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Magnetic helicity flux gives information about the topology of a magnetic field
passing through a boundary. In solar physics applications, this boundary is the
photosphere and magnetic helicity flux has become an important quantity in analysing
magnetic fields emerging into the solar atmosphere. In this work we investigate the
evolution of magnetic helicity flux in magnetohydrodynamic (MHD) simulations of
solar flux emergence. We consider emerging magnetic fields with different topologies
and investigate how the magnetic helicity flux patterns correspond to the dynamics
of emergence. To investigate how the helicity input is connected to the emergence
process, we consider two forms of the helicity flux. The first is the standard form
giving topological information weighted by magnetic flux. The second form represents
the net winding and can be interpreted as the standard helicity flux less the magnetic
flux. Both quantities provide important and distinct information about the structure
of the emerging field and these quantities differ significantly for mixed sign helicity
fields. A novel aspect of this study is that we account for the varying morphology of
the photosphere due to the motion of the dense plasma lifted into the chromosphere.
Our results will prove useful for the interpretation of magnetic helicity flux maps in
solar observations.
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1. Introduction
The year 2018 marks the 60th anniversary of Woltjer’s observation (Woltjer

1958) that magnetic helicity in a tangent magnetic field is an invariant of ideal
magnetohydrodynamics (MHD). That is, for a simply connected domain Ω ,

d
dt

∫
Ω

A ·B dV = 0, B · n= 0 on ∂Ω, (1.1)

where B is the magnetic field, A is the vector potential of the magnetic field and n
is the surface normal. This form of helicity is also gauge invariant in the sense that
the transformation A→ A + ∇χ , for some scalar function χ , does not change the
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2 C. Prior and D. MacTaggart

value of helicity. A few years later, Moffatt (Moffatt 1969) discovered the topological
connection of magnetic helicity to Gauss’ linking number. Thus, the subject of
magnetic topology was born and has been influential in many areas of MHD ever
since (e.g. Taylor 1974; Frisch et al. 1975; Berger 1984; Schindler, Hesse & Birn
1988; Pevtsov, Canfield & Metcalf 1995; DeVore 2000; Russell et al. 2015). Some
important examples of applications include the prediction of relaxed magnetic states
in reverse pinch experiments (Taylor 1974) and the analysis of emerging solar active
regions (e.g. Pevtsov et al. 1995; Démoulin et al. 2002; Leka, Fan & Barnes 2005;
LaBonte, Georgoulis & Rust 2007). The first example we have given is an instance
of magnetic topology applied to magnetic relaxation. Taylor (1974) conjectured that
(total) magnetic helicity is approximately conserved in a system with very small
resistivity. Minimizing the magnetic energy whilst preserving the magnetic helicity,
the relaxed state is predicted to be a linear force-free field. This simple and elegant
theory has had good experimental corroboration and is one of the successes of the
application of magnetic helicity.

The second application we gave, magnetic flux emergence, is the subject of this
paper. ‘Bundles’ of magnetic field rise up through the solar convection zone until they
reach the Sun’s surface, the photosphere. Here, the magnetic bundles emerge into the
solar atmosphere where they can produce interesting phenomena such as flares and
coronal mass ejections (e.g. Hood, Archontis & MacTaggart 2012; Cheung & Isobe
2014). Since we cannot observe magnetic fields in the solar atmosphere directly, we
rely on indirect information about their structure. This is where magnetic helicity input
can play an important role.

When observers study the magnetic fields of solar active regions, the photosphere
acts as a lower boundary for the magnetic field. This fact introduces a complication
in the original definition of magnetic helicity. It means that active region magnetic
fields have a non-trivial normal boundary component at the photosphere and, hence,
magnetic field lines which leave the domain. In such circumstances the helicity
is no longer gauge invariant. We can bypass the above complication, however,
by considering relative magnetic helicity (Berger & Field 1984) which provides
a topological invariant for fields connected to a boundary. Magnetic helicity can,
therefore, be used in the analysis of solar active regions, in particular as an indicator
of eruptive activity (e.g. Yeates & Hornig 2016; Guo et al. 2017; Pariat et al. 2017).

Although some researchers study relative helicity in solar atmosphere (e.g. Valori,
Démoulin & Pariat 2012; Yeates & Hornig 2016; Guo et al. 2017; Pariat et al. 2017),
this quantity requires knowledge of the magnetic field’s full structure which is not
observationally available. Observational studies instead measure the relative magnetic
helicity flux through the photosphere (e.g. Chae 2001; Kusano et al. 2002; Pevtsov,
Maleev & Longcope 2003; Yokoyama et al. 2003; Pariat et al. 2006; LaBonte et al.
2007; Schuck 2008; Vemareddy 2015). Photospheric maps of helicity flux during flux
emergence can reveal interesting and complex patterns. Often, however, these results
are interpreted based on a ‘standard model’ of flux emergence where the emerging
magnetic field is a twisted flux tube just below the photosphere (e.g. Archontis &
Török 2008; MacTaggart & Hood 2009; Moreno-Insertis & Galsgaard 2013). Twist
is an important part of helicity that, in flux emergence studies, leads to eruptive
behaviour in the atmosphere. Observations of active region helicity input, however,
imply that even bipolar regions, associated with single sign helicity flux rope/sheared
arcade formation, can often input both signs of helicity (e.g. Leka & Skumanich
1999; Pevtsov et al. 2008; Vemareddy 2015; Vemareddy & Démoulin 2017; Bi et al.
2018). Modelling and interpreting the emergence of mixed helicity regions should be
a priority in order to provide an understanding of their behaviour.
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Magnetic helicity in solar flux emergence 3

The purpose of this article is to show how (relative) magnetic helicity flux can be
interpreted in solar flux emergence with a variety of emerging magnetic topologies.
We first examine the ‘topological meaning’ of helicity flux in terms of winding (field
line entanglement). We then study the magnetic helicity and winding fluxes in flux
emergence simulations with different initial profiles of the magnetic field. The paper
ends with a summary and a discussion.

2. Magnetic helicity flux
Consider an emerging magnetic field subject to ideal motion and two points a1(t)

and a2(t) which represent the intersection of two field lines and the photospheric plane
P. The motion of these points in time follows the motion of the points of intersection
of these field lines in P as the field emerges. The net rotation of these points within
P as a function of time is

c(a1, a2, t)=
1

2π

∫ t1

t0

dθ12(a1, a2, t)
dt

dt, (2.1)

where θ12(a1, a2, t) is the angle of the line segment linking a1 and a2. Equation (2.1)
represents the entanglement of a pair of field lines due to emergence or in plane
motions of the field lines, hence dc/dt represents the rate of input of entanglement
through the photosphere and into solar atmosphere due to these field lines.

In order to determine the time derivative of the angle θ12, first note that

θ12 = arctan
(
(a2 − a1) · ŷ
(a2 − a1) · x̂

)
. (2.2)

Differentiating gives,

dθ12

dt
=

1
(a2 − a1) · (a2 − a1)

ẑ · (a2 − a1)×

(
da2

dt
−

da1

dt

)
. (2.3)

The (relative) magnetic helicity H represents the total winding c(a1,a2, t) over all pairs
of paths weighted by the photospheric flux over a given period of time (Berger 1988;
Démoulin & Berger 2003). Thus, the rate of input of magnetic helicity into the solar
atmosphere, through the photosphere P, is

dH
dt
=−

1
2π

∫
P

∫
P

Bz(a1)Bz(a2)
dθ12(a1, a2, t)

dt
dx1 dy1 dx2 dy2. (2.4)

In order to use (2.4), we need to know how to track points a1 and a2. This motion
is given by both in-plane motions and the projection due to motion out of the plane
(flux emergence or submergence). If u is the velocity field and u‖ is the projection of
u onto P, it can be shown that

da
dt
= u‖ −

uz

Bz
B‖ = u‖ − uz

(
da
dz

)
‖

, (2.5)

(e.g. Berger 1988; Démoulin & Berger 2003). The term u‖ accounts for the motions of
the field lines within the plane. The term uz(da/dz)‖ accounts for the apparent motion
within the plane due to the emergence (or submergence if uz < 0) of field lines. The
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4 C. Prior and D. MacTaggart

total derivative da/dt assumes that the field lines are advected with the plasma (ideal
motion).

The helicity flux through P represents the transmission of topological information
into the atmosphere and can change in time. In magnetic relaxation, although magnetic
helicity controls the final equilibrium, the path to that equilibrium can involve very
complicated dynamics. Similarly in flux emergence, although magnetic helicity affects
the overall evolution of the emerging field, the magnetic helicity flux is associated
closely with the dynamics of emergence – the interplay of both plasma and magnetic
field. For this reason, it is important to interpret carefully what maps of magnetic
helicity flux mean.

A related quantity is the field line helicity input (e.g. Berger 1988; Vemareddy 2015;
Vemareddy & Démoulin 2017) which we define here as

dH
dt
(a0)=−

1
2π

Bz(a0)

∫
P

Bz(a)
dθ(a0, a)

dt
dx dy. (2.6)

Equation (2.6) describes the contribution to the helicity flux dH/dt from a single point
a0 ∈ P (thus the contribution to helicity flux from a single field line). Although the
integrand of (2.6) has a singularity at a0, the integral still converges as the pole is of
a lower order than the domain of integration. In the solar physics literature, dH(a0)/dt
is often labelled ‘Gθ ’ and is used as a proxy for helicity flux density (e.g. Pariat,
Démoulin & Berger 2005).

The contribution from a neighbourhood around the pole (call it aε0) can be shown
to be decomposed into the local twisting of the field around this point (which relates
to the local electric current) and a contribution called the writhe, due to the geometry
of the field line passing through a0 (Călugăreanu 1959, 1961; White 1969; Berger &
Prior 2006). Considering the contribution of the integral (2.6) from aε0, we can relate
this to self-helicity as it measures the winding of the field in the locality of the field
line passing through a0. The contribution due to the rest of the field, on the set P−
aε0, with this local neighbourhood is related to mutual helicity since the contribution
represents the winding of the rest of the field with the small ‘flux tube’ in aε0. This
idea of decomposing the helicity into mutual and self-components has been used in
numerous studies. Often it is the case that the field will have finite volume flux ropes,
as in Pariat et al. (2006) and Guo et al. (2017), be the result of clear large scale
shearing motion, as in Démoulin et al. (2002), or have regions of similar squashing
factor, such as in Guo et al. (2017). In these cases it is possible to extend the notion
of self-helicity to these finite bundles of field lines and gain further insight into the
field’s morphology by tracking these self/mutual interactions. In this study, we will
consider fields that exhibit highly complex local current structure and topology. Hence,
a decomposition of the helicity into self and mutual components is not a simple task
or necessarily well defined. Therefore, in this study, we do not pursue the self/mutual
approach to describing helicity.

As a final note, before presenting our analysis, we add that Pariat et al. (2006)
showed that it is possible to get spurious input values from (2.6) due to field
structures with no helicity. This is not the case for the emergence/submergence events
analysed here but is a possibility that should always be considered when looking at
the distributions of this quantity (such spurious contributions vanish for the net input
(2.4)).
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Magnetic helicity in solar flux emergence 5

2.1. Separating field strength and topological information
To disentangle the field strength (flux) and topological information associated with the
helicity input, we can also consider the net winding input

dL
dt
=−

1
2π

∫
P

∫
P
σz(a1)σz(a2)

dθ12(a1, a2, t)
dt

dx1 dy1 dx2 dy2, (2.7)

where

σz(x)=

 1 if Bz(x) > 0,
−1 if Bz(x) < 0,
0 if Bz(x)= 0,

(2.8)

(e.g. Prior & Yeates 2014). The rate dL/dt measures the input of field line
entanglement through the photosphere and ignores the extra flux information provided
by the helicity. A similar suggestion made in the literature is to divide the helicity
input by the square of the flux (e.g. Yamamoto et al. 2005; LaBonte et al. 2007;
Vemareddy & Démoulin 2017). We propose that dL/dt is more meaningful in this
context as it is based on a quantity, the net winding, which is also an ideal invariant
(Prior & Yeates 2014). Indeed, it was shown recently to be more topologically
meaningful than helicity as it can be used, under certain circumstances, to classify
field topologies and hence precisely measure changing field connectivity (Prior &
Yeates 2018).

2.2. Evolving photosphere
The standard practice in both theoretical and observational studies of helicity is to
treat the lower (photospheric) boundary as fixed. In almost all studies, the photosphere
is a plane (e.g. Pariat et al. 2005, 2006; Jeong & Chae 2007; Sturrock et al. 2015;
Vemareddy 2015; Vemareddy & Démoulin 2017), although calculations in spherical
geometry have also been performed (Berger 1985; MacTaggart et al. 2016; Moratis
et al. 2018). In our calculations, which we will describe shortly, our fixed photospheric
plane P will represent the fixed height z= 0 in a Cartesian domain.

In addition to this approach, we also consider the effect of an evolving photosphere.
Including this effect means that the lower boundary is no longer fixed but is a surface
that deforms in space and time. In our calculations, we will define the photospheric
boundary as the surface where the plasma density ρ has the non-dimensional value
of 1. In order to evaluate how a changing photosphere will affect the helicity and
winding fluxes, we use the following procedure. First, we calculate the varying surface
on which ρ = 1, i.e. the set

{Pv(a, t) | a ∈ P, ρ(Pv)= 1} . (2.9)

P will always represent the horizontal plane at z= 0 in our model (more details will
be given later). At t= 0 in the simulations, Pv ≡ P. As indicated, Pv is a function of
the coordinates (x, y) of P.

We then evaluate da/dt at Pv(a, t) rather than at P(a). We can use this quantity
to calculate an effective rotational derivative dθ12/dt using (2.3). To account for the
surface geometry, we replace the area element dx1dy1 with J(a1)dx1dy1, where J the
Jacobian of the surface Pv at the coordinates of a1 (and similarly for a2). For example,
the calculation (2.7) will become
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6 C. Prior and D. MacTaggart

dL
dt
= −

1
2π

∫
P

∫
P

[
σz(Pv(a1, t))σz(Pv(a2, t))

dθ12(Pv(a1, t), Pv(a2, t))
dt

× J(Pv(a1, t))J(Pv(a2, t))
]

dx1 dy1 dx2 dy2. (2.10)

Equation (2.10) does not represent the exact winding flux through a spatially
non-uniform surface. We could, for example, have made use of the differential
form definition of relative helicity given in Chapter 3 of Arnold & Khesin (1999) in
order to calculate the actual flux. However, we argue that what the above procedure
represents is more akin to the effective projection of information onto the plane
P which occurs in the creation of magnetogram and vector magnetogram data (e.g.
Démoulin & Pariat 2009; Scherrer et al. 2012). These magnetogram data are obtained
from line-of-sight information, Zeeman splitting and normal to line-of-sight linear
polarization information. These data are effectively projected onto a plane P. Since
we are trying to gauge the consequences of an effect which is already uncertain (the
interpretation of optical information) we feel the above approach is sensible first step.
To the best of our knowledge, this is the first theoretical helicity study which has
attempted to take account of a moving photosphere.

3. Simulation set-up and initial conditions

In this study, we will consider small active regions of photospheric area ∼75 Mm2.
Studying regions of this size is common in the flux emergence literature (Hood et al.
2012; Cheung & Isobe 2014) and is justified on the grounds of achieving suitable
spatial and temporal resolution. Of course, care must be taken when comparing
the results of such studies to observations of regions of different sizes. Although
qualitative behaviour may be found across spatial and temporal scales, quantitative
information will be different.

As our focus is on the dynamics of the magnetic field, we will consider an idealized
description of the solar atmosphere. The bulk properties of the plasma and magnetic
field dynamics are described by compressible MHD. The three-dimensional (3-D)
resistive and compressible MHD equations are solved using a Lagrangian remap
scheme (Arber et al. 2001). In dimensionless form, the MHD equations are

Dρ
Dt
=−ρ∇ · u, (3.1)

Du
Dt
=−

1
ρ
∇p+

1
ρ
(∇×B)×B+

1
ρ
∇ · σ + g, (3.2)

DB
Dt
= (B · ∇)u− (∇ · u)B+ η∇2B, (3.3)

Dε
Dt
=−

p
ρ
∇ · u+

1
ρ
η|j|2 +

1
ρ

Qvisc, (3.4)

∇ ·B= 0, (3.5)

with specific energy density
ε=

p
(γ − 1)ρ

. (3.6)

The basic variables are the density ρ, the pressure p, the magnetic induction B
(referred to as the magnetic field) and the velocity u. j is the electric current density,
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Magnetic helicity in solar flux emergence 7

g is the surface gravitational acceleration (uniform in the z-direction) and γ = 5/3 is
the ratio of specific heats. The dimensionless temperature T can be found from

T = (γ − 1)ε. (3.7)

We make the variables dimensionless against photospheric values, a standard
procedure in flux emergence studies (e.g. Hood et al. 2012, and references therein).
We have pressure pph = 1.4 × 104 Pa; density ρph = 2 × 10−4 kg m−3; scale height
Hph= 170 km; surface gravitational acceleration gph= 2.7× 102 m s−2; speed uph= 6.8
km s−1; time tph = 25 s; magnetic field strength Bph = 1.3 × 103 G and temperature
Tph = 5.6 × 103 K. In the non-dimensionalization of the temperature we use a gas
constant R = 8.3 × 103 m2 s−2 K−1 and a mean molecular weight µ̃ = 1. η is the
resistivity and we take its value to be 10−3. This value is close to the lowest physical
resistivity that can be chosen before numerical resistivity dominates (see Arber,
Haynes & Leake 2007; Leake, Linton & Török 2013). Note that in the simulations
we present, reconnection plays a minor role. Thus, to a good approximation, the
motion in the simulations can be considered to be ideal. The fluid viscosity tensor
and the viscous contribution to the energy equation are respectively

σ = 2µ
[
D− 1

3(trD)I
]

(3.8)

and
Qvisc = σ :∇u, (3.9)

where
D= 1

2

(
∇u+∇uT

)
(3.10)

is the symmetric part of the rate of strain tensor and I is the identity tensor. We take
µ= 10−5 and use this form of viscosity primarily to aid stability. The code accurately
resolves shocks by using a combination of shock viscosity (Wilkins 1980) and Van
Leer flux limiters (Van Leer 1979), which add heating terms to the energy equation.
Values will be expressed in non-dimensional form unless explicitly stated otherwise.

The equations are solved in a Cartesian computational box of (non-dimensional)
sizes [−45, 45] × [−45, 45] × [−30, 65] in the x, y and z directions respectively.
The boundary conditions are closed on the top and base of the box and periodic
on the sides. Damping layers are included at the side and top boundaries to reduce
the reflection/transmission of waves. The computational mesh contains 486×486×729
points.

3.1. Initial background atmosphere and velocity perturbation
The idealized initial equilibrium atmosphere is given by prescribing the temperature
profile

T(z)=


1−

γ − 1
γ

z, z< 0,

1, 0 6 z 6 10,
150[(z−10)/10], 10< z< 20,

150, z > 20.

(3.11)
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8 C. Prior and D. MacTaggart

Starting from the top of (3.11), the sections represent the solar interior, the
photosphere/chromosphere, the transition region and the corona. The above model
temperature profile is standard in many works on flux emergence (e.g. Murray et al.
2006; Fan 2009; Sturrock et al. 2015). The above temperature profile is also used in
Prior & MacTaggart (2016).

The other state variables, pressure and density, are found by solving the hydrostatic
equation in conjunction with the ideal equation of state

dp
dz
=−ρg, p= ρT. (3.12)

To study emergence, we must place a particular form for the magnetic field in
the solar interior and apply a perturbation to allow it to emerge. In the following
simulations, we will apply an initial velocity perturbation of the form

u · ẑ= u0 exp
(
−

x2

x2
0

)
exp

(
−

y2

y2
0

)
exp

(
−
(z+ ε0 − R)2

z2
0

)
sin
(

t
t0

π

)
, (3.13)

where we set the constants u0 = 0.05, x0 = 5, y0 = 3, z0 = 5, ε0 = 2.5 and t0 = 6; R
is the major radius of the tube and is described below. After t= 6 the perturbation is
switched off.

We will consider two magnetic field models. The first model is a twisted toroidal
tube that has been used in many other studies (e.g. MacTaggart & Hood 2009;
MacTaggart & Haynes 2014; MacTaggart et al. 2015; Sturrock et al. 2015). The
second model is a ‘mixed helicity’ field which has a complex topology but zero total
helicity and will serve as a model for mixed helicity emergence. We now discuss the
construction of such fields.

3.2. How to construct mixed helicity fields
The following represents a specific case of the general mathematical form of magnetic
flux ropes with general field line topology, introduced in Prior & Yeates (2016) and
first applied to flux emergence in Prior & MacTaggart (2016). We assume the flux
rope has a toroidal shape with an axis curve r(s) parameterized by its arclength s as

r(s)= (−R cos(s/R), 0, R sin(s/R)+ z0), s ∈ [0,πR], (3.14)

where R is the major radius of the torus and z0 is the height of the rope’s anchoring
footpoints at the base of the computational domain. This expression can be used to
define a moving orthonormal frame {T, d1, d2} for r(s), which can, in turn, be used
to define a tubular coordinate system through the map f (s, x1, x2), where

f (s, x1, x2)= r(s)+ x1d1 + x2d2, (3.15)
d1 = (cos(s/R), 0,− sin(s/R)) , d2 = (0, 1, 0). (3.16)

From this mapping, we can find a set of basis vector fields { ∂f
∂s ,

∂f
∂x1
, ∂f
∂x2
} which can

be used to define general vector fields in this toroidal coordinate system as

B= Bs
∂f
∂s
+ B1

∂f
∂x1
+ B2

∂f
∂x2

. (3.17)
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Magnetic helicity in solar flux emergence 9

For such fields to be divergence free the following condition must hold

∂JBs

∂s
+
∂JB1

∂x1
+
∂JB2

∂x2
= 0, (3.18)

where J = (R− x1)/R is the Jacobian of the map f . It follows that a magnetic field
defined in a cylinder can be transferred to a torus simply by dividing the components
by J. In particular, we take the mixed helicity (braided) field used in numerous
studies (e.g. Wilmot-Smith, Pontin & Hornig 2010; Wilmot-Smith et al. 2011; Pontin
& Hornig 2015), which is composed of a series of overlapping counter-twists. The
magnetic field has no helicity (the average total entanglement) but subsets of its
field lines are braided. In our toroidal coordinate system this field is composed of
exponential twists Bt(b0, k, a, l, x1c, x2c, sc) given by

Bt(b0, k, a, l, x1c, x2c, sc)=
2b0k
aJ

exp
(
−
(x1 − x1c)

2
+ (x2 − x2c)

2

a2
−
(s− sc)

2

l2

)
R, (3.19)

R=−(x2 − x2c)
∂f
∂x1
+ (x1 − x1c)

∂f
∂x2

, (3.20)

where the parameter b0 determines the strength of the field, a the horizontal width of
the twist zones, l their vertical extent and k the handedness of the twist (k= 1 is right
handed). The centre of rotation is (x1c, x2c, sc). The mixed helicity field is then defined
as a superposition of n pairs of positive and negative twists and an axial background
field

Bbr(b0, a, l, d, R, n) =
n∑

i=1

[Bt(b0, 1, a, l, 0,−d, sdi)

+ Bt(b0,−1, a, l, 0, d, sd(i+ 1))]+
b0

J
∂f
∂s
, (3.21)

where sd = πR/(2n + 1) and d is the axial offset of the two opposing twists (see
figure 1). The final component is the axial field (see figure 1b). Finally, to express
(3.21) in the ambient Cartesian coordinate system (x, y, z), we use the following maps
between the tubular coordinates (s, x1, x2) and the Cartesian coordinates

s= arctan(z, x)+
π

2
, x1 = (x+ R cos s) cos s− (z− R sin s) sin s, x2 = y, (3.22)

where the branch cut for the arctan function is at π. For a magnetic field confined to
a tube of minor radius r, the field Bb(x, y, z) takes the following form

Bb(x, y, z)=
{

Bbr(b0, a, l, d, R, n) if x2
1(x, y, z)+ x2

2(x, y, z)6 r,
0 if x2

1(x, y, z)+ x2
2(x, y, z) > r.

(3.23)

For completeness, we can define a uniformly twisted field Bt as

Btw(x, y, z)=


φ

J
R if x2

1(x, y, z)+ x2
2(x, y, z)6 r,

0 if x2
1(x, y, z)+ x2

2(x, y, z) > r.
(3.24)
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10 C. Prior and D. MacTaggart

FIGURE 1. An example of the mixed helicity field we consider. (a) A field with n =
2, i.e. two right-handed twist elements (red) and two left handed (blue). (b) Shows the
background axial field which is added to (a) in equation (3.21).

with φ determining the rate of rotation of the field and R given by (3.20). The actual
twisted model that we will use in the simulations is that in (3.24) but weighted with
an exponential term (see MacTaggart & Hood 2009). In these studies, we set the tube
parameters to be z0 = −30, R = 17.5 and r = 2.5, so that the flux rope is anchored
at the bottom boundary and its maximum initial height is −10. The mixed helicity
parameters are a=

√
0.04, l= 0.04πR, d= 2.5/3, b0 = 5 and we consider n= 2.

Finally, we remark that the more general field specification in Prior & Yeates
(2016) allows for arbitrary tube shapes r(s) (as well as varying tube radius). The
frame vectors d1(s) and d2(s) are defined by parallel transport, which requires an
arclength integration. Thus, in general, the relationship between the tube coordinates
(s, x1, x2) and (x, y, z) will require numerical integration.

4. Quantities analysed

We now list the quantities we will make use of in our analysis of the flux
emergence simulations.
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Magnetic helicity in solar flux emergence 11

4.1. Field line helicity input rate
For completeness, we restate (2.6),

dH
dt
(a0)=−

1
2π

Bz(a0)

∫
P

Bz(a)
dθ(a0, a)

dt
dx dy, (4.1)

which represents the contribution to the magnetic helicity input rate dH/dt from a
single point a0 ∈P. For the moving photosphere calculation we evaluate the field at the
points of the surface Pv(a, t) and account for the surface Jacobian, i.e. dx dy→ Jdx dy.
We label this quantity dHv/dt.

4.1.1. Net helicity input
The net helicity flux is given by

dH
dt
=

∫
P

dH
dt
(a0) dx dy, (4.2)

where the integration is taken over all a0 ∈ P. The total helicity input over a period
[t0, t] through P is then given by

H(t)=
∫ t

t0

dH
dt′

dt′. (4.3)

In this study we choose t0 to be the time at which the emerging magnetic field
first reaches z = 0. The equivalent moving photosphere calculations will be labelled
dHv/dt and Hv(t). We point out that whilst the calculation concerns a moving surface,
the quantity dH/ds is calculated on a fixed domain P by projection (see 2.10). This
applies to all calculations which consider the moving domain.

4.2. Winding input rate
The field line winding input is

dL
dt
(a0)=−

1
2π
σz(a0)

∫
P
σz(a)

dθ(a0, a)
dt

dx dy, (4.4)

and the integral of this over P gives dL/dt. The net winding input over a time period
[t0, t] is

L(t)=
∫ t

t0

dL
dt′

dt′. (4.5)

The moving photosphere calculations will be labelled with a v subscript as for the
helicity inputs, with analogous changes to the calculations.

4.3. Weak field corrections
In our simulations, there is no magnetic field outside the emerging regions. Therefore,
there is a thin current sheet around the emerging field where the field strength rapidly
decreases to zero. In this region the, field line topology is incoherent and not likely
to be resolved numerically (typical field strengths in this layer are measured to be
< 0.01 % of the peak field strength). Such regions make a negligible contribution to
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12 C. Prior and D. MacTaggart

the helicity, due to the field strength weighting, but can have a significant effect on
the winding calculations. To remove such potentially spurious information we will, in
some calculations, modify the definition of the indicator function σz to be

σz(x)=

 1 if Bz(x) > 0 and |B|> ε,
−1 if Bz(x) < 0 and |B|> ε,
0 if Bz(x)= 0 or |B|6 ε.

(4.6)

Where we use this definition in the article, we will be explicit and specify the value
of ε. Otherwise it is to be assumed that σz has its usual definition (2.8).

4.4. Winding and helicity ratios
Both the helicity and winding densities can be positive and negative corresponding to
right- and left-handed field entanglement. For mixed helicity flux ropes there can be
significant entanglement, locally, but little overall average. This is true of the mixed
helicity fields Bb which have zero total helicity. To quantify whether the helicity input
for a given simulation is biased to one sign or is mixed, we calculate the following
ratios

Hr
t =

dH
dt

/dHabs

dt
,

dHabs

dt
=

1
2π

∫
P

∫
P

∣∣∣∣Bz(a1)Bz(a2)
dθ12(a1, a2, t)

dt

∣∣∣∣ dx1 dy1 dx2 dy2,

(4.7)

Lr
t =

dL
dt

/dLabs

dt
,

dLabs

dt
=

1
2π

∫
P

∫
P

∣∣∣∣σz(a1)σz(a2)
dθ12(a1, a2, t)

dt

∣∣∣∣ dx1 dy1 dx2 dy2. (4.8)

4.5. Weighted velocity flux Vz

The plasma flow across the photosphere will transpire to be an important quantity
in what follows. We calculate the net rate of plasma flow through the photosphere
weighted by the absolute plasma flow rate,

Vz =

∫
P uz dx dy∫

P |uz|dx dy
. (4.9)

5. Simulation analysis
5.1. Twisted flux emergence

First, we analyse the helicity input of a twisted field with a non-dimensional twist
of φ =−0.4 and a negative (left-handed) chirality (the other parameters are as stated
in § 3.2). This value of twist is a common choice for flux emergence simulations (e.g.
Hood et al. 2012, and references therein) and represents a level of twist slightly below
what would be required for the onset of the kink instability.

5.1.1. Physical characteristics of emergence
A description of the emergence of twisted flux tubes has been described in detail

in many other studies (e.g. MacTaggart & Hood 2009; Hood et al. 2012) so we only
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Magnetic helicity in solar flux emergence 13

FIGURE 2. Illustrative distributions characterizing the emergence of the twisted flux rope
into the Sun’s atmosphere. (a,d,g) are contour plots of the current density, showing the
buoyancy instability-triggered rise and expansion into the corona. Also indicated is the
plane z = 0. (b,e,h) represent subsets of the field lines at these times. (c, f,i) are the
corresponding magnetograms with a clear bipole structure.

highlight aspects critical to the subsequent helicity input analysis. Illustrative figures
are shown in figure 2 at times t = 35, 55 and 71. The magnetic field reaches the
photosphere where it remains until the plasma β drops to order unity and the field
becomes subject to the magnetic buoyancy instability, subsequently expanding into the
corona (Hood et al. 2012). The initial toroidal flux tube leads to a bipole emergence
which is clearly visible in the magnetograms.

5.1.2. Helicity and winding input time series
The temporal evolutions of both dH/dt and H are shown in figures 3(a) and 3(b)

respectively. The tracking of the helicity input begins when the magnetic field reaches
the photospheric boundary which, in this simulation, is almost coincident with the
onset of the magnetic buoyancy instability (t = 18). With the initial expansion of
the field into the corona there is an input of negative helicity (figure 3a), as is to
be expected for this negative helicity flux rope (MacTaggart & Hood 2009). Later,
the helicity input settles into an oscillatory pattern with the input rate, occasionally,
becoming net positive. The net helicity input H, shown in figure 3(b), exhibits, on
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14 C. Prior and D. MacTaggart

FIGURE 3. Photospheric helicity and winding input for the emergence of the twisted field.
(a) The helicity input rate dH/dt. It is negative on average and has a consistent oscillation.
The vertical lines indicate the times t = 67–72 at which the field’s helicity distribution
is analysed in what follows. (b) The net helicity input H(t) which is always negative
and increases in magnitude over time. (c) The winding input rate dL/dt and (d) the total
winding input L(t).

FIGURE 4. Time series of the ratios (a) Hr
t and (b) Lr

t for the twisted field emergence.

average, an almost linear input increase of negative helicity (in line with the results
of Sturrock et al. (2015) accounting for the opposing sign of twist with a smaller
oscillation about this trend). The time series dL/dt and L, shown in figure 3(c,d),
are qualitatively similar to their helicity counterparts so we do not focus on them in
what immediately follows. In contrast to these results, the oscillations in the dH/dt
time series calculated in Sturrock et al. (2015) are relatively small (though similarly
coherent) and do not cause the change in sign we find here. We will expand more on
this comparison later. Finally, the ratios Hr

t and Lr
t , whose time series are shown in

figure 4, indicate, as expected, a preference towards one sign of helicity input, i.e.
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Magnetic helicity in solar flux emergence 15

FIGURE 5. Helicity input rate density distributions dH/dt of the emerged region during
the period t∈ [67, 72] over which the sign of dH/dt varies form positive to negative (net).
The plots shown in (a–f ) correspond to times t = 67–72 indicated by the set of vertical
lines on figure 3(a). (a) The density is dominantly positive around the PIL. In (b–f ), the
helicity input at the PIL changes from dominantly positive to negative. The helicity input
in the two flux poles becomes dominantly negative over the cycle.

the quantity is often close to 1 in magnitude so that most of the winding/helicity
density is coherent in sign (the sign, of course, oscillates from positive to negative).
An important question to address is what is causing the oscillations and, further, why
are they so significant in comparison to previous studies?

We now focus on the time period t ∈ [67, 72], indicated in figure 3(a) by a set
of vertical lines. There is a variation between positive and negative input rates over
this period. There is no particular reason why we choose to present the results of this
period over the rest of the input cycle (except the rise stage). Indeed we checked that
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16 C. Prior and D. MacTaggart

FIGURE 6. Magnetic and velocity field distributions in the photosphere at t= 67. (a) The
transverse field B‖ superimposed on a scalar plot of its magnitude (stronger red colouring
implies a stronger field). The twist at the positive pole is left-handed and the twist at the
negative pole is right-handed. (b) The transverse velocity field u‖ superimposed on a scalar
plot of its magnitude (stronger blue colouring implies a stronger field). Both vortices have
right-handed rotation.

the following analysis would have led to similar conclusions for the behaviour of the
system over the period t ∈ [40, 76].

Distributions of dH/dt, during the considered time interval, are shown in figure 5.
At t = 67 (a) and t = 72 ( f ) there are respectively strong positive and then negative
field line helicity input densities around the polarity inversion line (PIL). For the
intermediate times (b–d), the field line helicity density in this region shows a gradual
variation from positive to negative. Patches of strong negative density at the two poles
of flux distribution also develop over the period. There are fluid vortices, in the in-
plane velocity field, which are centred on these poles. It is shown in figure 6 that at
the magnetic field’s positive pole, the vortex opposes the direction of magnetic twist,
whilst at the negative pole the signs of the vortical and magnetic twists agree. We
might speculate that some kind of relative balance between the twisted field input and
fluid rotation might lead to the oscillation in helicity input around the inversion line.
However, we now show this oscillation occurs instead due to the cyclic submergence
and re-emergence of the flux, that is, the movement of part of the magnetic field below
and above the photospheric plane. In what follows, submergence does not necessarily
indicate that the field passes deep beneath the photosphere. As will be demonstrated,
any part of the field that makes contact with the photospheric boundary, and perhaps
passing only slightly beneath it, will register a signal in the magnetograms and in the
helicity and winding inputs. Therefore, in this work, submergence is any previously
emerged field moving down from the atmosphere or otherwise making contact with
the photosphere from above.

5.2. Helicity sign change around the PIL
The distributions of the x and y-components of w = da/dt at t = 67 and t = 72 are
shown in figure 7. The most significant helicity producing velocities arise in the
neighbourhood of the PIL (the plots are of

√
wx and

√
wy are shown for clarity, thus

relatively exaggerating the magnitudes in weaker regions). There is a clear switch in
sign of both the wx and wy densities on both sides of the PIL over this cycle. To
test if it is the temporal change in the sign of the field line velocity field w close
to the PIL which determines the change in sign of the helicity input, we consider a
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Magnetic helicity in solar flux emergence 17

FIGURE 7. Distributions of the components of the helicity producing field w, at times
t= 67 and 72. Panels (a,b) are the distributions of

√
wx(a0) and

√
wy(a0) respectively at

t= 67. Panels (c,d) are the same distributions but at t= 72. For both wx(a0) and wy(a0),
the sign of the distribution either side of the PIL reverses.

FIGURE 8. Plots of the winding input rate over the period t = 67 to 71 for (a) the
unrestricted calculation dL/dt and (b) the capped version dLc/dt for which the threshold
is c= 2.

modified vector field wc as follows

wc
=

{
w if |w|6 c,
0 if |w|> c, (5.1)
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18 C. Prior and D. MacTaggart

FIGURE 9. Distributions of the vertical velocity uz(a0) at times (a) t= 67 and (b) 72. (c)
A plot of the net velocity flux Vz through P. (d) Plots of dH/dt and Vz scaled to have
values between 0 and 1.

where c is some chosen threshold. We choose c= 2 here, which represents a cutoff
speed much smaller than typical field line speeds at the PIL (≈ 10). As long as the
cutoff is small enough, the following results are robust. The main behaviour of the
following results was also obtained for c= 1 and c= 5.

In essence, we cut out the higher helicity producing velocities which reside
primarily in the region of the PIL and not at the centres of the magnetic footpoints.
We also calculate the modified field line winding input rate dLc/dt using wc. We
see in figure 8(a) that the full winding input rate dL/dt changes sign from positive
to negative over the time period t ∈ [67, 72]. By contrast, for the restricted input
dLc/dt (b), the sign of winding input is always negative over this period and two
orders of magnitude smaller. Therefore, ignoring the winding input due to the field
line motions w around the PIL leads to a time series which does not have a positive
input rate over this period (the story is the same for the helicity input rate). It was
confirmed that this is true throughout the simulation (for the time period when the
oscillations in dH/dt occur).

The cause of the helicity sign change is found to be related to a switch in the sign
of uz in the region around the PIL. To establish this, we first evaluate the relative
magnitudes of the terms u‖ and B‖uz/Bz. The submergence/emergence term B‖uz/Bz
is typically found to be an order of magnitude higher in the regions where w is
(relatively) large. The uz distributions at the start (t= 67) and end (t= 72) of the cycle
are shown in figure 9(a,b). Initially, there is a net negative velocity with most of the
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Magnetic helicity in solar flux emergence 19

FIGURE 10. Arrows indicating the magnetic field in the plane orthogonal to the PIL at
(0, 0, 0) at t= 67. This is superimposed on a plot of the current magnitude in the same
plane. The core of the flux rope is clearly visible and is centred at the PIL.

flow surrounding the PIL. Then at the end of the period the velocity is net positive
with most of the flow being at the PIL. A time series plot of the net velocity flux Vz
is shown in figure 9(c). A scaled comparison of the maxima and minima of dH/dt
and Vz is shown in figure 9(d) emphasizing that it is motion across the photosphere
that is dominating the helicity in this phase of emergence.

5.2.1. Flux rope centre at the photosphere
The fact that the oscillations in helicity (and winding) are sufficient to lead to a

sign of input which opposes the field’s chirality is a result of the fact that the bulk of
the field’s initially twisted flux rope remains trapped at the photosphere, see figure 10.
The plasma β (= 2p/|B|2) has a value of approximately 5 at the photosphere in this
simulation. This implies that the magnetic field is not dynamically dominant (as in
the low-β corona) and so can moved by the surrounding plasma. A combination of
upward motion, from emergence, and downward motion, from draining plasma (e.g.
Hood et al. 2012) causes the flux rope centre (axis) to oscillate about the z= 0 plane.
In this topologically simple field (relative to mixed helicity model that we will study
shortly) the bulk of the topological information is concentrated at the flux rope centre.
Therefore, if the centre crosses the photospheric plane, the response in the helicity and
winding rates is large. As mentioned before, it is transport across the photospheric
plane and not (un)twisting motions on the plane that causes the largest changes in
helicity and winding.

If the plasma β were smaller, it would be expected that the oscillations would be
less pronounced. In Sturrock et al. (2015), who perform a very similar simulation but
with a flux rope of almost double the initial field strength to the one we consider,
they still find oscillations in dH/dt but much less pronounced than those found here
(their oscillations do not change the sign of the helicity input rate). Two factors are
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20 C. Prior and D. MacTaggart

FIGURE 11. Photospheric helicity and winding inputs for the emergence of the twisted
field which account for the tracking of the changing photosphere geometry. (a) The
helicity input rate dHv/dt. (b) The net helicity input Hv(t). (c) The winding input rate
dLv/dt. The vertical lines are at times t=30,31 when the field structure is analysed further
in what follows. (d) The total winding input Lv(t).

important in contributing to this change in behaviour. The first is that the axes of flux
tubes with higher field strengths can emerge further in the atmosphere compared to
those with weaker field strengths (MacTaggart & Hood 2009). This makes the flux
rope centre further away from the z= 0 plane and so there is less flux crossing the
plane in any partial submergence event. Secondly, the plasma β is smaller and the
magnetic field is less susceptible to surrounding plasma motions.

5.3. Tracking the moving photosphere
The velocity flux oscillations indicated in figure 9 imply that the surface ρ= 1 will be
varying in space and time. As discussed in the introduction, we can track this variation
and calculate modified quantities which account for this motion. The time series of the
adjusted quantities dHv/dt, Hv, dLv/dt and Lv are shown in figure 11. On a qualitative
level, the helicity time series (panels (a,b) respectively) are effectively the same as
the z = 0 calculations shown in figure 3. The magnitudes, however, of the various
peaks of the input rate dHv/dt are roughly four times larger than those of dH/dt. This
magnification is due to increased variations in velocities at the ρ = 1 surface. As an
example, figure 12 displays the varying photosphere velocity distribution Juz(Pv(x, y))
in (a) and the difference Juz(Pv(x, y)) − uz(x, y) between the moving surface and
static surface velocity distributions in (b). In (a), the strongest velocities are, as before,
at the PIL. In (b), major differences are at the main footpoints. We note that the
differences can be greater in magnitude than a typical velocity Juz(Pv(x, y)). Therefore,
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FIGURE 12. Vertical velocity distributions at t= 28. (a) The velocity density uz(Pv(x, y))J
at the moving photosphere line ρ= 1. (b) The difference between the varying photosphere
velocity density uz(Pv(x, y))J and the z= 0 velocity density uz(x, y).

FIGURE 13. A slice of the vector field in the plane orthogonal to the PIL at t= 30, just
prior to the spike in the time series dLv/dt shown in figure 11(c). Also shown as a green
curve is the intersection of the surface Pv and this plane. The background distribution is
the out of plane component of the current density.

it is not simply a case of larger velocity magnitudes at the ρ = 1 surface compared
to the z= 0 plane, rather a difference in the distribution of flows on these surfaces.

The winding time series, panels (c,d) of figure 9, show significant qualitative
differences compared to the z= 0 input calculations shown in panels (c,d) of figure 3.
There is one significant period of negative input rate dLv/dt at t = 31. This is near
the end of the period when the central part of the field (containing the original tube
axis) emerges at the photosphere (see figure 13). The spike coincides with a relatively
sharp (negative) change in the height of the ρ = 1 surface from t= 30 (figure 14a) to
t= 31 (figure 14b). This change results in a significant change in the negative helicity
input as the flux rope core moves further beyond the photospheric boundary. It was
confirmed that this jump in the moving photospheric surface was atypically large
from t= 30 to t= 31 by comparison to typical changes in its morphology over single
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22 C. Prior and D. MacTaggart

FIGURE 14. Magnified representations of a slice of the vector field in the plane
orthogonal to the PIL at t = 30 and t = 31, prior to and at the spike in the time series
dLv/dt shown in figure 11(d). Shown as a green curve is the intersection of the surface Pv
and this plane. The background distribution is the out of plane component of the current
density. (a) shows (t= 30) a magnification of the region of figure 13 which contains the
curve ρ= 1. (b) shows (t= 31) the same distribution as in (a) but at the time of the spike.
The ρ = 1 curve has dropped vertically by a value of approximately 0.5.

time step of size 1. After this, the input rate dLv/dt falls to a relatively small rate. It
is interesting to note that this occurs due to a relatively fast change in the geometry
of the ρ = 1 surface, rather than a sudden change in field topology, indicating that
this may be an important factor in interpreting observational inputs of field topology.
The oscillations shown in the helicity input rate dHv/dt are still present but, as
shown in figure 11(d), these have a small effect on the net helicity injected into the
photosphere, by comparison to the sharp negative input around t= 30.

It is intriguing that the (moving photosphere) winding input more clearly represents
the transition between the emergence of the field’s twisted core to the photosphere (the
ρ = 1 surface) followed by the lack of changing topological input due to the core
getting stuck at this surface. The significantly reduced (at least on a relative scale)
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size of the oscillations in comparison to the helicity input results from the lack of
field strength weighting in the winding input. The inclusion of field strength in the
helicity input rate magnifies the oscillatory signal due to the central core of the field
being immediately surrounded by strong field – slight dips under the photospheric
boundary produce high signals because of the strong field strengths. Another way to
view this result is that the winding input treats the oscillation at the photosphere as
not especially interesting at later times as it is not really indicating the input of new
topological information into the atmosphere.

5.4. Mixed helicity emergence
We now consider a mixed helicity field Bb, specified by (3.23) with n = 2. The
emergence of mixed helicity (braided) magnetic fields and their associated dynamics
was first described in Prior & MacTaggart (2016).

5.4.1. Physical characteristics of the emergence
Various illustrative visualizations of the emerging field’s evolution are shown

in figure 15. As for the twisted tube, the emerging field gets trapped below the
photosphere before becoming subject to the magnetic buoyancy instability and rising
into the coronal region. The magnetograms (a,d,g) show that, in addition to a
larger bipole structure developing, there is also an additional formation of smaller
bipole structures in between these larger poles with orientations in opposition to
that of the large bipole. In (b,e,h), contours of the current density structure show
the field’s expansion, which is restricted along the PIL of the main bipole. This
behaviour is in contrast to the single structure found in the twisted case (figure 2)
which shows a more uniform expansion. The field lines, shown in (c, f,i) indicate
a pair of intertwined field line arcades linked by a centrally dipped section (which
partially submerges, as we will see later). There is no significant twisting in the field
lines. It was established in Prior & MacTaggart (2016) that the dips in the current
contours coincide with plasma draining and are the nonlinear manifestations of a
Rayleigh–Taylor instability.

5.4.2. Helicity and winding input: static photosphere
Plots of the time series of the quantities dH/dt, H, dL/dt and L are shown in

figure 16. The helicity rate dH/dt (a) is both positive and negative and shows
oscillatory behaviour (less temporally regular than for the twisted field). The net
helicity input H(t) (b) switches from negative to net positive. The winding input
rate dL/dt (c) shows much more rapid variations. The net input L (d) has a pattern
qualitatively similar to the net helicity but with opposing sign. The ratios Hr

t and Lr
t

are found to be typically 1–2 % (figure 17), indicating the topological input is not far
off neutral, as to be expected.

The distributions dH/dt and dL/dt are shown in figure 18. The snapshots are
chosen to display critical characteristics of these distributions which are present at
various times of the emergence process.

There are always four distinct regions of substantial positive and negative helicity
(and winding) and these occur in pairs. These regions are generally of similar size
and magnitude, which explains why the net helicity (and winding) input is much
smaller than its absolute total. In practice, it is difficult to detect the imbalances in
the maps of dH/dt that lead to the time series variations shown in figure 16(a). By
contrast, the winding distributions dL/dt capture more features related to emergence
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24 C. Prior and D. MacTaggart

FIGURE 15. Illustrative distributions characterizing the emergence of a mixed helicity
flux rope with n= 2 twist pairs. (a,d,g) are magnetograms. (a) depicts (t = 27) a bipole
structure associated with the initial emergence phase. In (d) (t = 38), this distribution
has separated slightly and there also appear to be some weak thin horizontal structures
appearing at the centre of the domain. In (g) (t = 62), these weak additional structures
have developed into pairs of bipoles whose polarity oppose that of the larger initial bipole.
(b,e,h) are current contours (|j|= 0.01) which indicate the field’s expansion. Also indicated
is the plane z= 0. (c, f,i) are representative field lines.

and submergence (we will return to this point later). We ignore the distribution values
around the edge of the magnetic domain as the field is very weak there. The field line
structure in the boundary current sheet is incoherent and, thus, any apparent winding
input is not meaningful.

The PIL is clear in all dL/dt distributions and its shape varies significantly as
various new helicity structures appear (note that all additional structures appear at the
PIL).
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FIGURE 16. Photospheric helicity and winding inputs for the emergence of the mixed
helicity field. (a) The helicity input rate dH/dt. The input is both positive and negative.
Also shown are lines at t= 25, 42 and 48. (b) The net helicity input H(t). (c) The winding
rate dL/dt. (d) The total winding input L(t), the sign of this input is generally opposite
to that of the helicity.

FIGURE 17. Time series of the ratios (a) Hr
t and (b) Lr

t for the n= 2 mixed helicity field
emergence.

5.5. Helicity and winding input: moving photosphere
Time series of dHv/dt, Hv, dLv/dt and Lv, which account for the varying photospheric
geometry, are shown in figure 19. In order to prevent the winding measure being
affected by any weak (unresolved) field, we utilize the modified definition of the
function σz (4.6) with ε= 0.0001 for the dLv/dt and Lv calculations. As was the case
for the twisted field, the only significant change in the helicity time series compared
to those shown in figure 16(a,b) is in regard to the magnitudes. This difference could,
again, be traced to differences in the vertical velocity distribution. The time series
of the winding quantities dLv/dt and Lv, shown in figure 19(c,d), differ significantly
from those shown in figure 16(c,d). We find that this is, in part, due to the varying
photosphere Pv and partly due to ignoring the contributions from significantly weak
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26 C. Prior and D. MacTaggart

FIGURE 18. Distributions of dH/dt and dL/dt which indicate the various characteristic
stages of the distribution evolutions (indicated with vertical lines on figure 16). (a) dH/dt
and (b) dL/dt at t = 25. In both cases there are two significant regions of positive
input and two with negative input, a quadrupolar distribution. In (b) the straight PIL is
visible along the y axis. (c) dH/dt and (d) dL/dt at t= 42. In (c) the four regions from
(a) remain but are surrounded by thin strips of helicity input of opposing sign. In (d),
by contrast, the sign of the four regions have swapped compared to (b) and there are
additional sub regions of positive and negative input centred on the PIL. (e) dH/dt and
( f ) dL/dt at t= 48. The helicity input (e) still has four dominant domains but they have
swapped sign from the distributions in (a,c). In ( f ) the flux region seen in the latter
magnetograms (figure 15) appears as a distorted PIL and there are strong concentrations
of helicity either side of it.
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FIGURE 19. Helicity and winding inputs for the emergence of the mixed helicity field,
allowing for the varying photospheric geometry. (a) The helicity input rate dHv/dt. (b)
The net helicity input Hv(t). (c) The winding rate dLv/dt. The vertical lines mark times
t = 45, 46, 47 at which the field is analysed in detail in the text. (d) The total winding
input Lv(t).

regions of the field. As discussed previously, the winding is more sensitive to large
input from topologically complex field lines of very weak field strength. Hence, the
calculation of the winding requires some care.

The sign of the net input Lv is largely dictated by a significant spike in the input
dLv/dt at t= 47. After this, there are two large oscillations which are more balanced.
The net inputs Hv and Lv now agree in terms of the net sign of their input over the
simulation (as opposed to the quantities H and L, emphasizing the sensitivity of L or
Lv).

5.6. Field submergence and deformation
As mentioned above, a clearer transition is revealed by the winding compared to
the helicity. The key question to answer here is, what is causing this transition?
Some indications can be found in the distributions of dLv/dt shown in figure 20.
These distributions are at the times indicated by the parallel lines in figure 19(c).
Figure 20(a) displays dLv/dt when dLv/dt is changing from positive to negative.
A small region of negative dLv/dt is visible at the centre (0,0). The region grows
in (b), which corresponds to when dLv/dt takes its largest negative value. In (c),
which corresponds to the large positive spike in dLv/dt and positive jump in Lv, the
distribution changes to a clear antisymmetrical pattern. There is no longer the isolated
patch of negative dLv/dt at the centre and the PIL is highly deformed.

Since the emerging field has very little twist, it cannot easily support dense
plasma in the atmosphere. This manifests itself in the atmosphere as the buckling of
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28 C. Prior and D. MacTaggart

FIGURE 20. Distributions of the winding input density dLv/dt covering the period of the
time series shown in figure 19(d) at which there is a strong spike in input. (a) At t= 45,
before the spike. (b) At t= 46. (c) At t= 47 at the spike’s peak.

the central part of the emerging field, where dense plasma drains and restricts the
magnetic field in the lower atmosphere. This process is visualized in figure 15 and the
pooling of dense plasma which forms can be seen in figure 21. The patch of negative
dLv/dt, described above, indicates the beginning of motion leading to submergence,
that is, the movement of helicity carrying field from the atmosphere down to the
photospheric boundary. We now characterize various stages of the emergence up to
and including this submergence event.

Figure 22(a) displays the emergence of the mixed helicity field at the (relatively)
early time of t = 27. The slice at x= 0 displays the x-component of current density,
the projection of magnetic field arrows on the plane and the position of the moving
photosphere. What is shown is a twisted structure beginning to emerge into the
atmosphere. Comparison with figure 16 shows that the helicity and winding inputs
are still relatively weak. Figure 22(b) displays a similar slice but for the much later
time of t= 42. Comparison with figure 16 shows that this corresponds to the helicity
approaching a local (positive) maximum and the winding near its most negative value.
A current structure exits in the atmosphere in figure 22(b) that was not present in
(a). This current developed due to the buckling of the field due to dense plasma
drainage, as described previously. This nonlinear deformation of the field has resulted
in two ‘twist units’, as opposed to the single unit displayed in (a). Where the two
twist units meet, at y = 0 and just above the photosphere, there is a small patch of
negative current. This patch corresponds to the patch of negative winding displayed
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FIGURE 21. A contour plot of density ρ= 0.2, slightly above the ρ= 1 photospheric level
at t= 62. There is a an s-shaped peak in the density profile at the centre of the domain
which is parallel to the y-direction and has been established to correspond to a pooling of
dense plasma in this location. This shape matches the morphology of line observed in the
winding input densities dL/dt, shown in figure 18( f ), and dLv/dt, shown in figure 20(c).

in figure 20(a,b), which reveals this patch growing at the later times of t = 45 and
t= 46.

As mentioned above, figure 20(c) reveals that the patch of negative winding
found in figure 20(a,b) disappears. Instead, the winding distribution reveals a highly
deformed PIL and winding magnitudes double that of the previous time step. This
behaviour is caused by submergence. Consider figure 23. This figure shows y–z slices
(at x= 0) of the x-component of the current density and the photospheric boundary at
times (a) t= 46 and (b) t= 47, corresponding to the times of the winding distributions
in figure 20(b,c). In figure 23(a) the structure of positive current, created by dipped
field in the atmosphere, is just glancing the photospheric boundary. In figure 23(b),
this structure has passed slightly beneath the photospheric boundary. Despite the
appearance of figure 23(a,b) being only marginally different, the submergence of a
very small part of the field can have a large impact on the winding distributions (as
well as the magnetograms). As submergence continues, the changing current structure
leads to a large spike in the winding input (figure 19c,d).

It is interesting to note that the original emerging field (such as the twisted unit in
figure 22a) did not lead to a spike in the winding input. It was only after the emerged
field above the photosphere changed and this new structure was submerged that an
event was detected in the time series.

Further confirmation that submergence dominates these helicity and winding time
series is found, as we did for the twisted case, by examining the velocity flux. Time
series of the velocity flux and the dH/dt are compared in figure 24(a). After t= 40,
Vz < 0 for the period corresponding to the draining and submergence described above.
We also note that there is a correlation between oscillations in the helicity input time
series and the velocity flux (figure 24b).

6. Conclusions and discussion
This article presents simulations of the emergence of magnetic flux tubes with

varying internal geometries and topologies. One simulation considers a twisted tube
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30 C. Prior and D. MacTaggart

FIGURE 22. Slices in the y–z plane, at the PIL at (a) t = 27 and (b) t = 42, revealing
different phases of emergence. The slices display distributions of the out of plane
component of the current density. Also shown, as a green line, the ρ = 1 surface of the
moving photosphere. (a) (t= 27) There is a spiral structure, indicative of a locally twisted
field just off the centre of the photospheric domain. It is part way through emerging
through the ρ = 1 photosphere line. (b) (t= 42) The previous twist has split in two due
to the deformation of the current structure in the atmosphere.

which has a single sign helicity (negative in this case). The other simulation focusses
on a tube of mixed helicity. The two main quantities analysed are the (relative)
helicity H and the winding L, both found by considering their rate of change
through the photosphere. We have performed calculations through a planar surface,
representing the initial position of the photosphere in the simulations, as well as a
surface of constant density which represents a (potentially) changing photosphere.
Both quantities (H and L) rely on the same baseline information, the changing
entanglement of the points at which magnetic field lines pierce the photosphere, i.e.
the evolving field topology affected by both the in-plane fluid motion and the vertical
motion of the field passing through the photosphere. The major difference between
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FIGURE 23. Slices in the y–z plane at the PIL at (a) t = 46 and (b) t = 47. The slices
display distributions of the out of plane component of the current density. Also shown, as
a green line, the ρ = 1 surface of the moving photosphere.

FIGURE 24. Plots of the velocity flux Vz and its correlation to the helicity input rate. (a)
The temporal variation of Vz. (b) A comparison of the temporal variation of the quantities
Vz and the helicity input rate dH/dt (both scaled to lie in the range [0, 1]).

H and L is the weighting of magnetic flux for the helicity input. The following
observations emerge from the analysis:

(i) Large oscillations in the helicity input are consistently related to the reversal of
plasma flow across the photosphere, occurring in both the single sign and mixed
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helicity emergence simulations. These reversals appear in the spatial distributions
of the helicity and winding rates as the temporally varying sign of clear structures.
These structures can be further correlated to the appearance of flux structures in
the magnetogram distributions, leading to several features in the magnetograms
being linked to submergence rather than emergence.

(ii) The winding time series tends to be far more sensitive to the emergence
(submergence) of field topology and can detect individual events of helicity/
winding carrying structures intersecting the photospheric boundary. The helicity
time series tends to give more gradual variations in input. It is sensitive to the
emergence (submergence) of topologically complex field when this is linked to
the transport of significant magnetic flux crossing the photospheric boundary.

(iii) The ratios of the input of helicity and winding to their unsigned equivalents is
far larger for the twisted emergence than for the mixed helicity emergence. This
result was to be expected based on the initial conditions: the twisted tube has net
helicity, the mixed helicity field does not.

(iv) It is important to take the changing geometry of the photosphere into account,
particularly for the calculation of the winding. It is also important to remove the
effect of weak or unresolved field, which can affect the winding calculation both
quantitatively and qualitatively.

Based on our analysis of the simulations, we make the following suggestions which
may aid or enhance the analysis of observational flux emergence data:

(i) We recommend that both the helicity and winding input distributions and time
series should be calculated. This task should be straight forward, in one sense,
as the only main difference in the calculation of the winding compared to the
helicity is to substitute an indicator function measuring the sign of Bz instead
of Bz itself. Since the winding is more sensitive to noise, however, suitable
preprocessing of the observational data will be required. If possible, the varying
geometry of the photosphere should be accounted for as it can affect both the
magnitude and morphology of the input time series.

(ii) We recommend that the behaviour of the helicity and winding rates and
distributions should be correlated to the vertical velocity flux, where possible.
This would aid in determining if a new structure in a magnetogram is the
result of emergence or submergence, a task which would be difficult if reliable
information is restricted only to photospheric magnetograms. On that note, we
acknowledge that the dH/dt and Vz time series for the twisted field simulation
show a shift between anti-correlation and correlation (figure 9d), while for the
mixed helicity simulation these quantities appear to be more coherently correlated
(figure 24b). Although we have not investigated the relationship between the time
series in detail, that is beyond recognizing when magnetic field is emerging or
submerging, it is an area worthy of future study and may reveal important
characteristics of the emergence of different types of magnetic field.

(iii) We recommend a combined analysis of the winding input time series and
distributional information. These can be used to detect events in which magnetic
field structures with complex topology pass through the photosphere (from
above or below). This approach provides more information than magnetogram
distributions, which indicate new emergence/submergence events but no informa-
tion regarding their topological content. However, care must be taken to discount
events which have significantly weak magnetic field and may be spurious. Such
events may have little significance for the overall evolution of the emerging
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magnetic field. This point is made clear in the difference between the winding
series for the mixed helicity field. In the non-moving surface case the sign of
the total helicity and winding inputs differ (figure 16b,d). It is entirely plausible
that this can occur for a field which has significant small-scale but well defined
topology (something with a high winding measure) that occurs in a region
of weak field (Bz � 1). Then the helicity assigns a very small weight to this
topology (winding) due to the multiplication by a very small Bz. However, as
discussed above, in simulations of emergence into an, initially, magnetically
empty region above the photosphere, there is a current sheet surrounding the
emerging flux rope. In practice this leads to a small region on the boundary
of the emerged field where the field strength rapidly decreases to zero. The
field line structure in this boundary layer is not resolved and, therefore, not
to be trusted. It was found that by removing these contributions, the helicity
and winding inputs have the same overall sign (see figure 19b,d). A significant
part of this change was found to be due to the cutoff in field strength applied
to the winding calculations. The size of ε (used in the cutoff) that needs to
be prescribed will depend on the implementation of how the magnetic field is
approximated numerically. In particular, it will depend on the numerical scheme
(finite difference, finite element, etc.) and the grid resolution. Without rigorous
theoretical results, a ‘trial and error’ approach to ε selection is recommended.
If the value is too low, the winding results will be significantly different for
slightly higher values of ε. If the value is too high, field that can be resolved
numerically may be removed from the calculation.

(iv) We recommend that both the helicity and winding ratios, Hr
t and Lr

t , should be
calculated. Again, these calculations should be straight forward as they use the
same basic information as the helicity and winding inputs. The evidence from
our study suggests that a consistently low value of these ratios is indicative of
an emerging mixed helicity structure where the internal twisting in the field is not
dominated by one sign. Our results suggest that a ratio below 5 % is indicative
of a mixed helicity field. That being said, we have only considered a strongly
twisted case. For emerging fields with lower twists, the ratio may also be small
and this is something to be considered in future work.

Apart from the points mentioned above, there are several directions in which to
carry this work forward. So far, we have considered emerging regions before the
formation of any eruptions, i.e. the motion we have studied is effectively ideal.
How non-ideal effects (e.g. reconnection) change the helicity and winding signatures,
including their interpretation, remains to be studied. It is known that for high magnetic
Reynolds number plasmas, dissipative losses to the (relative) helicity in the volume
are small (Berger 1984; Pariat et al. 2015; Sturrock et al. 2015). This is true typically
of dissipative helicity loss at the photospheric surface (Pariat et al. 2015; Sturrock
et al. 2015). However, this does not necessarily imply that local reconnection rates
are low (which depend on the electric current), just that the average losses are small.
Thus, since there are small regions of relatively high current at the photosphere in
these simulations, there may be some regions where local losses are significant. This,
in turn, may lead to significant local changes in field topology.

Since our focus in this study was not on the field’s evolution above the photosphere,
we did not make direct calculations of the relative helicity in the volume above the
photosphere. This calculation has been performed in various flux emergence studies
in which the changing structure of the field above the photosphere was of significant
focus (e.g. Pariat et al. 2015, 2017; Sturrock et al. 2015). As an example comparison,
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the helicity input in the twisted case of this manuscript has a linear total input with
an oscillatory component. This behaviour is in line with the results of Sturrock et al.
(2015) (allowing for the fact that the oscillations in our study are larger due to the
field’s twisted core getting stuck at the photosphere), who perform the relative helicity
calculation in the volume and confirm, as expected, that the total helicity input is
approximately equal to the relative helicity in the volume. Theoretically, as long as
the emerging field does not interact with the boundaries of the computational domain
and the evolution is ideal, the helicity flux and direct calculations should give identical
results. Errors in different numerical implementations and resistive effects can play
a role in making these results diverge, so checking both calculations is, generally, a
good idea. This time, however, we feel that the above comparison with the results of
Sturrock et al. (2015) justifies our decision to postpone such calculation checks for a
thorough study of the topology of the field above the photosphere.

Further to this, previous analyses of helicity dissipation have only considered
the effects of scalar diffusion. In flux emergence applications, a diffusion tensor,
with components parallel and perpendicular to the magnetic field, represents a more
accurate diffusion model for the region between the photosphere and the corona.
Further still, diffusion perpendicular to the magnetic field can be orders of magnitude
larger than that parallel to the field, in this region (e.g. Arber et al. 2007). Therefore,
more work needs to be done to investigate both the global and local dissipative
effects on helicity and winding.

Another important aspect for further study, revealed by our results, is the sensitivity
of helicity and winding to changes at the photosphere. The present model should be
updated to include a convectively unstable solar interior.
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