The alternating-hyperbolic sawtooth

Or: How I Learned To Stop Worrying About 1/1
And Love 2/3

Chris Smiet ${ }^{1}$
G. Kramer $^{1} \quad$ S. R. Hudson ${ }^{1}$
${ }^{1}$ Princeton Plasma Physics Laboartory, Princeton, NJ, USA
Webinar on Magnetic Topology
April 23, 2020

Overview

- Observations on the sawtooth crash.
- X-points, O -points and the group that binds them.
- An ideal mode when $q_{0}=2 / 3$.
- Transition to chaos.
- The alternating-hyperbolic sawtooth model.

The Tokamak fusion reactor creates an equilibrium using current in the plasma

- A tokamak fusion reactor confines plasma with an axisymmetric magnetic field.
- The toroidal field is generated by external coils.
- The poloidal field is generated by currents in the plasma itself.
- The safety factor q quantifies the winding of the field lines

$$
q=1 / \imath=\frac{\# \text { toroidal rotations }}{\# \text { poloidal rotations }}
$$

- One might think this is incredibly unstable. One would be right (see: stellarators)
- The sawtooth crash is one of these instabilities.

Source: S. Li et. al., Wikimedia commons

The Sawtooth Oscillation consists of a repeated fast crash

- First observed in 1974.
- Observed in every tokamak built since.
- The precise cause has been debated since 1976.

In the Kadomtsev model the crash is caused by a $1 / 1$ mode

- q_{0} reaches slightly below 1 , and an intact $q=1$ surface exists.
- This is unstable to the $1 / 1$ internal kink mode, resistive tearing instability of the $q=1$ surface, or both ${ }^{3}$.
- Hot core plasma reconnects with cold plasma outside the $q=1$ surface and is deposited in a growing $q / 1$ island. After the crash the q-profile is very flat.
- The Kadomtsev model predicts a crash when $q_{0} \sim 1$, and a re-set to $q_{0}=1$ after the crash.
- Experiments often observe exactly this ${ }^{b, c, d}$.
- But not always ...

Kadomtsev-like reconnection in M3DC ${ }^{1}$ simulations

[^0]

In the Kadomtsev model the crash is caused by a $1 / 1$ mode

- q_{0} reaches slightly below 1 , and an intact $q=1$ surface exists.
- This is unstable to the $1 / 1$ internal kink mode, resistive tearing instability of the $q=1$ surface, or both ${ }^{3}$.
- Hot core plasma reconnects with cold plasma outside the $q=1$ surface and is deposited in a growing $q / 1$ island. After the crash the q-profile is very flat.
- The Kadomtsev model predicts a crash when $q_{0} \sim 1$, and a re-set to $q_{0}=1$ after the crash.
- Experiments often observe exactly this ${ }^{b, c, d}$.
- But not always ...

Kadomtsev-like reconnection in M3DC ${ }^{1}$ simulations

[^1]

In the Kadomtsev model the crash is caused by a $1 / 1$ mode

- q_{0} reaches slightly below 1 , and an intact $q=1$ surface exists.
- This is unstable to the $1 / 1$ internal kink mode, resistive tearing instability of the $q=1$ surface, or both ${ }^{3}$.
- Hot core plasma reconnects with cold plasma outside the $q=1$ surface and is deposited in a growing $q / 1$ island. After the crash the q-profile is very flat.
- The Kadomtsev model predicts a crash when $q_{0} \sim 1$, and a re-set to $q_{0}=1$ after the crash.
- Experiments often observe exactly this ${ }^{b, c, d}$.
- But not always ...

Kadomtsev-like reconnection in M3DC ${ }^{1}$ simulations

[^2]

In the Kadomtsev model the crash is caused by a $1 / 1$ mode

- q_{0} reaches slightly below 1 , and an intact $q=1$ surface exists.
- This is unstable to the $1 / 1$ internal kink mode, resistive tearing instability of the $q=1$ surface, or both ${ }^{3}$.
- Hot core plasma reconnects with cold plasma outside the $q=1$ surface and is deposited in a growing $q / 1$ island. After the crash the q-profile is very flat.
- The Kadomtsev model predicts a crash when $q_{0} \sim 1$, and a re-set to $q_{0}=1$ after the crash.
- Experiments often observe exactly this ${ }^{b, c, d}$.
- But not always ...

Kadomtsev-like reconnection in M3DC ${ }^{1}$ simulations

[^3]

In the Kadomtsev model the crash is caused by a $1 / 1$ mode

- q_{0} reaches slightly below 1 , and an intact $q=1$ surface exists.
- This is unstable to the $1 / 1$ internal kink mode, resistive tearing instability of the $q=1$ surface, or both ${ }^{3}$.
- Hot core plasma reconnects with cold plasma outside the $q=1$ surface and is deposited in a growing $q / 1$ island. After the crash the q-profile is very flat.
- The Kadomtsev model predicts a crash when $q_{0} \sim 1$, and a re-set to $q_{0}=1$ after the crash.
- Experiments often observe exactly this ${ }^{b, c, d}$.
- But not always ...

Kadomtsev-like reconnection in M3DC ${ }^{1}$ simulations

[^4]

In the Kadomtsev model the crash is caused by a $1 / 1$ mode

- q_{0} reaches slightly below 1 , and an intact $q=1$ surface exists.
- This is unstable to the $1 / 1$ internal kink mode, resistive tearing instability of the $q=1$ surface, or both ${ }^{3}$.
- Hot core plasma reconnects with cold plasma outside the $q=1$ surface and is deposited in a growing $q / 1$ island. After the crash the q-profile is very flat.
- The Kadomtsev model predicts a crash when $q_{0} \sim 1$, and a re-set to $q_{0}=1$ after the crash.
- Experiments often observe exactly this ${ }^{b, c, d}$.
- But not always ...

Kadomtsev-like reconnection in M3DC ${ }^{1}$ simulations

[^5]

Direct measurements can also find $q_{0} \simeq 0.7$

- Direct measurements of q_{0} have been made with Motional Stark Effect (MSE), Faraday rotation imaging (FR), and Lithium Fluorescence imaging (Li).
- Experiments have consistently been measuring crashes when $q_{0}=0.7$, and $q<1$ for the entire cycle.

Device	q_{0} at crash	Method
TEXTOR $^{a, b}$	0.7 ± 0.1	FR
TFTR $^{c, d}$	0.7 ± 0.1	MSE
TEXT e	$0.7-0.8$	Li
JET f	$0.7-0.8 \pm 0.1$	FR \& MSE

- Though every measurement constitutes a difficult problem of translating pitch angle or polarization rotation to safety factor, the agreement, using different techniques, on many different machines, cannot be ignored.
- These measurements are irreconcileable with the Kadomtsev model.

Snakes show the $q=1$ surface is not removed

- Upon pellet injection in JET, persistent $1 / 1$ density perturbations were observed in soft x-rays.
- These snakes can appear double, occur where the $q=1$ surface is expected, and are postulated to be islands on the $1 / 1$ surface.
- The snakes can survive a sawtooth crash.
- Such a crash can thus not remove the $1 / 1$ surface, which is a central prediction of the Kadomtsev model.

Another model is needed

- There is no question that we see crashes that involve $1 / 1$ (reset to $q_{0}=1$ and and a crash occurring when $q \sim 1$) that indicate a Kadomtsev-like process.
- A large set of other measurements show $q_{0} \sim 0.7$ at time of crash, $q<1$ for the entire cycle, and crashes that do not remove the $q=1$ surface.
- These observations cannot be reconciled with the Kadomtsev model, and should be caused by a different mechanism.
- The alternating-hyperbolic sawtooth model predicts a crash caused by a fast ideal mode when $q_{0}=2 / 3$, that $q<1$ for the entire cycle, and that the $q=1$ surface is not removed.

The magnetic field in a tokamak defines a mapping

- Following a magnetic field line from the point $\boldsymbol{x}=\left(R_{0}, Z_{0}\right)$ once around to the same poloidal cross section defines the mapping $f\left(R_{0}, Z_{0}\right)=\left(R_{1}, Z_{1}\right)^{T}$.
- Brouwer's fixed point theorem: Any map from the disk to the disk contains a fixed point $f(\boldsymbol{x})=\boldsymbol{x}$.
- The magnetic axis is an example of a closed field line.

The mapping around a fixed point corresponds to an element of a Lie group

- Around a closed field line (where $\mathbf{f}\left(R_{0}, Z_{0}\right)=\left(R_{1}, Z_{1}\right)=\left(R_{0}, Z_{0}\right)$), we construct the matrix of partial derivatives $M=\left(\begin{array}{ll}\frac{\partial R_{1}}{\partial R_{0}}, & \frac{\partial R_{1}}{\partial Z_{0}} \\ \frac{\partial Z_{1}}{\partial R_{0}}, & \frac{\partial Z_{1}}{\partial R_{0}}\end{array}\right)$.
- The mapping has to be area preserving: $\operatorname{det}(M)=1$.

M has real coefficients.

- The set of all 2×2 real matrices with unit determinant forms the Lie group $M \in S L_{2}(\mathbb{R})$.
- Every possible configuration of the field around a fixed point corresponds with a matrix of this group.
- This matrix describes to first order the mapping around the fixed point: $\boldsymbol{f}\left(x_{0}+\delta \boldsymbol{x}\right) \approx \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)+\mathrm{M} \cdot \delta \boldsymbol{x}$.

As the magnetic field changes continuously, so does the element of $\operatorname{SL}(2, \mathbb{R})$

- When the magnetic field changes continuously in time, field line map changes continuously, as it is the integration of the field over a finite distance.
- Every entry in the matrix M therefore changes continuously in time.
- The matrix M , describing the structure of the field, traces a continuous path through the group $\operatorname{SL}(2, \mathbb{R})$.

The Lie group $\operatorname{SL}(2, \mathbb{R})$ has three subsets

- Elements of $\mathrm{SL}(2, \mathbb{R})$ can be classified into three subsets by their action as linear transformation on the Euclidean plane:
- The elliptic subset constitutes rotations (magetic axis).

○ The parabolic subset constitutes shear mappings (intact q-surface).

- The hyperbolic subset constitutes squeeze mappings (x-point).
- The subset a matrix is a part of is determined by its trace.

The elliptic subset consists of matrices with $|\operatorname{Tr}(\mathrm{M})|<2$

- When $|\operatorname{Tr}(\mathrm{M})|<2$, the eigenvalues and eigenvectors are complex:
$\lambda_{ \pm}=\left(\operatorname{Tr}(M) \pm \sqrt{\operatorname{Tr}(M)^{2}-4}\right) / 2$.
- Field lines stay on ellipses (which form closed magnetic surfaces), and rotate over a certain angle.
- The safety factor is related to the trace via: $\cos \left(2 \pi / q_{0}\right)=\frac{1}{2} \operatorname{Tr}(M)$.
- Because of their structure in a Poincaré plot, fixed points like this are called O-points.

The hyperbolic subset consists of matrices with $\operatorname{Tr}(\mathrm{M})>2$

- When $\operatorname{Tr}(\mathrm{M})>2$, the eigenvalues and eigenvectors are real and positive:
$\lambda_{ \pm}=\left(\operatorname{Tr}(M) \pm \sqrt{\operatorname{Tr}(M)^{2}-4}\right) / 2$.
- These two real vectors determine the direction field lines approach and leave the x-point $\left(\boldsymbol{f}\left(\boldsymbol{x}_{0}+\delta \boldsymbol{x}\right) \approx \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)+\mathrm{M} \cdot \delta \boldsymbol{x}\right)$.
- Because of ther structure in a Poincaré plot, fixed points of this type are called X-points.

Alternating-hyperbolic points have $\operatorname{Tr}(\mathrm{M})<-2$

- When $\operatorname{Tr}(\mathrm{M})<-2$ both eigenvectors are real and negative .
- The mapping is a combination of a pointwise reflection in the fixed point ($-\mathbb{I}$) and a squeeze mapping. We call these points alternaging-hyperbolic fixed points.
- When the field lines rotate exactly an integer and a half times around the axis ($q_{0}=1 /(2+n)$) the mapping becomes a pointwise reflection in the fixed point $-\mathbb{I}$.
- An infinitesimal perturbation to this mapping can then change the structure to alternating-hyperbolic.
- When field lines wind around 1.5 times,

$$
q_{0}=2 / 3=0.66 \ldots \simeq 0.7
$$

Ideal modes in the core region

- We use the NOVA code to analyze the ideal modes in the core region.
- The NOVA code solves normal mode formulation of the ideal MHD stability equation:

$$
\begin{equation*}
-\omega^{2} \rho \boldsymbol{\xi}=\boldsymbol{F}[\boldsymbol{\xi}] \tag{1}
\end{equation*}
$$

parameter	value
\boldsymbol{B}_{T}	1 T
R_{0}	3 m
\boldsymbol{a}	1 m
q	$q_{0}+0.9 \psi^{2}$
β_{0}	3%

where ω^{2} is the mode frequency squared, ρ is the plasma density, \boldsymbol{F} is the linerized MHD force operator, and $\boldsymbol{\xi}$ is the displacement vector.

- Solutions $\boldsymbol{\xi}$ with negative ω^{2} correspond to ideally unstable, exponentially growing modes.

Ideal modes in the core region

- q_{0} is scanned from $q_{0}=1.1$ to $q_{0}=0.6$
- When $q_{0} \sim 1$ we see the $1 / 1$ internal kink instability.

Ideal modes in the core region

- q_{0} is scanned from $q_{0}=1.1$ to $q_{0}=0.6$
- When $q_{0} \sim 1$ we see the $1 / 1$ internal kink instability.
- The displacement vector $\boldsymbol{\xi}$ of the $1 / 1$ mode shows the expected translation of the core plasma corresponding with the internal kink.

Ideal modes in the core region

- q_{0} is scanned from $q_{0}=1.1$ to $q_{0}=0.6$
- When $q_{0} \sim 1$ we see the $1 / 1$ internal kink instability.
- The displacement vector $\boldsymbol{\xi}$ of the $1 / 1$ mode shows the expected translation of the core plasma corresponding with the internal kink.
- When $q_{0}=2 / 3$ we see a new ideal $2 / 3$ instability with an order of magnitude higher growth rate.

Ideal modes in the core region

- q_{0} is scanned from $q_{0}=1.1$ to $q_{0}=0.6$
- When $q_{0} \sim 1$ we see the $1 / 1$ internal kink instability.
- The displacement vector $\boldsymbol{\xi}$ of the $1 / 1$ mode shows the expected translation of the core plasma corresponding with the internal kink.
- When $q_{0}=2 / 3$ we see a new ideal $2 / 3$ instability with an order of magnitude higher growth rate.
- $\boldsymbol{\xi}$ of the $2 / 3$ mode indicates a displacement where the plasma is forced onto the axis in two directions, and away from it in two others.

The displacement produces a perturbed magnetic field

- In the normal mode formulation of the ideal MHD equations, the perturbed field $\delta \boldsymbol{B}$ caused by a displacement $\boldsymbol{\xi}$ is given by:

$$
\begin{equation*}
\delta \boldsymbol{B}=\nabla \times\left(\boldsymbol{\xi} \times \boldsymbol{B}_{0}\right) \tag{2}
\end{equation*}
$$

- We use an analytical perturbation $\boldsymbol{\xi}$ with $\xi_{R}=-(1 / R) \partial_{Z} \psi$ and $\xi_{Z}=(1 / R) \partial_{R} \Psi$.

$$
\begin{equation*}
\Psi=A \exp \left(-\frac{\psi_{p}}{\sigma}\right) \cos (2 \theta-3 \phi) \tag{3}
\end{equation*}
$$

- We add this to a Grad-Shafranov equilibrium with $\beta_{0}=3 \%$ and $q=2 / 3+2.3333 * \psi_{p}$.
- We construct a Poincaré plot of the perturbed field $\boldsymbol{B}_{0}+\delta \boldsymbol{B}$ by tracing the orbits of low-energy electrons (1 keV) using the SPIRAL code.

The mode drives the axis to an alternating-hyperbolic point

- At a small amplitude of the perturbation
$A=4 \times 10^{-4}$ the perturbed field $|\delta \boldsymbol{B}| /\left|\boldsymbol{B}_{0}\right| \sim 1 \times 10^{-3}$.
- The axis becomes an alternating hyperbolic fixed point

The mode drives the axis to an alternating-hyperbolic point

- At a small amplitude of the perturbation
$A=4 \times 10^{-4}$ the perturbed field $|\delta \boldsymbol{B}| /\left|\boldsymbol{B}_{0}\right| \sim 1 \times 10^{-3}$.
- The axis becomes an alternating hyperbolic fixed point
- At higher amplitude of the perturbation At a higher amplitude $A=0.01\left(|\delta \boldsymbol{B}| /\left|\boldsymbol{B}_{0}\right| \sim 2.5 \times 10^{-2}\right)$ a stochastic region is created in the core.
- The $q=1$ surface is broken up into a $3 / 3$ island chain.

Beyond linearized ideal MHD

- The change in topology magnetically connects the highest-pressure plasma on the axis with surfaces further out.
- Rapid parallel transport can induce flow along the field lines and cause further perturbations.

Beyond linearized ideal MHD

- The change in topology magnetically connects the highest-pressure plasma on the axis with surfaces further out.
- Rapid parallel transport can induce flow along the field lines and cause further perturbations.
- At high amplitude of the perturbation, the stochastic region is magnetically connected.
- The temperature can equilibrate in the connected region.
- Magnetic chaos leads to rapid reconnection in this regioin. This redistributes poloidal and toroidal fluxes, and a higher q_{0}

The Alternating Hyperbolic sawtooth model

(1) The internal kink is stabilized (through toroidal rotation, fast particles or another mechanism), and q_{0} decreases through slow current diffusion.
(2) When q_{0} reaches $2 / 3$, the ideal mode causes the axis to transition to an alternating-hyperbolic fixed point.
(3) This mode (possibly with other modes that occur when the topology changes) creates a stochastic region in the core.
(4) The temperature equilibrates in the core region, and poloidal and toroidal fluxes are redistributed leading to an increased q_{0}.
(5) The field shifts out of resonance with the $2 / 3$ mode, the flux surfaces in the core heal, and the cycle begins anew.

Conclusions

- The observations of $q_{0} \sim 0.7$ at time of crash and below 1 for the entire cycle, are irreconcilable with the Kadomtsev and Wesson models.
- By identifying the magnetic structure around the magnetic axis with elements of $\operatorname{SL}(2, \mathbb{R})$, we show that exactly when when $q_{0}=2 / 3$ the magnetic axis can continuously change to become alternating hyperbolic.
- MHD stability calculations show that there is a high growth rate ideal mode exactly when this is the case.
- The displacement associated with this mode is directed onto and away from the axis in a pattern that drives the transition to the alternating-hyperbolic configuration; the magnetic field associated with this perturbation directly causes it.
- The alternating-hyperbolic sawtooth model fits with the low q_{0} measurements, allows for a cycle where q_{0} remains below 1 , and does not remove the $q=1$ surface.

Thank you for your attention

Bonus slide: Topological index of a fixed point

- Define the vector field $\boldsymbol{\omega}=\left(R_{0}, Z_{0}\right)^{T}-\boldsymbol{f}\left(R_{0}, Z_{0}\right)$, which is zero at the fixed points and let $\gamma(\tau)$ be a closed curve, parametrized by τ that encloses an isolated zero \boldsymbol{x}_{0} of \boldsymbol{w}.
- The function $g: \gamma \rightarrow S^{1}$ sends every point on γ to the unit vector $g: \gamma(\tau) \mapsto \boldsymbol{w}(\gamma) /|\boldsymbol{w}(\gamma)|$ on the unit circle S^{1}.
- The index of the isolated zero x_{0} is then the degree of this mapping: $\operatorname{Ind}\left(x_{0}\right)=\operatorname{deg}(g)$
- The degree is also sometimes called the winding number, and is positive if the image of $\gamma(\tau)$ is traversed in the same (co/counter-clockwise) direction as $\gamma(\tau)$.
- In case γ encloses more than one isolated zero, the degree of g is the sum of the indices of all zeros enclosed. The sum of the indices of fixed points in a tokamak is always +1

Bonus slide: An alternating-hyperbolic fixed point has index +1

- The alernating-hyperbolic fixed point maps points to the opposite hyperbolic branch.
- when $\gamma(\tau)$ is traversed clockwise, the image on S^{1} is also traversed clockwise.
- The only fixed point in the tokamak can become alternating-hyperbolic.

JET: Circular plasmas in D shaped devices show crashes at 1 and below

- Circular cross-section discharges with combined MSE and Faraday rotation measurents were studied in JET. Both techniques yield $q_{0} \sim 0.7$.
- First crash occurs when $q_{0} \sim 1$ is reconstructed.
- Subsequently there is a significant increase in poloidal field.
- Even if absolute value is of q is debatable, the delta is clear.
- Note: q_{0} represents cycle-average and therefore higher.

Hints from TFTR

- Yamada et al. measured sawteeth with line ECE and MSE on TFTR.
- The heat flow contours in the core region show a $n=2$ structure at time of crash.
- The poloidal temperature distribution was inferred from toroidal rotation $(120 \mu \mathrm{~s})$.
(a)

(b)

(d)

[^0]: ${ }^{a}$ Coppi, B., et al. Fizika Plazmy 2 (1976): 961-966.
 ${ }^{b}$ Weller, Phys. Rev. Lett. 592303 (1987)
 CWroblewski Phys. Fluids B 3, 2877 (1991)
 $d_{\text {Nam, }}$ Y et al, NF 58066009 (2018)

[^1]: ${ }^{a}$ Coppi, B., et al. Fizika Plazmy 2 (1976): 961-966.
 ${ }^{b}$ Weller, Phys. Rev. Lett. 592303 (1987)
 ${ }^{C}$ Wroblewski Phys. Fluids B 3, 2877 (1991)
 $d_{\text {Nam, }}$ Y et al, NF 58066009 (2018)

[^2]: ${ }^{a}$ Coppi, B., et al. Fizika Plazmy 2 (1976): 961-966.
 ${ }^{b}$ Weller, Phys. Rev. Lett. 592303 (1987)
 CWroblewski Phys. Fluids B 3, 2877 (1991)
 $d_{\text {Nam, }}$ Y et al, NF 58066009 (2018)

[^3]: ${ }^{a}$ Coppi, B., et al. Fizika Plazmy 2 (1976): 961-966.
 b Weller, Phys. Rev. Lett. 592303 (1987)
 ${ }^{C}$ Wroblewski Phys. Fluids B 3, 2877 (1991)
 $d_{\text {Nam, }}$ Y et al, NF 58066009 (2018)

[^4]: ${ }^{a}$ Coppi, B., et al. Fizika Plazmy 2 (1976): 961-966.
 b Weller, Phys. Rev. Lett. 592303 (1987)
 ${ }^{C}$ Wroblewski Phys. Fluids B 3, 2877 (1991)
 $d_{\text {Nam, }}$ Y et al, NF 58066009 (2018)

[^5]: ${ }^{a}$ Coppi, B., et al. Fizika Plazmy 2 (1976): 961-966.
 b Weller, Phys. Rev. Lett. 592303 (1987)
 ${ }^{C}$ Wroblewski Phys. Fluids B 3, 2877 (1991)
 $d_{\text {Nam, }}$ Y et al, NF 58066009 (2018)

