
A&A 508, 445–449 (2009)
DOI: 10.1051/0004-6361/200913197
c© ESO 2009

Astronomy
&

Astrophysics

Multiple eruptions from magnetic flux emergence
(Research Note)

D. MacTaggart and A. W. Hood

School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland, UK
e-mail: dm428@st-andrews.ac.uk

Received 28 August 2009 / Accepted 14 October 2009

ABSTRACT

Aims. In this paper we study the effects of a toroidal magnetic flux tube emerging into a magnetized corona, with an emphasis on
large-scale eruptions. The orientation of the fields is such that the two flux systems are almost antiparallel when they meet.
Methods. We follow the dynamic evolution of the system by solving the 3D MHD equations using a Lagrangian remap scheme.
Results. Multiple eruptions are found to occur. The physics of the trigger mechanisms is discussed and related to well-known eruption
models.
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1. Introduction

The trigger mechanism for large-scale eruptions, such as coro-
nal mass ejections (CMEs), is one of the main concerns of
theoretical solar physics. There are many different approaches
to modelling solar eruptions, ranging from 2D analytical mod-
els to 3D numerical simulations. A review of such models can
be found in Forbes (2000) and further references are given in
MacTaggart & Hood (2009a). One highly influential model for
solar eruptions is the breakout model (Antiochos et al. 1999).
This theory uses, as an initial condition, a multipolar configura-
tion, which consists of four distinct flux systems separated by a
null point. This configuration is stressed by an imposed shearing
at the lower boundary (normally taken to be the photosphere).
Reconnection across the current sheet at a stressed null changes
the field geometry and weakens the tension of overlying field
lines, converting them into nonrestraining field lines of neigh-
bouring flux systems. The continuation of this process can even-
tually lead to expulsion of a flux rope. For more details of the
breakout model, the reader is directed to Antiochos et al. (1999),
DeVore & Antiochos (2008) and Lynch et al. (2008).

Recently, DeVore & Antiochos (2008) and Lynch et al.
(2008) have simulated magnetic breakout in 3D. The first of
these studies finds homologous confined eruptions. The second
study follows the topological evolution of a fast breakout CME.
Soenen et al. (2009) simulate homologous CMEs in the solar
wind in an axisymmetric 2.5D configuration.

The breakout studies mentioned above have been very useful
in investigating the physical mechanisms of solar eruptions. One
point which they all have in common, however, is that the initial
equilibrium is stressed by artificially imposed shearing motions.

Other models are also used to study eruptions in the solar
atmosphere. For example, Mackay & van Ballegooijen (2006)
model the large-scale coronal field as a series of non-linear
force-free equilibria. Flux ropes form but not all of them set-
tle into equilibrium. Those that diverge from equilibrium are
ejected.

For studying dynamic evolution in the atmosphere, another
model is flux emergence. This considers the early evolution of

active regions, which, of course, are the sources of large-scale
solar eruptions. The standard practice in dynamic flux emer-
gence experiments is to have a stratified solar atmosphere in-
cluding the top of the solar interior. A flux tube is placed in
the solar interior and the system is left to evolve by itself, with
no imposed flows. A review of such models can be found in
Archontis (2008). Some studies include a magnetized corona in
their model. Archontis et al. (2005) and Galsgaard et al. (2007)
study the effects of a cylindrical flux tube emerging into a hori-
zontal coronal field. They consider different orientations for the
magnetic fields and discuss the reconnection and high-speed jets
that occur. Maclean et al. (2009) consider the same experiment
but investigate the magnetic topology of the system. In relation
to solar eruptions, Manchester et al. (2004) report on the erup-
tion of a flux rope that forms during the emergence of a cylin-
drical flux tube into an non-magnetized corona. Archontis &
Török (2008) study the emergence of a cylindrical flux tube into
a magnetized corona and find that with a favourable orientation,
a CME-like eruption is possible.

In the present paper, we shall consider a similar setup to
Archontis & Török (2008) but use a different model for the mag-
netic field. This is a toroidal loop, placed in the solar interior,
rather than a cylindrical one (Hood et al. 2009). A comparison of
these two models is discussed in MacTaggart & Hood (2009b).
This paper will show that multiple large-scale eruptions are pos-
sible from the same emerging region and will discuss the physics
of the trigger mechanisms.

The outline of the paper is as follows: Sect. 2 will describe
the model setup and the initial conditions. In Sect. 3 we shall
discuss the results of the eruption experiment and link the pro-
cesses involved with eruption models. Sect. 4 will summarize
the results.

2. Model setup

To study the evolution of the system numerically, we use a
Lagrangian remap scheme (Arber et al. 2001). All variables
are non-dimensionalized with photospheric values: pressure,
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pph = 1.4 × 104 Pa; density, ρph = 3 × 10−4 kg m−3; tem-
perature, Tph = 5.6 × 103 K and scale height Hph = 170 km.
The other units used in the simulations are: time, tph = 25 s;
speed, uph = (pph/ρph)1/2 = 6.8 km s−1 and magnetic field
Bph = 1.3 × 103 G. The evolution of the system is governed
by the following resistive and compressive 3D magnetohydro-
dynamic (MHD) dimensionless equations

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ

(
∂u
∂t
+ (u · ∇)u

)
= −∇p + (∇ × B) × B + ρg,

∂B
∂t
= ∇ × (u × B) + η∇2B,

ρ

(
∂ε

∂t
+ (u · ∇)ε

)
= −p∇ · u + η j2,

∇ · B = 0,

with specific energy density ε = p/((γ − 1)ρ). The basic vari-
ables are the density ρ, the pressure p, the magnetic field vec-
tor B and the velocity vector u. j is the magnitude of current
density and g is gravity (uniform in the z-direction). γ is the ra-
tio of specific heats and is taken as 5/3. η is the resistivity which
is taken to be uniform with a value of 0.001. The code accurately
resolves shocks by using a combination of artificial viscosity and
Van Leer flux limiters. In such regions, heating is added to the
energy equation.

The equations are solved in a Cartesian computational box of
(non-dimensional) sizes, [−50, 50]× [−50, 50]× [−20, 85] in the
x, y and z directions, respectively. The boundary conditions are
closed on the top and base of the box and periodic on the sides.
The background stratification is similar to that in MacTaggart &
Hood (2009b). The non-magnetic stratification includes a solar
interior that is marginally stable to convection (−20 < z < 0),
a photosphere/chromosphere (0 < z < 10), a transition region
(10 < z < 20) and a corona (20 < z < 85). A horizontal magnetic
field of the form

B = Bc(z)(1, 0, 0),

is included in the corona. Bc(z) is a hyperbolic tangent pro-
file, so that the field is uniform in the corona and rapidly de-
clines to zero at the base of the transition region. The strength of
the coronal field is taken to be 0.01 (≈13 G). The orientation
of the field is chosen so that it is almost antiparallel to the field
of the emerging flux tube when they meet. The initial toroidal
tube, that is placed in the solar interior, has the form

Bx = Bθ(r)
s − s0

r
,

By = −Bφ(r)
z − z0

s
− Bθ(r)

x
r

y
s
,

Bz = Bφ(r)
y
s
− Bθ(r)

x
r

z − z0

s
,

with

r2 = x2 + (s − s0)2, s − s0 = r cos θ, x = r sin θ,

and

Bφ = B0e−r2/r2
0 , Bθ = αrBφ = αB0re−r2/r2

0 .

s0 is the major axis of the tube and r0 is the minor axis. z0 is
the base of the computational box. α is the initial twist and B0

is the initial axial field strength. Varying these parameters can
have a profound effect on the behaviour of toroidal emergence
(MacTaggart & Hood 2009b). For this study, however, we shall
only consider the values of B0 = 5 and α = 0.4. In this study
we take s0 = 15, r0 = 2.5 and z0 = 25. To initiate the experi-
ments, the entire tube is made buoyant. i.e. a density deficit rel-
ative to the background density is introduced (Hood et al. 2009;
MacTaggart & Hood 2009b).

3. Results

As mentioned previously, the pre-existing field of the corona is
almost antiparallel to the field of the emerging tube. As the tube
emerges, the arcade it forms first makes contact with the coronal
field at t ≈ 33. It pushes into the horizontal field and an arched
current sheet forms between them. Reconnection occurs and the
outer field lines of the arcade, that pass through the current sheet,
change their connectivity and connect to the coronal field. The
form of reconnection is fully 3D in the sense that it does not
involve a null point. Maclean et al. (2009) also find this to be
the case, with two clusters of null points forming at the sides
of the emerging arcade rather than at the apex. They suggest
that separator reconnection occurs in the current sheet between
the tube and the corona. The effect, however, of this external
reconnection is to weaken the tension of the coronal field. This
becomes increasingly rapid with the loss of the restraining field,
as in the breakout model (Lynch et al. 2008). Evidence for this
can be found by looking at the reconnection rate as it varies in
time. The rate of reconnected flux is given by

dΦrec

dt
=

∫
E‖ dl,

where the right hand side is the integrated parallel electric field
along the reconnection line (Schindler 2008). In 3D, however,
no unique line exists at which the flux is split and reconnected
(Hornig & Priest 2003). Within the current sheet, every field line
constantly changes its connection. Therefore, to estimate the re-
connection rate between the flux tube arcade and the corona, in
the simulation, we measure

dΦrec

dt
≈ max

y=0
(E‖)δ,

where maxy=0(E‖) is the maximum parallel electric field in the
y = 0 plane (at the top of the arched current sheet) and δ is the
thickness of the current sheet. This is a conservative estimate of
the reconnection rate, giving a lower bound. Figure 1 displays
the increasing external reconnection rate during the expansion
of the emerging arcade. Lynch et al. (2008) report that this be-
haviour is also found in the breakout model. Figure 2 shows the
field line structure of the reconnected corona at t = 70. The
coronal field lines are traced from opposite sides of the com-
putational box (red for one side (x = −50), green for the other
(x = 50)) at z = 22. A magnetogram showing Bz is placed at the
base of the photosphere (z = 0). After external reconnection the
coronal field connects down into the main photospheric polari-
ties (sunspots), leaving the centre free for the arcade to push on
upwards.

As the arcade emerges, the Lorentz force produces shear-
ing along the polarity inversion line between the two sunspots.
Also during the rise of the arcade, plasma drains down the field
lines, with some flowing into a region of reduced pressure within
the arcade. This, combined with the shearing produced by the
Lorentz force, results in internal reconnection in the arcade and
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Fig. 1. As the arcade of the emerging tube expands into the magnetized
corona, the continued weakening of the overlying restraining field re-
sults in faster reconnection.

Fig. 2. The field line structure of the corona after external reconnection.
Red and green coronal lines are traced from opposite sides of the box,
x = −50 and x = 50, respectively, at z = 22 and t = 70. A magnetogram
shows Bz at z = 0.

the production of a flux rope. In the simulation this occurs at
t ≈ 80. For more details of the physics of the internal re-
connection and flux rope production, the reader is directed to
MacTaggart & Hood (2009b) (see also Manchester et al. 2004).

With the production of a flux rope and the continued loss
of the restraining coronal field through external reconnection,
there is a catastrophic expulsion of the flux rope at t ≈ 91. This
description of the eruption is very similar to that of magnetic
breakout. There are two important differences, however. The first
is that in this flux emergence model, a null point does not play a
crucial role in the external reconnection, as it does in breakout.
The second is that there are no imposed flows in the flux emer-
gence model. The Lorentz force of the emerging arcade naturally
shears the magnetic field (MacTaggart & Hood 2009b).

After the first eruption, the system does not settle into an
equilibrium since the flux tube continues to emerge. The mag-
netic field in the corona is no longer horizontal due to reconnec-
tion during the first eruption. Shearing in the emerging arcade
produces a second flux rope at a height z ≈ 34 and time t ≈ 125.

Fig. 3. The field line configuration just before the eruption of the second
rope. Coronal field lines (cyan) are traced from the sides of the box
(along the y-axis) at z = 40. The red field line is the axis of the newly
formed flux rope. Some field lines surrounding this are traced in green.
A magnetogram is displayed at z = 0.

The field line structure of the new flux rope and the corona at
t = 125 is displayed in Fig. 3. Coronal field lines (cyan) are
traced from opposite sides of the box at z = 40. The red field
line is the axis of the new flux rope. Some surrounding field
lines (green) are traced from the main photospheric polarities,
which are shown on a magnetogram at z = 0. This flux rope also
erupts but the mechanism of the eruption is different to that of
the first. The first eruption was of breakout type where signif-
icant external reconnection (between the emerging arcade and
the horizontal coronal field) played a crucial role in the expan-
sion phase up to the eruption. As can be seen in Fig. 3, however,
the first eruption has “cleared a path” in the corona. External
reconnection, therefore, does not feature as a key factor in the
eruption of the second rope. This means that the trigger mech-
anism is not of breakout type and other candidates need to be
considered. Archontis & Török (2008) suggest that the eruption
they found is mainly driven by runaway reconnection below the
flux rope. This process has two important effects on the eruption.
Firstly, the reconnection weakens the tension of the overlying
field. Secondly, the upward reconnection jet carries the recon-
nected field lines to the erupting flux rope, adding poloidal flux
to the rope (Vršnak 2008). Both of these effects help the rope to
accelerate further. This, in turn, enhances the reconnection below
and a runaway process ensues. For the second flux rope, this in
combination with a weakened coronal field could drive the erup-
tion. Another possibility, however, is that the newly formed rope
becomes subject to an ideal MHD instability. A likely candidate
is the torus instability (Bateman 1978; Kliem & Török 2006;
Török & Kliem 2007). A toroidal flux tube will become unsta-
ble against expansion if the external poloidal field decreases suf-
ficiently rapidly in the direction of the major tube radius. Fan
(2009) simulates the emergence of a cylindrical flux tube into
a non-magnetized corona. The author claims that the expansion
and acceleration of the flux rope, produced in the simulation, is
due to the continuous injection of twist, from the interior, via
torsional Alfvén waves.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913197&pdf_id=1
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Fig. 4. The height-time profiles for the two eruptions of the simulation.
The curve for the first eruption is solid and the second is dashed.

Fig. 5. The second flux tube eruption of the simulation at t = 132. The
colour map shows log ρ in the y = 0 plane with field line arrows to
show the direction (but not the magnitude) of the magnetic field. Dense
plasma can clearly be seen to be carried upwards into the corona with
the erupting flux tube.

Identifying the trigger mechanism for the second eruption is
not a trivial undertaking and is therefore beyond the scope of
this research note. This is a subject for future study. It is possible
that there is no single trigger mechanism and that the second
eruption is due to a combination of mechanisms, including those
mentioned above.

The height-time profiles of the erupting ropes are displayed
in Fig. 4. These are estimated by tracking the O-point of the
magnetic field in the y = 0 plane. The O-points also carry a “cir-
cular” profile of dense plasma so we are confident that these ac-
curately represent the erupting flux ropes. This is demonstrated
in Fig. 5, which shows the second erupting flux rope, with centre
(x, z) ≈ (0, 55), at t = 132 by displaying the plasma density in
the y = 0 plane. Field line arrows are also shown to indicate the
direction of the magnetic field in that plane.

As mentioned earlier, the first flux rope forms at t ≈ 80. It
rises slowly until the eruption at t ≈ 91. Here the gradient of the
curve, in Fig. 4, changes from (in non-dimensionalized units) 0.3
to 2. At t = 115 the centre of the rope has reached z = 70 and
the gradient of the curve has increased to 2.8. We stop tracking
the rope at this time since this is just before it comes into contact
with the top boundary of the computational box. At t ≈ 125 the

Fig. 6. The vertical forces carrying the flux rope upwards at t = 130.
The cut is taken at (x, y) = (0, 0). Key: All forces (solid), ( j×B)z (dash),
−∂p/∂z (dot-dash).

second rope, that has formed, is ejected upwards. Again, the rope
is only tracked to just above z = 70 since beyond this the upper
boundary begins to interfere with the rope’s ascent.

The simulation is ended after the second eruption due to
computational constraints. The plasma from the first two erup-
tions hits the top of the computational box, falls back down and
interferes with the system. In theory, however, as long as the
emergence process transports enough flux into the atmosphere
and drives the necessary shearing, there should be more erup-
tions like the ones described.

The ropes are carried upwards by a Lorentz force. Looking
at the vertical forces, ( j × B)z − ∂p/∂z − ρg > 0 at the height of
a flux tube during its rise. Figure 6 illustrates this by displaying
the (non-dimensionalized) vertical forces as a function of height
at (x, y) = (0, 0) for the second flux rope eruption at t = 130.
A positive upward force exists at the height of the flux rope and
moves upwards in time with it. Of all the forces, it is the Lorentz
force that dominates and is ultimately responsible for the rise of
the ropes.

4. Summary

In this paper we have demonstrated that multiple CME-like erup-
tions are possible from a toroidal flux tube emerging into a
magnetized corona. This combines and builds on the work of
MacTaggart & Hood (2009b) and Archontis & Török (2008).
For the present study we consider a corona with a field that is
almost antiparallel to the field of the emerging tube. External
reconnection at the apex of the emerging arcade weakens the
tension of the coronal field. With the expansion of the arcade,
this reconnection becomes faster through time. Shearing, which
occurs as part of the emergence process, induces internal recon-
nection in the arcade and produces a flux rope. The continued
emergence in combination with removal of the overlying coro-
nal field eventually results in the expulsion of the flux rope. The
mechanism for this eruption is similar to that of the breakout
model. One important difference, however, is that the external re-
connection in this model does not take place at a null point. After
the first eruption, continued emergence and, therefore, shearing
results in the formation of a second flux rope. This also erupts
but the trigger mechanism cannot be directly linked to the break-
out model, as with the first eruption. Due to the reconnection of
the first eruption with the corona, a weakened coronal field ex-
ists above the second rope when it forms. Possible trigger mech-
anisms, such as runaway reconnection and the torus instability,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913197&pdf_id=4
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have been suggested. However, it is possible that the trigger for
the second eruption is a combination of such mechanisms.
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