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Abstract: The relative importance of the helicity and cross-helicity electromotive dynamo effects for
self-sustained magnetic field generation by chaotic thermal convection in rotating spherical shells is
investigated as a function of shell thickness. Two distinct branches of dynamo solutions are found
to coexist in direct numerical simulations for shell aspect ratios between 0.25 and 0.6—a mean-field
dipolar regime and a fluctuating dipolar regime. The properties characterising the coexisting dynamo
attractors are compared and contrasted, including differences in temporal behaviour and spatial
structures of both magnetic fields and rotating thermal convection. The helicity α-effect and the
cross-helicity γ-effect are found to be comparable in intensity within the fluctuating dipolar dynamo
regime, where their ratio does not vary significantly with the shell thickness. In contrast, within the
mean-field dipolar dynamo regime the helicity α-effect dominates by approximately two orders of
magnitude and becomes stronger with decreasing shell thickness.

Keywords: rotating thermal convection; convection-driven dynamos; numerical simulations;
bistability; mean-field magnetohydrodynamics; spherical shells

1. Introduction

Thermal flows give rise to some of the most characteristic large-scale features of cosmic
objects—their self-sustained magnetic fields [1,2]. For instance, the Sun and several of the planets in
the Solar System display substantial magnetic fields [3,4]. The solar magnetic field drives solar activity
and strongly affects planetary atmospheres [5,6]. Earth’s field shields life from solar radiation [7].
Farther out, the gas giants, the ice giants, and the Jovian moons all have significant magnetic
fields [8]. These fields are sustained by dynamo processes in the interiors or the atmospheres of
their celestial hosts where vigorous convective motions of electrically conductive fluids generate
large-scale electric currents [9–11]. The convective flows are driven primarily by thermal buoyancy
forces due to thermonuclear fusion in stellar interiors and secular cooling in planetary interiors,
respectively. Thermal convection in celestial bodies is highly turbulent in nature and, at the same time,
strongly influenced both by rotation and by the self-generated magnetic fields. Considerable attention
has therefore been devoted to this fascinating and important subject, and for topical reviews we refer
to the papers by Busse and Simitev [12], Jones [13], Wicht and Sanchez [14] and references within.

Conceptually, dynamo generation of large-scale magnetic fields is understood on the basis of
mean-field dynamo theory [15–17], a well-established theory of magnetohydrodynamic turbulence.
A cornerstone of the theory is the turbulence modelling of the mean electromotive force—the sole
source term arising in the Reynolds-averaged magnetic induction equation governing the evolution of
the large-scale field, see Section 3.5 further below. The electromotive force is usually approximated by
an expansion in terms of the mean field and its spatial derivatives where the expansion coefficients are
known informally as “mean-field effects”. The turbulent helicity effect, also called α-effect (in this work,
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when we refer to “helicity” without further qualification, we intend the helicity associated with the
α-effect—this shorthand should not be confused with other helicities, such as “magnetic helicity”), has
been studied extensively in the research literature on mean-field dynamo theory, for example, see [16,
18] and references therein. In contrast, the cross-helicity effect, also known as γ-effect [19], has been a
subject to a rather small number of studies, for example, [20,21] and works cited therein. This is due to
the currently prevailing treatment of turbulence where large-scale velocity is neglected because of the
Galilean invariance of the momentum equation. However, such treatment leads to the neglect of the
large-scale shear effects, which are, in fact, significant. For example, large-scale rotation is ubiquitous
in astro/geophysical objects, for example, the Solar internal differential rotation is substantial and
well measured [22,23] while numerical simulations suggest it is an essential ingredient of the dynamo
process and likely to be responsible for the regular oscillations of convection-driven spherical dynamos
[24,25]. Similarly, a number of studies of plane-parallel flows confirm that cross-helicity effects are
not small compared to helicity effects [26,27]. Apart from its role in dynamo generation, cross-helicity
is an important Solar observable. For instance, measurements of the cross-helicity component 〈uzbz〉
at the Solar surface are available from the Swedish 1-m Solar Telescope and can be used to calculate
the magnetic eddy diffusivity of the quiet Sun by quasilinear mean-field theory [28].

Cross-helicity has not been explored in models of self-consistent dynamos driven by thermal
convection in rotating spherical shells and this paper aims to contribute in this direction. The main
goal of this work is to investigate the relative importance of the helicity and cross-helicity effects as
a function of the thickness of the convective shell. Intuitive arguments suggest that the α-effect is
important in the case of the geodynamo and the cross-helicity effect is important in the case of the
global solar dynamo. Indeed, the geodynamo operates in the relatively thick fluid outer code of the
Earth where large-scale columnar structures are believed to develop. The coherent columnar structures
are characterised by relatively large-scale vorticity and generate a strong helicity α-effect. In contrast,
the global solar dynamo operates in the thinner solar convection zone where columnar structures are
thought difficult to maintain and so vorticity may have a less regular structure, thus increasing the
relative importance of the cross-helicity effect. To assess this hypothesis, we present a set of dynamo
simulations that differ mainly in their shell thickness aspect ratio η = ri/ro, see Figure 1, while other
governing parameters are kept fixed. Along with estimates of the relative strength of the helicity and
cross-helicity effects, we report on the mechanisms of electromotive force generation and its spatial
distribution. Variation of shell thickness is also relevant to the case of the geodynamo as the inner
core did not exist at the time of formation of the Earth, but nucleated sometime later in the geological
history of the planet and continues to grow in size.

η

Figure 1. Illustration of shell thickness aspect ratio variation.

The geodynamo and the solar global dynamo are also different in that the former has a dominant
and rarely reversing dipole, while the latter exhibits a regular periodic cycle. To capture this essential
difference while comparing quid pro quo, we have performed this study at parameter values where two
distinct dynamo branches are known to coexist [29–31]. These branches have rather different magnetic
field properties, in particular one branch is non-reversing while the other branch is cyclic, and also
display significant differences in zonal flow intensity and profile. It is reasonable to expect that the
two branches will offer different mechanisms of helicity and cross-helicity generation and thus in this
paper we proceed to study both branches. Bistability, in itself, may play a role in aperiodic magnetic
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field polarity reversals, a notable feature of the geodynamo [32], as well as in the regular cycle of the
solar dynamo [33]. We have previously investigated the hysteretic transitions between the coexisting
dynamo branches with variation of the Rayleigh, Prandtl and Coriolis numbers (defined further below).
In addition, in this paper we demonstrate for the first time that the distinct dynamo branches coexist
also when the shell thickness η is varied. The discussion of this dichotomous behaviour runs as a
secondary theme of the article.

The paper is structured as follows. Details of the mathematical model and the numerical methods
for solution are given in Section 2. In Section 3, we describe the set of dynamo simulations performed
in the context of this work. We pay particular attention to the description of the two coexisting
dynamo branches, which are studied for the first time here as a function of the thickness of the
convective shell. In the process, we describe the typical morphology and time dependent behaviour
of thermal convection flows. In Section 3.5, we briefly summarise the mean field arguments related
to the helicity and cross-helicity mechanisms for the generation of a large-scale magnetic field. In
Section 3.6, the cross-helicity properties of our dynamo solutions and the relative contributions of the
α-and γ-effects are assessed. Section 4 is devoted to concluding remarks.

2. Materials and Methods

This section describes a standard mathematical formulation of the problem of thermal convection
and magnetic field generation in rotating spherical fluid shells. A set of transformations used to recast
the problem in a scalar stream-function form and a pseudo-spectral algorithm used for the numerical
solution of the equations is presented. The exposition in this section is standard and follows our
previous articles, for example, [34,35]. This section also serves as an introduction and a review of the
typical approach to the formulation and solution of this important problem.

2.1. Mathematical Formulation

We consider a spherical shell full of electrically conducting fluid as shown in Figure 2. The shell
rotates with a constant angular velocity Ω about the vertical coordinate axis. We assume that a static
state exists with the temperature distribution

TS = T0 − βd2r2/2, (1a)

β = q/(3 κ cp), (1b)

T0 = T1 − (T2 − T1)/(1− η). (1c)

The evolution of the system is governed by the equations of momentum, heat and magnetic induction,
along with solenoidality conditions for the velocity and magnetic fields,

∇ · u = 0, (2a)(
∂t + u · ∇

)
u = −∇π − τk× u + Θr +∇2u + B · ∇B, (2b)

P
(
∂t + u · ∇

)
Θ = Rr · u +∇2Θ, (2c)

∇ · B = 0, (2d)

Pm
(
∂t + u · ∇

)
B = PmB · ∇u +∇2B, (2e)

written for the perturbations from the static reference state and with notations defined in Table 1.
In this formulation, the Boussinesq approximation is used with the density $ having a constant value
$0 except in the gravity term where

$ = $0(1− αΘ), (3)

and α is the specific thermal expansion coefficient α ≡ −(d$/ dT)/$ = const. With the units of
Table 2, five dimensionless parameters appear in the governing equations, namely the shell radius
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ratio η, the Rayleigh number R, the Coriolis number τ, the Prandtl number P and the magnetic Prandtl
number Pm defined by

η =
ri
ro

, R =
αγβd6

νκ
, τ =

2Ωd2

ν
, P =

ν

κ
, Pm =

ν

λ
, (4)

where λ is the magnetic diffusivity. Since the velocity u and the magnetic flux density B are solenoidal
vector fields, the general representation in terms of poloidal and toroidal components is used

u = ∇× (∇v× r) +∇w× r, (5a)

B = ∇× (∇h× r) +∇g× r. (5b)

Taking r · ∇× and r · ∇×∇× of the momentum Equation (2b), two equations for w and v are obtained

[(∇2 − ∂t)L2 + τ∂ϕ]w− τQv = r · ∇ × (u · ∇u− B · ∇B), (6a)

[(∇2 − ∂t)L2 + τ∂ϕ]∇2v + τQw−L2Θ = −r · ∇ × [∇× (u · ∇u− B · ∇B)], (6b)

where ∂ϕ denotes the partial derivative with respect to the angle ϕ of a spherical system of coordinates
(r, θ, ϕ) and where the operators L2 and Q are defined as

L2 ≡ −r2∇2 + ∂r(r2∂r),

Q ≡ r cos θ∇2 − (L2 + r∂r)(cos θ∂r − r−1 sin θ∂θ).

The heat equation for the dimensionless deviation Θ from the static temperature distribution can be
written in the form

∇2Θ + RL2v = P(∂t + u · ∇)Θ, (6c)

and the equations for h and g are obtained by taking r· and r · ∇× of the dynamo Equation (2e)

∇2L2h = Pm[∂tL2h− r · ∇ × (u× B)], (6d)

∇2L2g = Pm[∂tL2g− r · ∇ × (∇× (u× B))]. (6e)

For the flow we assume stress-free boundaries with fixed temperatures

v = ∂2
rrv = ∂r(w/r) = Θ = 0 at r = ri and r = ro. (7a)

For the magnetic field we assume electrically insulating boundaries such that the poloidal function h
must be matched to the function h(e), which describes the potential fields outside the fluid shell

g = h− h(e) = ∂r(h− h(e)) = 0 at r = ri and r = ro. (7b)

This is a standard formulation of the spherical convection-driven dynamo problem [13,36–38]
for which an extensive collection of results already exists [24,34,39,40]. The results reported below
are not strongly model dependent as confirmed by simulations of convection driven by differential
heating [41], for cases with no-slip conditions at the inner boundary and an electrical conductivity of
the exterior equal to that of the fluid [25,42], and for thermo-compositional driving [35]. Thus, aiming to
retain a general physical perspective, we intentionally use here a generic model formulation with a
minimal number of physical parameters including only those of first-order importance for stellar and
planetary applications.
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Table 1. Notation used in Section 2.1, where not defined in the main text.

Notation Quantity Notation Quantity

(r, θ, ϕ) Spherical polar coordinates TS Background temperature distribution

t Time T1, T2 Temperature inner, outer boundary

r Position vector wrt centre of sphere q Density of uniformly distributed heat
sources

d Thickness of the spherical shell κ Thermal diffusivity

ri, ro Inner and outer radii of the shell ν Kinematic viscosity

u Velocity field perturbation µ Magnetic permeability

B Magnetic flux density perturbation cp Specific heat at constant pressure

Θ Temperature perturbation from the
background state

γ Gravitational acceleration magnitude

π Effective pressure ∂ Partial derivative notation

Table 2. Units of non-dimensionalisation.

Quantity Unit

Length d
Time d2/ν

Temperature ν2/γαd4

Magnetic flux density ν(µ$)1/2/d

x

y

z

r

θ

ϕ

d

Ω

Figure 2. Schematic illustration of the three-dimensional region considered in this study, the associated
spherical coordinate system and the position of the axis of rotation. The region is assumed full of
electrically conducting fluid.

2.2. Numerical Methods

For the direct numerical integration of the convection-driven dynamo problem specified by the
scalar Equation (6) and the boundary conditions (7) we use a pseudo-spectral method described
by [43]. The code has been benchmarked for accuracy, most recently in [44,45], and has been made
open source [46]. All dependent variables in the code are spatially discretised by means of spherical
harmonics Ym

l and Chebychev polynomials Tn, for example,

v(r, θ, ϕ) =
Nl ,Nm ,Nn

∑
l,m,n

Vm
l,n(t)Tn

(
2(r− ri)− 1

)
Ym

l (θ, ϕ), (8)
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and similarly for the other unknown scalars, w, h, g and Θ. The nonlinear terms in the equations are
computed in physical space and then projected onto spectral space at every time step. Time integration
makes use of an IMEX combination of the Crank–Nicolson scheme for the diffusion terms and the
Adams–Bashforth scheme for the nonlinear terms with both schemes of second order accuracy.

When the spectral powers of the kinetic and magnetic energies drop by more than three orders
of magnitude from the spectral maximum to the cut-off wavelength, we consider the simulations to
be reasonably resolved [47]. In all the cases reported here, a minimum of 41 collocation points in the
radial direction has been considered, together with spherical harmonics up to order 96. These numbers
provide sufficient resolution, as demonstrated in Figure 7 for two typical dynamo solutions.

2.3. Diagnostics

It is convenient to characterise the non-magnetic convection and the convection-driven
dynamo solutions using their energy densities. To understand the interactions between various
components of the flow, we decompose the kinetic energy density into mean poloidal, mean toroidal,
fluctuating poloidal and fluctuating toroidal parts as follows

Ep =
1
2
〈| ∇ × (∇v× r) |2〉, Et =

1
2
〈| ∇w× r |2〉, (9a)

Ẽp =
1
2
〈| ∇ × (∇ṽ× r) |2〉, Ẽt =

1
2
〈| ∇w̃× r |2〉, (9b)

where 〈·〉 indicates the average over the fluid shell and time as described in Section 3.5 and v refers
to the axisymmetric component of the poloidal scalar field v, while ṽ is defined as ṽ = v − v.
The corresponding magnetic energy densities Mp, Mt, M̃p and M̃t are defined analogously with
the scalar fields h and g for the magnetic field replacing v and w.

To assess the predominant configuration of the magnetic field, we define the dipolarity ratio

D = Mp/M̃p. (10)

When Mp > M̃p then D > 1 and the corresponding solutions will be referred to as “Mean Dipolar”,
for reasons to be explained below, and denoted by MD following [29]. When Mp < M̃p then D < 1
and the corresponding solutions will be referred to as “Fluctuating Dipolar” and denoted by FD.

To quantify heat transport by convection the Nusselt numbers at the inner and outer spherical
boundaries Nui and Nuo are used. These are defined by

Nui = 1− P
riR

dΘ
dr

∣∣∣∣∣
r=ri

, Nuo = 1− P
roR

dΘ
dr

∣∣∣∣∣
r=ro

, (11)

where the double bar indicates the average over the spherical surface.
Other quantities are defined in the text as required.

3. Results

3.1. Parameter Values Used

In order to investigate the effects of the shell thickness on the properties of non-magnetic
convection and on dynamo solutions we perform a suite of numerical simulations varying the shell
aspect ratio between η = 0.1 and η = 0.7. To compare the simulations on an equal footing, as well as
to keep the number of runs required to a manageable level, all parameters except those depending on
the aspect ratio are kept at fixed values. The value of the Prandtl number is set to P = 0.75 allowing
us to use a relatively low value of the magnetic Prandtl number Pm = 1.5 as appropriate for natural
dynamos. The Coriolis number is fixed to τ = 2× 104 representing a compromise between the fast
rotation rate appropriate for the geodynamo and the relatively slow rotation rate appropriate for the
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solar dynamo. To ensure that dynamos are driven equally strongly, we fix the value of the Rayleigh
number at 3.8 times the critical value Rc for the onset of convection for each shell thickness aspect ratio
as shown in Figure 3 below. The required values of the critical Rayleigh number are determined as
explained in the next section where we also discuss general features of the onset of thermal convection.

0 0.2 0.4 0.6 0.8
10

3

10
4

10
5
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7

0 0.2 0.4 0.6 0.8

10
1

10
2

150

300

450
(a) (b)

R

ω
cm
c

ηη

Figure 3. Critical parameter values for the onset of convection and values of the Rayleigh number used
in this work as a function of the shell thickness aspect ratio η in the case P = 0.75, and τ = 2× 104.
(a) The critical Rayleigh number Rc for the linear onset of convection is plotted in solid blue curve
marked by full circles. The values used in the simulations are given by R = 3.8Rc; they are plotted in
solid black curve marked by empty circles. (b) The critical wave number mc (left y-axis) and the critical
frequency ωc (right y-axis) for the onset of convection are denoted by green squares and red triangles,
respectively. Local asymptotic approximations (12) are shown by correspondingly coloured dashed
curves in all panels. (Colour online).

3.2. Linear Onset of Thermal Convection

The onset of thermal convection in rapidly rotating spherical shells has been extensively studied,
for example, most recently as a special case of the onset of thermo-compositional convection [48].
In general, two major regimes are found at onset–columnar convection and equatorially-attached
convection. The equatorially-attached regime occurs at small values of the Prandtl number P and
consists of flows that take the form of non-spiralling rolls trapped near the equator with a relatively
large azimuthal length scale. This regime can be understood as a form of inertial oscillations, for
example, [49]. The columnar regime is realised at moderate and large values of P and features
elongated rolls parallel to axis of rotation that are spiralling strongly and have a relatively short
azimuthal length scale. At the selected values of the Prandtl and the Coriolis numbers, the simulations
reported in this study belong to the columnar regime of rapidly rotating convection.

To determine accurate values for the critical parameters at onset we use our open source numerical
code [50]. The code implements a Galerkin spectral projection method due to Zhang and Busse [51] to
solve the linearised versions of Equations (6a) and (6c). The method leads to a generalised eigenvalue
problem for the critical Rayleigh number Rc and frequency ωc of the most unstable mode of thermal
convection at specified other parameter values and at specified azimuthal wave number m of the
convective perturbation. Numerical extremisation and continuation problems then are tackled in order
to follow the marginal stability curve in the parameter space as detailed in [48]. The critical values
thus obtained are shown in Figure 3. The critical Rayleigh number Rc and drift frequency ωc decrease
with decreasing shell thickness while the critical azimuthal wave number mc increases.

It is interesting to compare and validate these results against theoretical results for the onset
convection in rapidly rotating systems. The asymptotic analysis of this problem has a long and
distinguished history of local and global linear stability analysis [52–56], see also [48] for a brief
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overview. Converting results of Yano [57] to our dimensionless parameters, length and time scales,
we obtain

Rc = 7.252
(

Pτ

1 + P

)4/3
(1− η)7/3, (12a)

mc = 0.328
(

Pτ

1 + P

)1/3
(1− η)−2/3, (12b)

ωc = 0.762
(

τ2

P(1 + P)2

)1/3

(1− η)2/3, (12c)

for the critical parameters of viscous columnar convection in an internally heated spherical shell.
While expressions (12) are not strictly valid asymptotic results for the spherical shell configuration
studied here, they provide a reasonable agreement with the numerical results plotted in Figure 3.

3.3. Finite-Amplitude Convection and Dynamo Features

As the value of the Rayleigh number is increased away from the onset, rotating columnar
convection undergoes a sequence of transitions from steady flow patterns drifting with constant
angular velocity to increasingly chaotic states as described in detail in [40]. When the amplitude of
convection becomes sufficiently large so that the magnetic Reynolds number defined as Rm = Pm

√
2E

reaches values of the order 102, onset of dynamo action is typically observed [34]. Three examples
of dynamo solutions are shown in Figure 4 to (i) illustrate typical spatial features of chaotic thermal
convection in rotating shells and the associated magnetic field morphology and (ii) to reveal how these
features vary with decreasing shell thickness. Outside of the tangent cylinder the flow consists of pairs
of adjacent spiralling convection columns as seen in the second row of Figure 4. Within the columns
the fluid particles travel in clockwise and anticlockwise directions parallel to the equatorial plane and
up towards the poles or down towards the equatorial plane as columns extend through the height
of the convective shell. In agreement with the linear analysis, as the shell thickness is decreased the
azimuthal wave number rapidly increases with the thin shell solution η = 0.7 showing a cartridge of
fine scale columns closely adjacent to each other and exhibiting much weaker spiralling and slower
drift than in the thick shell cases. These convective patterns strongly influence the structure and the
morphology of magnetic fields as illustrated by the first row of Figure 4 where magnetic fieldlines
of the three dynamo solutions are shown. The fieldlines are intricately knotted and exhibit a rather
complicated structure within the convective domain in all three cases. The imprint of the convective
columns is visible in the thick shell cases η = 0.2 and η = 0.4 where the magnetic fieldlines are coiled
around the convective columnar structures indicating the presence of toroidal field and poloidal field
feedback and amplification processes. Outside of the convective domain, the magnetic field of the
thickest shell case η = 0.2 is well organised and emerges from the polar regions of the domain in the
form of big bundles of opposite polarities with fieldlines proceeding to close and forming extensive
overarching loops that are characteristic of a strong dipolar field symmetry. A similar picture is seen
in the mid-thickness case η = 0.4 although in this case there appear to be several magnetic “poles”
where strong bundles of vertical fieldlines emerge at the surface of the spherical domain. In the thin
shell case η = 0.7 the magnetic field is much less organised with numerous fieldline coils inside the
convective domain and barely visible but still dominant dipolar structure outside.
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Figure 4. Snapshots of spatial structures of dynamo solutions with increasing shell thickness aspect
ratio η and with R = 3.8× Rc, τ = 2× 104, P = 0.75 and Pm = 1.5. Three cases are shown as follows:
η = 0.2, R =4,000,000 (left column); η = 0.4, R =1,500,000 (middle column); and η = 0.7, R =180,000
(right column). Magnetic poloidal fieldlines are plotted in the top row, contours of the radial velocity
ur in the equatorial plane are plotted in the middle row, and contours of the temperature perturbation
Θ in the equatorial plane are plotted in the bottom row. (Colour online).

While typical, the spatial structures described in relation to Figure 4 are only snapshots of
the three dynamo solutions at fixed moments in time. An illustration of the temporal behaviour
exhibited in our dynamo simulations is shown in Figure 5. The main magnetic and kinetic energy
density components of two distinct dynamo cases are plotted as functions of time, and the chaotic
nature of the solutions is clearly visible. The time dependence of the time series consists of continual
oscillations around the mean values of the respective densities with periods much shorter than the
viscous diffusion time. Kinetic energy densities are displayed in the second row of the figure and
show that the fluctuating components of motion dominate the flow with the fluctuating toroidal
velocity being the strongest. The mean poloidal component of motion is negligible in both cases in
agreement with the constraint of the Proudman–Taylor theorem on motions parallel to the axis of
rotation. The mean toroidal component, representing differential rotation, appears to be weak in both
cases plotted in Figure 5 more so in the case to the left marked MD for reasons we will discuss further
below. The differential rotation, however, is known to be the component most strongly impaired in the
presence of the magnetic field [34]. This leads us to a discussion of the features of the magnetic energy
densities plotted in the first row of Figure 5. Here, the differences between the two cases illustrated are
rather more pronounced. The total magnetic energy density of the case in Figure 5a is approximately
six times larger than that in Figure 5d. More significant is the essential qualitative difference in the
balance of magnetic energy components. The axisymmetric poloidal component Mp is dominant
in the case shown in Figure 5a while it has a relatively small contribution in the case of Figure 5d.
The axial dipole coefficient H0

1 and the axial quadrupole coefficient H0
2 in Figure 5c,f reveal that this
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difference is due to the fact that the case to the left is dominated by a strong dipole and the case to the
right is less strongly dipolar and the time series suggests the presence of magnetic field oscillations.
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Figure 5. Chaotic dynamo attractors at identical parameter values—a Mean Dipolar (MD) dynamo
(left column (a,b,c)) and a Fluctuating Dipolar (FD) dynamo (right column (d,e,f)) both at η = 0.5,
R = 8.2× 105, τ = 2× 104, P = 0.75 and Pm = 1.5. Panels (a,d) show time series of magnetic dipolar
energy densities and panels (b,e) show kinetic energy densities. The component Xp is shown by solid
black line, while Xt, X̃p, and X̃t are shown by red, green and blue lines, respectively. X stands for either
M or E. Panels (c,f) show the axial dipolar H0

1 and the axial quadrupolar H0
2 coefficients at midshell

r = (ri + ro)/2 by red and blue lines, respectively. Note the very different ordinate scales between
panels (a,d,c,f). The ordinate scales of panels (b,e) are identical. (Colour online)

The solutions plotted in Figure 5a–f are examples of two types of dipolar dynamos that have been
observed in numerical simulations [29,34,58,59], namely those with D > 1 to which we will refer to as
“Mean Dipolar” (MD) and those with D ≤ 1 that we will call “Fluctuating Dipolar” (FD). The typical
spatial structures of the MD and FD dynamos are illustrated in Figure 6. The radial magnetic field
plotted in the second column of Figure 6 shows the predominant dipolar symmetry of the dynamos,
particularly clearly in the MD case where the north and the south hemispheres have opposite polarities
entirely. The FD case displays a band of reversed polarity in a belt near the equator. In time this
band propagates towards the poles and replaces the initial polarity leading to periodically occurring
reversals. The stationary dipole of the MD case is stronger in intensity and inhibits differential rotation.
This is confirmed by the profiles of the differential rotation plotted in the left part of the third column of
Figure 6 that are markedly different. The FD case is characterised with a stronger geostrophic rotation
largely aligned with the tangent cylinder while the mean zonal flow of the MD is weaker and exhibits
a non-geostrophic rotation that is retrograde near the equator. The columnar convective structure of
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the solutions remains similar in the MD and the FD case. Time-averaged kinetic and magnetic energy
power spectra are shown in Figure 7.

M
D

FD

Figure 6. A MD (top row) and a FD (bottom row) dynamo solutions at η = 0.5, R = 8.2 × 105,
τ = 2× 104, P = 0.75 and Pm = 1.5 corresponding to the cases shown in Figure 5. The first column
shows meridional lines of constant Bϕ in the left half and of r sin θ∂θh = const. in the right half.
The second column shows lines of constant Br at r = 1.675ro. The third column shows meridional lines
of constant uϕ in the left half and of r sin θ∂θv in the right half. The fourth column shows contours of
the radial flow ur on the equatorial plane. Positive values are shown in red; negative values are shown
in blue, and the zeroth contour line is shown in green. (Colour online).
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Figure 7. Typical power spectra of velocity (blue) and magnetic field (red). The top row shows
an MD dynamo solution whereas the bottom row shows an FD dynamo solution both at η = 0.4,
R =1,500,000, τ = 2× 104, P = 0.75 and Pm = 1.5. From left to right, power spectra as a function of
the spherical harmonic degree l, order m, and Chebychev polynomial degree n are shown, respectively.
Lines represent the average spectra and shaded areas go from the minimum to the maximum values
for each mode in the averaging period. A period of one viscous-diffusion time unit is used for the
time-averaging period in both cases. (Colour online).
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3.4. Bistability and General Effects of Shell Thickness Variation

One of the most remarkable features of MD and FD dynamos introduced above is that these two
very distinct types can coexist at identical parameter values. Coexistence was first reported in [29].
Indeed, in each of the Figures 5–7, two different cases obtained at the same parameter values are shown.
Within the parameter range of coexistence it is the initial conditions that determine which of the two
chaotic attractors will be realised. Figure 8 shows the dipolarity ratio D as a function of the shell
thickness aspect ratio η. Several observations can be made immediately. First, bistability only seems to
occur for aspect ratios between η = 0.25 and η = 0.6 and both to the left and to the right of this interval
FD dynamos are found. In contrast, alternating regimes appeared on each side of the hysteresis loop
in previous studies [29,42] where continuation as a function of all remaining parameters R, P, Pm and
τ was performed. A further observation is that the FD dynamos have a decreasing dipolarity with
increasing aspect ratio, that is, dipolarity seems to decrease with shell thickness. The MD dynamos,
on the other hand, show little variation of dipolarity with aspect ratio but can still be separated into
two groups, one for thin shells and another for thick shells. In this respect, it is apparent that thinner
shells result in dynamos that are more dipole-dominated.

It is also interesting to note that there is a clear division between MD and FD dynamos also
in the energy density space. Figure 9 shows a compilation of plots of magnetic energy density as a
function of kinetic energy density. Dots represent instantaneous values; circles/triangles are mean
values over time. The aspect ratio, η, increases from darker to lighter colours. Blue dots and circles
represent simulations that started off as fluctuating dipolar dynamos whereas warm colours and
greens represent simulations starting off as mean dipolar dynamos. Green symbols and dots represent
simulations starting off as mean dipolar dynamos at η = 0.6 and η = 0.7 which were repeated starting
from a higher magnetic energy and lower kinetic energy (triangles) relative to the original simulations
(circles). Three regions can be clearly identified that correspond to simulations that finished as high
and low dipolarity MD dynamos (regions I and II in Figure 9), and to simulations that finished as FD
dynamos (region III in Figure 9). It is evident that dipolarity is preserved throughout the computations
(most warm coloured dots and circles end up in region I and II; all blue dots and symbols end up in
region III). The exception to this rule happens when the magnetic energy density of the initial MD
condition is not big enough or its ration to the kinetic energy density is small (green circles). In this
case the solutions drift to an FD state and remain there. If, on the other hand, the initial MD condition
sees its magnetic energy density scaled up sufficiently, the solution will remain an MD dynamo (green
dots and triangles).
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Figure 8. Bistability as a function of the shell thickness aspect ratio η. (a) The dipolarity ratio D =

Mp/M̃p and (b) the Nusselt number at r = ri in the cases R = 3.8× Rc, τ = 2× 104, P = 0.75 and
Pm = 1.5. Full red and empty blue circles indicate FD and MD dynamos, respectively. Red dotted
lines and blue dotted lines connect dynamos that were started from FD and MD initial conditions,
respectively. (Colour online).
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Figure 9. A “phase portrait” of magnetic vs. kinetic energy density values for dynamos with R =

3.8× Rc, τ = 2× 104, P = 0.75 and Pm = 1.5. Dots are instantaneous values; large markers are
time-averaged values. The aspect ratio η increases from darker to lighter colours (blue to orange).
Blue dots and points represent dynamos that were started from FD initial conditions. Warm colours
and greens represent simulations that were started from MD initial conditions. Green symbols and
dots represent simulations that were started as from MD initial conditions at η = 0.6 and η = 0.7 and
that were repeated starting from a higher magnetic energy and lower kinetic energy (triangles) relative
to the original simulations (circles). (Colour online).

3.5. The Cross-Helicity Effect

In order to model the effect of turbulence (or, at least, small-scale chaotic motion) on dynamo
action, we consider a separation of scales. This approach is justified as dynamos tend to exhibit
long-lasting large-scale structures (for example, the Earth’s dipolar field) together with complex
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turbulent motions at smaller scales. We perform an averaging approach where, for the velocity field u
and the magnetic field b, we write

u = U + u′, (13a)

b = B + b′. (13b)

Capital letters represent large-scale components of each field, and will be referred to as the “mean”
components within this and the following section. As described in the literature [15,16,20], there are
several ways to perform this scale separation. Here, we perform the scale separation by assuming that
the steady large-scale components of the flow and magnetic field can be identified with their respective
time-averaged zonal components. The mean flow is then described as

U = 〈u〉 = 1
2πτ

∫∫
u dϕ dt, (14)

for a suitable time scale τ, and a similar expression can be constructed for the mean magnetic field.
In principle, we can apply this separation of scales to all the main dynamical variables and all the
model equations. Here, however, we only focus on the induction equation in order to gauge the effect
of turbulent transport on the generation of the magnetic field through dynamo action.

Applying the above scale separation to the induction equation

∂tb = ∇× (u× b) + λ∇2b, (15)

where λ is the magnetic diffusivity (note that Equation (16) is an alternative formulation of Equation
(2e)), we find the induction equation for the mean magnetic field to be

∂tB = ∇× (U× B) +∇× EM + λ∇2B, (16)

where the turbulent electromotive force, EM, is defined as

EM = 〈u′ × b′〉. (17)

Through an application of the two-scale direct-interaction approximation (TSDIA) of inhomogeneous
MHD turbulence (see [60] and references therein), the turbulent electromotive force can be written, in
terms of mean variables, as

EM = αB− βJ + γΩ. (18)

Here, J = ∇×B and Ω = ∇×U. The coefficients α, β and γ can be expressed in terms of the turbulent
residual helicity, H = 〈b′ · j′−u′ ·ω′〉, the turbulent MHD energy, K = 〈u′2 +b′2〉/2, and the turbulent
cross-helicity W = 〈u′ · b′〉, respectively [15,61]. Following [20], they are modelled as

α = Cατ〈b′ · j′ − u′ ·ω′〉 = CατH, (19a)

β = Cβτ〈u′2 + b′2〉 = CβτK, (19b)

γ = Cγτ〈u′ · b′〉 = CγτW, (19c)

with Cα, Cβ and Cγ being model constants. Here, τ is the characteristic time of turbulence, which is
often expressed as

τ = K/ε, (20)

with the dissipation rate of the turbulent MHD energy, ε, defined by

ε = ν

〈
∂u′a
∂xb

∂u′a
∂xb

〉
+ λ

〈
∂b′a
∂xb

∂b′a
∂xb

〉
. (21)
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Substituting (18) into the mean induction equation (16), we have

∂tB = ∇× (U× B) +∇× (αB + γΩ)−∇× [(λ + β)∇× B] . (22)

Thus, in addition to the transport enhancement or structure destruction due to turbulence through the
enhanced diffusion λ + β, there is also transport suppression or structure formation due to turbulence
represented by the helicities α and γ [60].

In the classical mean field theory of dynamos [10,15], the turbulent electromotive force
is composed of the first two terms on the right-hand side of Equation (18), namely αB − βJ.
Dynamos resulting from this model are known as “α dynamos”, where the turbulent diffusion is
balanced by an α-effect. The properties of these terms have been discussed widely in the literature,
and so we do not repeat this discussion here. Instead, let us now consider the final term on the
right-hand side of Equation (18), γΩ. Unlike the other terms describing the electromotive force,
the mean variable in this term depends on the mean velocity and not the mean magnetic field.
Yokoi [20] describes how a fluid element subject to a Coriolis-like force (a mean vorticity field)
can contribute to the turbulent electromotive force through γ, a measure of the turbulent cross
helicity. Dynamos in which the main balance is between −βJ and γΩ are known as “cross-helicity
dynamos”, where the cross-helicity term replaces the α-effect term in balancing the turbulent diffusion.
Cross-helicity dynamos have been studied much less than α dynamos, and this study represents an
initial step in addressing this potentially important imbalance. In particular in Figure 10, we calculate
all three contributions to the turbulent electromotive force in our dynamo simulations in order to
determine their relative importance. These results are discussed below.
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Figure 10. Magnitude of α-, β-, and γ-effects with increasing shell thickness aspect ratio η for dynamo
solutions with R = 3.8× Rc, τ = 2× 104, P = 0.75 and Pm = 1.5. The upper panels show root-mean
squared time-averaged values of the α-effect (red circles), β-effect (green triangles up) and γ-effect
(blue squares). The lower panels show the ratio of γ-to α-effects. Column (a) contains MD dynamo
solutions (empty symbols) while column (b) contains FD dynamo solutions (full symbols) as shown in
Figure 8. (Colour online)

3.6. Properties and Relative Importance of Cross-Helicity

The variation of the turbulent transport coefficients α, β, and γ as a function of shell thickness is
displayed in Figure 10. For simplicity, in this initial investigation, we take CAτ = 1, where A = α, β,
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or γ. Thus, the three effects are represented by the turbulent residual helicity H, the turbulent MHD
energy K and the turbulent cross-helicity W, respectively. For MD dynamo solutions, there is a clear
disparity between the α- and β-effects, and the γ-effect. The γ-effect is, for the range of η considered,
about two orders of magnitude smaller than the other effects. Thus, across a wide range of shell
thickness aspect ratios, MD dynamos can be considered to be operating predominantly as α dynamos.
In contrast, for FD dynamo solutions, a different picture emerges. Across the range of η considered,
the α- and γ-effects are of a similar magnitude. Thus, both these effects are potentially important in
balancing the β-effect. Therefore, FD dynamo solutions represent a “mixture” of an α dynamo and a
cross-helicity dynamo.

Figure 11 displays z-projections of the azimuthally-averaged components of the electromotive
force. For the MD dynamo solutions, shown in (a), the γ-effect follows an antisymmetric pattern about
the equator, just like the other effects. This behaviour is expected from the pseudoscalar nature of γ

and the symmetry of magnetic fields in MD dynamos [20]. For FD dynamo solutions, such as those
displayed in (b), the components of the electromotive force no longer exhibit antisymmetry about the
equator. This behaviour is, in part, due to the more complex spatial structure of the magnetic fields
of FD dynamos compared to MD dynamos. This feature, combined with generally weaker magnetic
field strengths and different flow profiles (see Figures 5 and 6, for example), results in the α-effect
being weaker for FD dynamos. Thus, both the α- and γ-effects become of comparable importance in
sustaining dynamo action.

[EM]z = [αB]z −[βJ]z [γΩ]z

(a) MD
η = 0.6

η = 0.3

[EM]z = [αB]z −[βJ]z [γΩ]z

(b) FD
η = 0.65

η = 0.3

Figure 11. Spacial structures of the azimuthally-averaged z-component of the electromotive force EM

and its α-, β- and γ-effect constituents as given by Equation (18). Four dipolar dynamo solutions are
plotted as follows. (a) MD dynamo solutions with η = 0.3, P = 0.75, τ = 2× 104, R =2,500,000,
Pm = 1.5 (top row) and η = 0.6, P = 0.75, τ = 2× 104, R =410,000, Pm = 1.5 (bottom row). (b) FD
dynamo solutions with η = 0.3, P = 0.75, τ = 2 × 104, R =2,500,000, Pm = 1.5 (top row) and
η = 0.65, P = 0.75, τ = 2× 104, R =300,000, Pm = 1.5 (bottom row). In each column contour lines
of the quantities denoted at the column heading are plotted with positive contours shown in red,
negative contours shown in blue, and the zeroth contour shown in green. (Colour online).

4. Summary and Discussion

Rotating thermal convection is ubiquitous within the interiors and the atmospheres of celestial
bodies. These fluid regions usually contain plasmas or metallic components so vigorous convection
drives large-scale electric currents and generates the self-sustained magnetic fields characteristic of
these cosmic objects. In this article the relative importance of two main mechanisms for magnetic
field generation and amplification is assessed, namely the helicity- and the cross-helicity effects of
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mean-field dynamo theory. The motivation for this study was to test the hypothesis that the turbulent
helicity effect, also known as the α-effect, is more important in the case of the geodynamo, while the
cross-helicity effect, also known as the γ-effect, is more significant in the case of the solar global
dynamo, due to differences between the shell aspect ratio of the solar convection zone and that of
Earth’s inner core. The following novel results are reported in the article.

(a) Critical parameter values for onset of convection determined numerically as functions of the shell
radius ratio, η.

(b) Bistability and coexistence of two distinct dynamo attractors found as a function of the shell
radius ratio, η.

(c) Spatial distributions and time-averaged values of turbulent helicity and cross-helicity EMF effects
obtained (1) for both types of dynamo attractors, as well as (2) as functions of the shell radius
ratio, η.

Further details and a discussion of these results follows.
To assess α- and γ- electromotive effects, we performed, and report here, an extensive suite of

over 40 direct numerical simulations of self-sustained dynamo action driven by thermal convection
in rotating spherical fluid shells, where the shell thickness aspect ratio η is varied at fixed values of
the other parameters. The simulations are based on the Boussinesq approximation of the governing
nonlinear magnetohydrodynamic equations with stress-free velocity boundary conditions. While the
use of fully compressible equations is desirable, it is not feasible for global dynamo simulations.
Indeed, the fully compressible MHD equations allow sound wave solutions with periods many orders
of magnitude shorter than the convective turnover time and the magnetic diffusion timescales that
are of primary interest. The Boussinesq approximation is justified and generally used for modelling
convection in Earth’s inner core where density variation between the inner–outer core boundary
and the core mantle boundary is small [13,14,38,47]. The density contrast between the bottom (ρi)
and the top (ρo) of the Solar convection zone is five orders of magnitude giving a density scale
number of log(ρi/ρo) ≈ 12 [62], and the anelastic approximation is more appropriate and commonly
used in global solar convection models, for example, [11,33,63]. However, anelastic and Boussinesq
simulations show many similarities [63], with Boussinesq models able to mimic solar periodicity and
active longitude phenomena [25,42]. Thus, in this work the Boussinesq approximation is used for
uniformity across various shell radius ratios and to focus on the effects of shell thickness in isolation
from effects of density stratification.

Coexistence of distinct chaotic dynamo states has been reported to occur in this problem in
terms of certain governing parameters in [29,31]. In this study, we establish that two essentially
different nonlinear dynamo attractors coexist also for an extensive range of shell thickness aspect ratios
η ∈ [0.25, 0.6]. Since this is precisely the range of values where most celestial dynamos operate, this
result is significant as it demonstrates that field morphologies may be dependent on the initial state
of a dynamo. We proceed to discuss in detail the contrasting properties characterising the coexisting
dynamo regimes (mean-field dipolar (MD) dynamos and fluctuating dipolar (FD) dynamos) including
differences in temporal behaviour and spatial structures of both the magnetic field and rotating thermal
convection. We find that the relative importance of the electromotive dynamo effects is different in
the cases of mean-field dipolar dynamos and fluctuating dipolar dynamos. The helicity α-effect and
the cross-helicity γ-effect are comparable in intensity in the case of fluctuating dipolar dynamos and
their ratio does not vary significantly with shell thickness. In contrast, in the case of mean-field dipolar
dynamos the helicity α-effect dominates by approximately two orders of magnitude and becomes even
stronger with decreasing shell thickness. Our results, therefore, indicate that both dynamo mechanisms
are important for solar global magnetic field generation as the solar dynamo is of a fluctuating dipolar
type. Our results also indicate that the cross-helicity effect may be important in understanding dynamo
mechanisms in stellar dynamos. The latter may also be of fluctuating dipolar type and markedly
different from the solar dynamo, for example, having large-scale magnetic structures being dominant
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in only one hemisphere [64]. Since the geodynamo is of a mean-field dipolar type, the helicity effect
appears, indeed, to be more significant in this case and our results show this effect will become even
stronger as the inner solid core grows in size by iron freezing. Simulations of the geodynamo with
nucleation and growth of the inner core have been recently reported by Driscoll [65] and Landeau et
al. [66]. These authors find that pre-inner core nucleation dynamos exhibit weak thermal convection,
low magnetic intensity and non-dipolar field morphology, while post-inner core nucleation and with
increasing inner core size their solutions have stronger axial dipole morphology. Our results similarly
demonstrate that FD and multipolar dynamos occur when the value of the shell radius ratio η is
smaller than 0.25. However, our FD solutions exhibit vigorous convection and can be described as
strong-field dynamos even though they are of lower magnetic field intensity than corresponding MD
dynamos. A further discrepancy is that for η > 0.25 we find that MD and FD dynamos coexist. These
discrepancies can be attributed to significant differences in thermal and velocity boundary conditions
between our model and the models of [65,66]. Most importantly, the governing parameters values in
[65,66] are controlled by thermochemical evolution models and vary with inner core size (age), while
in our study all parameter values apart from η are kept fixed.

It will be of interest to revisit the analysis of helicity and cross-helicity effects using the more
general anelastic approximation of the governing equations. Further, there are many questions that
remain to be answered on how the dynamic balance between the components of the electromotive force
affects different aspects of dynamo action, including how to switch between MD and FD dynamos.
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