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ABSTRACT
Eruptive flares (EFs) are associated with erupting filaments and, in some models, fila-
ment eruption drives flare reconnection. Recently, however, observations of a confined
flare (CF) have revealed all the hallmarks of an EF (impulsive phase, flare ribbons,
etc.) without the filament eruption itself. Therefore, if the filament is not primarily
responsible for impulsive flare reconnection, what is? In this Letter, we argue, based
on mimimal requirements, that the plasmoid instability is a strong candidate for ex-
plaining the impulsive phase in the observed CF. We present magnetohydrodynamic
simulation results of the nonlinear development of the plasmoid instability, in a model
active region magnetic field geometry, to strengthen our claim. We also discuss how
the ideas described in this Letter can be generalised to other situations, including EFs.
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1 INTRODUCTION

In the leading models of solar eruptive flares (EFs), such as
the standard flare model for a two-ribbon flare (Carmichael
1964; Sturrock 1966; Hirayama 1974; Kopp & Pneuman
1976), its extension into 3D (e.g. Aulanier et al. 2012, 2013;
Janvier et al. 2013) and the breakout model (e.g. Antiochos
et al. 1999; Karpen et al. 2012), flare reconnection is as-
sociated with filament eruption. Although different models
for EFs emphasise different mechanisms allowing the onset
of eruptions, they all contain filaments or magnetic filament
channels whose magnetic geometry allows flare reconnection
to occur in a vertical current sheet. Flares which do not
exhibit evidence for eruptions are known as confined flares
(CFs) (Pallavicini et al. 1977). Whereas in an EF the fila-
ment/filament channel eruption is a key factor, in a CF this
is not the case. Recently, Simões et al. (2015a,b) studied a
bipolar active region that contained a filament. This region
produced an impulsive (C-class) flare in the corona and the
formation of two flare ribbons. The filament of the region,
however, did not erupt.

In order to understand the large-scale behaviour of the
CF, we need to move beyond the models of EFs. Theories for
CFs have not attracted so much attention, though prominent
examples include those based on the interaction of current-
carrying loops (e.g. Melrose 1997) and the interaction of
emerging flux with pre-existing coronal fields (e.g. Heyvaerts
et al. 1977). In this Letter, we present a new theoretical
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description of how the impulsive phase of the CF forms. We
note that CFs need not have a unique form or magnetic
topology, so that what we will describe in this Letter may
not cover all cases of CFs. However, the region described in
Simões et al. (2015a,b) is a bipolar region which is the basic
building block of solar active regions (Schrijver and Zwaan
2000) and, therefore, a very general structure in the solar
atmosphere.

In the following section, we describe the general fea-
tures of our theory. We then present magnetohydrodynamic
(MHD) simulation results to strengthen our claim. We con-
clude the Letter with a summary and a discussion of how
the ideas discussed can be applied to a more general setting.

2 GENERAL THEORETICAL DESCRIPTION

In this section, we describe the main qualitative features of
the theory. Since we are interested in structures that exist
on active region length scales, we will model the plasma
using resistive MHD. The general properties of the theory,
however, are not strictly dependent on MHD and could be
extended to non-fluid theories of plasmas.

In the region studied by Simões et al. (2015a,b) there is
a filament which does not erupt during the observed flare.
Therefore, in order to understand how an impulsive phase
could develop, we ignore the direct influence of the filament.
One constraint from the observations is that the impulsive
phase has a coronal source, probably at the top of the active
region’s magnetic field.
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Leaving the dynamics of the filament aside, we are left
with two distinct magnetic domains - that of the bipolar
active region and that of the corona surrounding the active
region. These two domains are not in equilibrium, other-
wise there would be no subsequent flaring. Let us assume,
however, that any evolution behaves in a quasi-static fash-
ion, i.e. there are no strong motions to drive impulsive flare
reconnection.

A current sheet exists at the boundary between the two
magnetic domains. Here, a current sheet refers to a thin, but
finite, layer of locally enhanced current density.

The idea of flares resulting from the interaction of active
region and coronal fields is not a new one in solar physics
(e.g. Heyvaerts et al. 1977). However, our theory represents
a substantial ‘update’ of this established idea. Consider the
slow movement of the active region domain. It is possible
that some locations of the current sheet can be compressed
more than others, especially as the relative orientation of the
magnetic field domains near the boundary will be different
in different locations on the boundary (in 3D). Assuming
that part of the current sheet continues to be compressed, it
can do so until a critical aspect ratio (sheet thickness over
sheet length) is reached. Beyond this point, the current sheet
becomes unstable to the plasmoid instability (e.g. Loureiro
et al. 2007; Pucci & Velli 2014; Uzdensky & Loureiro 2016).
Why is this instability suitable for describing the impulsive
phase of a flare? Firstly, the linear phase of the plasmoid
instability is very fast. For a current sheet with the Sweet-
Parker scaling, the linear growth rate of the instability is
O(S1/4) where S is the Lundquist number based on the
macroscopic length of the current sheet1. A typical coronal
estimate is S ∼ 1013 (e.g. Comisso et al. 2017).

Secondly, the plasmoid instability leads to the formation
of many highly dynamic plasmoids in its nonlinear phase
(e.g. Lapenta 2008; Bhattacharjee et al. 2009; Samtaney et
al. 2009; Tenerani et al. 2015; Huang et al. 2017) and, there-
fore, many new locations of magnetic reconnection. This fact
is important for flares as each location of reconnection is also
a location of enhanced parallel (to the magnetic field) elec-
tric field (e.g. Schindler et al. 1988). Therefore, assuming
that plasmoid formation cascades so that sufficient numbers
form at sufficiently small scales, as found in the high resolu-
tion 2D simulations cited above, there are many regions in
the current sheet where particles can be accelerated multi-
ple times, reaching higher energies (e.g. Drake et al. 2006;
Turkmani et al. 2006; Zhou et al. 2018).

The above two properties make the plasmoid instability
a strong candidate for impulsive flares in CFs. The only re-
quirement is a thinning current sheet driven by slow motions
due to a lack of equilibrium. We will now show an example
of this in a 3D MHD numerical experiment.

3 SIMULATION

So far, we have given a qualitative description of the impul-
sive phase of a bipolar CF. Our argument has been based on
some basic plasma physics and is not difficult to generalise

1 Even if the Sweet-Parker scaling cannot be reached, the growth
rate is still a positive power of S and thus fast (Pucci & Velli

2014).

to more complex situations (we will return to this later). In
order to add weight to the possibility of our theory being re-
alised, we now present an analysis of a simulation that was
originally described in MacTaggart et al. (2015). Although
magnetic topology is discussed in that work, the main focus
is the formation of surges. We, therefore, go back to this
simulation and analyse the data in light of our description
of the CF.

The compressible and resistive magnetohydrodynamic
equations are solved using a Lagrangian remap scheme (Ar-
ber et al. 2001). In dimensionless form, the equations are

ρ̇ = −ρ∇ · u, (1)

u̇ = −1

ρ
∇p+

1

ρ
(∇×B)×B + g +

1

ρ
∇ ·TV , (2)

Ḃ = (B · ∇)u− (∇ · u)B + η∇2B, (3)

ε̇ = −p
ρ
∇ · u +

1

ρ
ηj2 +

1

ρ
TV : ∇u, (4)

∇ ·B = 0, (5)

with specific energy density

ε =
p

(γ − 1)ρ
. (6)

The over-dot represents the material derivative and the
double-dot represents the double contraction of a second or-
der Cartesian tensor. The basic variables are the density ρ,
the pressure p, the magnetic field B and the velocity u. j
is the magnitude of current density, g is the gravitational
acceleration and γ(= 5/3) is the ratio of specific heats. η is
the resistivity and its value is taken to be, η = 10−3. This
value can also be expressed as the global Lundquist number
based on the non-dimensional length scale, i.e. S = 1000.

The viscosity tensor is given by

TV = µ

(
∇u +∇uT − 2

3
I∇ · u

)
, (7)

where µ = 10−5 and I is the identity tensor. The non-
dimensionalisation and setup of the initial condition is iden-
tical to that in Section 2 of MacTaggart et al. (2015) and we
refer the reader to that work for further details.

We ignore the initial emergence of the field into the
atmosphere and skip to a later time when the overall kinetic
energy of the simulation is decaying and a bipolar region
with a filament has formed, surrounded by a coronal field.
A visualisation of this scenario is displayed in Figure 1.

The connectivity of field lines is labelled by colour in
Figure 1(a). Green field lines connect to both active re-
gion footpoints. Cyan field lines connect to two sides of the
computational domain (the coronal field). The red and blue
field lines are reconnected field lines and connect from one
side of the computational domain (the corona) to one of the
footpoints (at the base of the computational domain below
the greyscale plane indicating the photosphere). A simulated
magnetogram of the vertical component of the magnetic field
is shown on the photospheric plane. Figure 1(b) displays the
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Figure 1. The active region field and coronal field in the quasi-

steady phase. (a) shows the field line connectivity with recon-
nected field lines. (b) shows the isolated current sheet where the

flare occurs. Further details are given in the main body of the

text.

current sheet at the top of the active region (an isosurface
of jx = 0.001).

The magnetic field in Figure 1 corresponds to a time
after emergence and before the impulsive flare. The shape
of the active region ‘bubble’ is clearly visible from the geom-
etry of the reconnected field lines and the sheared filament
is displayed (green field lines) in Figure 1(a). There are two
important points to consider about this magnetic structure.
The first is that the reconnected field lines stay on the bound-
ary of the active region. Even at the photosphere, the recon-
nected field lines do not penetrate inside the active region
to connect to the main footpoints (sunspots). We will dis-
cuss how the behaviour of this quasi-static reconnection can
change later.

The second point is that the reconnection occurs in
a quasi-symmetric fashion, with the axis of symmetry ly-

Figure 2. The active region and coronal fields when tearing sets

in at the boundary. Arrows indicate directions for the description

in the main text.

ing approximately in the x-direction. This is indicative of
a topological structure that appears in many different con-
texts. Dividing the four magnetic domains (indicated by the
four colours), there is a magnetic separator (e.g. Priest &
Forbes 2009). This structure, and the ensuing reconnection,
appears time and again in different studies. For example,
in models of EFs (MacTaggart & Haynes 2014), in stud-
ies of reconnection at null points (Wyper & Pontin 2014a),
in fly-by experiments (Parnell & Galsgaard 2004; Haynes
et al. 2007), in magnetospheric studies (Dorelli et al. 2007;
Haynes et al. 2007) and in an early model of flaring in Sweet
(1958) (see also Longcope 2005, and references therein for a
detailed topological description of this last work). Interest-
ingly, 2.5D resistive MHD equilibria (Watson & Craig 2002;
Tassi et al. 2003) in cylindrical coordinates have been found
with a similar structure, including the presence of a sepa-
rator. The existence of such solutions, combined with the
frequency with which this magnetic structure occurs in dif-
ferent situations, suggests that the model representation (in
Figure 1) of this pre-flare active region described in Simões
et al. (2015a,b) is a general magnetic structure.

At a later time, the current sheet on the boundary (see
Figure 1(b)) eventually succumbs to tearing and the plas-
moid instability. Figure 2 shows the magnetic topology after
the onset of tearing. The plasmoid instability is normally
studied in 2D, where the change in topology is clear. In or-
der to understand the connectivity displayed in Figure 2
begin from one footpoint, travel to the top of the active re-
gion while staying on the boundary and then travel to the
other footpoint. While doing so, make note of the colour of
the reconnected field lines. For example, let us start at the
footpoint with negative magnetic field (shown in black in the
lower right-hand source on the magnetogram). If we move
upwards along the boundary, following the arrows, we first
encounter blue reconnected field lines, then red, then blue
and, finally, red again before we reach the other footpoint.
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Figure 3. Slices in the y = 0 plane of jy . (a) corresponds to the

state of the active region in Figure 1 and (b) to that in Figure 2.

Each red or blue region represents a plasmoid - a topologi-
cally distinct region, created by the tearing of the boundary
current sheet. This is the 3D realisation of the magnetic is-
lands found in 2D studies of current sheet tearing. Of course,
only a limited selection of field lines is displayed in Figure 2
for clarity.

Figure 3 displays slices of jy in the y = 0 plane for the
snapshots shown in Figures 1 and 2. Figure 3(a) shows a
thin but coherent current sheet with the peak current at the
top of the active region, corresponding to where the quasi
steady-state reconnection, shown in Figure 1(a), occurs. Fig-
ure 3(b) reveals the fragmentation of the current sheet from
a coherent structure to three separated and intensified re-
gions of current corresponding to the transitions between the
plasmoids shown in Figure 2. Notice that the current sheet
in (b) is higher than that in (a). This increase in height is
due to reconnection weakening the overlying tension of the
coronal field, allowing the active region to move higher in
the atmosphere.

The tearing of the boundary current sheet exhibits an
impulsive phase, as in the nonlinear phase of the plasmoid
instability, with the rapid creation of many plasmoids (the
3D definition of plasmoids described above). An alternative
way to view the formation of many plasmoids is the bifur-
cation of the separator (Parnell et al. 2010). We define the
3D reconnection rate R(t) in the boundary current sheet as

R(t) = max
S(t)

∣∣∣∣∣
∫

Γ(t)

E‖ dl

∣∣∣∣∣ ,
where E‖ is the component of the electric field parallel to
the magnetic field, Γ(t) is the path of the separator in the
current sheet at time t and S(t) is the set of all separators
in the current sheet at time t. This definition of the recon-
nection rate is not unique but is suitable for revealing the
impulsive phase. Figure 4 shows how R(t) evolves from the
state displayed in Figure 1 to that in Figure 2 and beyond.
The separators used in the calculation of the reconnection
rate were found using the method of Haynes et al. (2007).

The qualitative details are of more interest than the
quantitative details here, with the latter being discussed in
MacTaggart et al. (2015). For reference, however, Figure 1
is at t = 120 (multiply by 25 to convert to seconds). This
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Figure 4. The reconnection rate showing the impulsive phase.
These data were originally displayed in MacTaggart et al. (2015).

state remains until t = 129 and Figure 2 is at t = 130. After
the tearing begins, there is a slow linear rise in R(t) until a
fast transition followed by a higher saturated value. When
tearing begins, the number of separators changes from 1 to
3, i.e |S| = 3. At the rapid transition, |S| = 33. In the
saturated phase after the transition, |S| = 1, i.e. the system
returns to having one separator.

The behaviour described above matches, qualitatively,
the behaviour of the nonlinear phase of the plasmoid in-
stability (e.g. Huang et al. 2017). The system moves from
a quasi-steady-state to the rapid formation of plasmoids
boosting the reconnection rate and then back to a less dy-
namic state.

The topology of the post-tearing field differs from that
displayed in Figure 1(a). Notice in Figure 2 that the re-
connected field lines (blue and red) now connect inside the
active region (and inside the main footpoints) rather than
skirting the edge of the domain (as in Figure 1(a)). This
new connection is possible due 3D reconnection, as has been
exploited in models of EFs (e.g. Janvier et al. 2014).

4 SUMMARY AND DISCUSSION

In this Letter we have argued that the plasmoid instability
exhibits properties consistent with the impulsive phase of
confined flares in bipolar active regions. The bipolar active
region observed by Simões et al. (2015a,b) produced a flare
with an impulsive phase and other characteristic activity,
such as ribbons. However, the filament in the region did not
erupt. Without some kind of instability driving the filament
upwards, as in models of eruptive flares, another explanation
of the impulsive phase is required. Assuming no strong flows
associated with the filament, we propose that since the two
main flux domains (the active region and the surrounding
corona) are not in equilibrium, compression of the current
sheet between them (due to slow motion) can eventually re-
sult in the plasmoid instability. Not only is the rapid nature
of this instability suitable for describing the impulsive phase
but it also occurs in the corona far from the photosphere,
just as in the observations.

MNRAS 000, 1–6 (2019)
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As evidence to support the possibility of the above the-
ory, we have presented MHD simulation results of the non-
linear phase of the plasmoid instability in a realistic mag-
netic geometry for a solar flare. In particular, the simulation
exhibits the following causal sequence of events:

1. A thinning current sheet leading to reconnection.

2. The rapid formation of many plasmoids in the current
sheet.

3. A highly boosted reconnection rate.

The relationship between the plasmoid instability and
solar flares has been suggested previously (e.g. Uzdensky
& Loureiro 2016; Comisso et al. 2017; Janvier et al. 2017).
However, to our knowledge, there has not previously been a
3D model or simulation of a flaring active region (erupting or
non-erupting) which explicitly recognises the importance of
the plasmoid instability. This work extends the applicability
of the plasmoid instability from 2D to 3D.

Another important aspect of this work is that the basic
magnetic topology involved and its bifurcation (via the plas-
moid instability) appear to be common phenomena across
different areas of plasma physics. We have cited theoretical
works and applications to solar and magnetospheric physics.
The exact onset properties of the plasmoid instability will
likely be different in the different applications. However, the
general pattern is seen throughout, namely a magnetic topol-
ogy involving a separator which bifurcates, creating many
plasmoids, on a time scale much shorter than that of the
other dynamics of the system. Even in systems that do not
originally contain a separator but create one via deforma-
tion of the magnetic field (e.g. Wyper & Pontin 2014b), the
plasmoid instability, as we have described in this Letter, is
found. In short, the magnetic topology we consider is general
and its breakup is via the plasmoid instability.

Finally, we argue that the plasmoid instability will be
important to consider in models of eruptive flares too. For
example, an eruptive flare can be created with the same mag-
netic topology that we have considered with the one differ-
ence of changing the direction of the overlying coronal field
(MacTaggart & Haynes 2014). If the active region and coro-
nal field directions are close to anti-parallel at their bound-
ary, stronger reconnection can occur and break the tension
of the overlying field. In MacTaggart & Haynes (2014) an
eruption occurs with both external and internal reconnec-
tion following the behaviour of the plasmoid instability, i.e.
the formation of many plasmoids on a short timescale. Al-
though the simulation of MacTaggart & Haynes (2014) is
based on flux emergence, it falls under the class of flare mod-
els described by the breakout model (Antiochos et al. 1999).
Manifestations of the plasmoid instability can be found in
simulations of the classical breakout model. Although it is
difficult to resolve plasmoids in 3D breakout simulations,
they are visible in 2.5D simulations (e.g. MacNeice et al.
2004; Karpen et al. 2012). Indeed, Karpen et al. (2012) de-
scribe weak tearing followed by fast reconnection that is very
similar to the reconnection pattern we have found.

As well as simulations, there is a growing body of evi-
dence for the plasmoid instability in observations, particu-
larly for eruptive flares in a variety of scenarios (e.g. Takaso
et al. 2011; Dai et al. 2018; Zhang & Li 2019). As the res-
olution of both observations and simulations increases, we

conjecture that the plasmoid instability will be manifested
in many different aspects of impulsive flares.
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