξ is the displacement vector.

• Solutions ξ with negative ω2 correspond to ideally
unstable, exponentially growing modes.

parameter value
BT 1T
R0 3m
a 1m
q q0 + 0.9ψ2

β0 3%
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Ideal modes in the core region

• q0 is scanned from q0 = 1.1 to q0 = 0.6

• When q0 ∼ 1 we see the 1/1 internal kink instability.

• The displacement vector ξ of the 1/1 mode shows the expected
translation of the core plasma corresponding with the internal
kink.

• When q0 = 2/3 we see a new ideal 2/3 instability with an order of
magnitude higher growth rate.

• ξ of the 2/3 mode indicates a displacement where the plasma is
forced onto the axis in two directions, and away from it in two
others.
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The displacement produces a perturbed magnetic field

• In the normal mode formulation of the ideal MHD equations, the perturbed field δB caused by a displacement ξ is
given by:

δB = ∇× (ξ × B0) (2)

• We use an analytical perturbation ξ with ξR = −(1/R)∂ZΨ and ξZ = (1/R)∂RΨ.

Ψ = A exp

(
−
ψp

σ

)
cos(2θ − 3φ) (3)

• We add this to a Grad-Shafranov equilibrium with β0 = 3% and q = 2/3 + 2.3333 ∗ ψp .

• We construct a Poincaré plot of the perturbed field B0 + δB by tracing the orbits of low-energy electrons (1keV)
using the SPIRAL code.
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The mode drives the axis to an alternating-hyperbolic point

• At a small amplitude of the perturbation
A = 4× 10−4 the perturbed field
|δB|/|B0| ∼ 1× 10−3.

• The axis becomes an alternating hyperbolic fixed
point

• At higher amplitude of the perturbation At a higher
amplitude A = 0.01 (|δB|/|B0| ∼ 2.5× 10−2) a
stochastic region is created in the core.

• The q = 1 surface is broken up into a 3/3 island
chain.
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Beyond linearized ideal MHD

• The change in topology magnetically connects the
highest-pressure plasma on the axis with surfaces
further out.

• Rapid parallel transport can induce flow along the
field lines and cause further perturbations.

• At high amplitude of the perturbation, the stochastic
region is magnetically connected.

• The temperature can equilibrate in the connected
region.

• Magnetic chaos leads to rapid reconnection in this
regioin. This redistributes poloidal and toroidal fluxes,
and a higher q0
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The Alternating Hyperbolic sawtooth model

1 The internal kink is stabilized (through toroidal rotation, fast particles or another
mechanism), and q0 decreases through slow current diffusion.

2 When q0 reaches 2/3, the ideal mode causes the axis to transition to an
alternating-hyperbolic fixed point.

3 This mode (possibly with other modes that occur when the topology changes) creates a
stochastic region in the core.

4 The temperature equilibrates in the core region, and poloidal and toroidal fluxes are
redistributed leading to an increased q0.

5 The field shifts out of resonance with the 2/3 mode, the flux surfaces in the core heal,
and the cycle begins anew.
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Conclusions

• The observations of q0 ∼ 0.7 at time of crash and below 1 for the entire cycle, are
irreconcilable with the Kadomtsev and Wesson models.

• By identifying the magnetic structure around the magnetic axis with elements of
SL(2,R), we show that exactly when when q0 = 2/3 the magnetic axis can continuously
change to become alternating hyperbolic.

• MHD stability calculations show that there is a high growth rate ideal mode exactly
when this is the case.

• The displacement associated with this mode is directed onto and away from the axis in a
pattern that drives the transition to the alternating-hyperbolic configuration; the
magnetic field associated with this perturbation directly causes it.

• The alternating-hyperbolic sawtooth model fits with the low q0 measurements, allows for
a cycle where q0 remains below 1, and does not remove the q = 1 surface.
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Thank you for your attention
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Bonus slide: Topological index of a fixed point

• Define the vector field w = (R0,Z0)T − f (R0,Z0), which is zero at the fixed points and let γ(τ) be a closed curve,
parametrized by τ that encloses an isolated zero x0 of w .

• The function g : γ → S1 sends every point on γ to the unit vector g : γ(τ) 7→ w(γ)/|w(γ)| on the unit circle S1.

• The index of the isolated zero x0 is then the degree of this mapping: Ind(x0) = deg(g)

• The degree is also sometimes called the winding number, and is positive if the image of γ(τ) is traversed in the
same (co/counter-clockwise) direction as γ(τ).

• In case γ encloses more than one isolated zero, the degree of g is the sum of the indices of all zeros enclosed.

The sum of the indices of fixed points in a tokamak is always +1
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Bonus slide: An alternating-hyperbolic fixed point has index +1

• The alernating-hyperbolic fixed point maps points to the opposite hyperbolic branch.

• when γ(τ) is traversed clockwise, the image on S1 is also traversed clockwise.

• The only fixed point in the tokamak can become alternating-hyperbolic.
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JET: Circular plasmas in D shaped devices show crashes at 1

and below

• Circular cross-section discharges with combined MSE
and Faraday rotation measurents were studied in JET.
Both techniques yield q0 ∼ 0.7.

• First crash occurs when q0 ∼ 1 is reconstructed.

• Subsequently there is a significant increase in poloidal
field.

• Even if absolute value is of q is debatable, the delta is
clear.

• Note: q0 represents cycle-average and therefore
higher.
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Hints from TFTR

• Yamada et al. measured sawteeth with
line ECE and MSE on TFTR.

• The heat flow contours in the core region
show a n = 2 structure at time of crash.

• The poloidal temperature distribution was
inferred from toroidal rotation (120µs).
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