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a b s t r a c t

In this Letter we extend the proof, by Faraco and Lindberg (2020), of Taylor’s
conjecture in multiply connected domains to cover arbitrary vector potentials
and remove the need to impose restrictions on the magnetic field to ensure
gauge invariance of the helicity integral. This extension allows us to treat general
magnetic fields in closed domains that are important in laboratory plasmas and
brings closure to a conjecture whose resolution has been open for almost 50 years.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The Woltjer–Taylor theory of magnetic relaxation is remarkable in the sense that it is one of the few
examples of turbulence theory for which the end result can be written down explicitly. In short, the theory
predicts that for a magnetically-closed plasma, a magnetic field will evolve through turbulent relaxation to
the equilibrium of a linear force-free field. This relaxation is based on two key results: Woltjer’s theorem [1]
and Taylor’s conjecture [2,3]. Woltjer’s theorem states that in a fixed and magnetically-closed domain, the
magnetic field that minimizes the magnetic energy whilst keeping the global magnetic helicity fixed is a
linear force-free field. Taylor combined this theorem with the conjecture that in a non-ideal plasma (one with
small but non-zero resistivity) the global helicity of the entire domain is approximately conserved. Related
to this, Taylor also assumed that the magnetic helicities of subdomains (sub-helicities) are not important
in determining the final relaxed state since the magnetic field undergoes significant field line reconnection
during turbulent relaxation, thus destroying the sub-helicities.
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Despite some good experimental evidence for Woltjer–Taylor relaxation, see [3–5], there also exists
research which suggests that the assumption that only the global magnetic helicity is conserved is too
restrictive in general. Simulations, such as [6], show that magnetic fields do not always relax to linear force-
free fields. This deviation from the classic Woltjer–Taylor theory has been attributed to the influence of
other topological invariants besides the global magnetic helicity [7]. It has also been suggested that field line
helicities (sub-helicities of individual field lines) can play an important role in magnetic relaxation, and that
they are redistributed by reconnection rather than destroyed. See [8] for a summary of these issues.

Although modifications to the classic Woltjer–Taylor theory seem to be needed for a more comprehensive
heory of magnetic relaxation, one aspect of the theory that has proved to be robust is Taylor’s conjecture
tself. Berger [9] showed that strict limits on magnetic helicity dissipation can be found, which depend on the
lasma energy, the energy dissipation rate and the magnetic diffusion. In both astrophysical and laboratory
lasmas, the conditions are often such that magnetic helicity dissipation, following Berger’s bounds, is very
mall and so magnetic helicity can be treated as an invariant in non-ideal (resistive) plasmas as well as ideal
lasmas. For a list of other relevant theoretical works on helicity conservation, we direct the reader to [10,
ect. 1].

Recently, Faraco and Lindberg [10] provided a rigorous proof of Taylor’s conjecture in a magnetically-
losed turbulent plasma. They described the turbulent plasma using Onsager’s theory of turbulence [11,12]
nd proved the conjecture by considering limits of Leray–Hopf solutions of non-ideal magnetohydrodynamics
MHD). The proof considers both simply connected and multiply connected domains. In the former, the
hoice of vector potential in the magnetic helicity is arbitrary, but in the latter this is not the case. The fact
hat only certain vector potentials are suitable in multiply connected domains stems from [10] considering
he classical form of magnetic helicity,

H =
∫
Ω

A · B, (1)

here B is the magnetic field, A is the vector potential with curl A = B and Ω is the magnetically-closed
omain. Eq. (1) represents the gauge invariant form of helicity in simply connected domains. Thus, the
roblem of confirming Taylor’s conjecture fully without reference to specific vector potentials remains to be
esolved.

MacTaggart and Valli [13] showed that the definition of magnetic helicity H needs to be extended for
ultiply connected domains in order to accommodate arbitrary vector potentials that do not impose any

estrictions on the magnetic field. For example, it can be shown that a consequence of imposing gauge
nvariance with Eq. (1) in multiply connected domains is that the magnetic flux through internal cuts of
he domain must be zero, e.g., the toroidal magnetic flux in a tokamak would be zero.

In this Letter, we bring together the results of Faraco and Lindberg [10] and MacTaggart and Valli [13] to
rovide a complete proof of Taylor’s conjecture for arbitrary vector potentials of closed magnetic fields with
o restrictions on the magnetic field imposed by gauge invariance. We proceed by only describing extensions
nd modifications to specific parts of the proof in [10] that are relevant for expanding its scope in the manner
escribed above. For full details of the many technical results involved in the original proof, the reader is
irected to the work by Faraco and Lindberg [10]. Before presenting the main result, we now introduce some
reliminary material that will be key to understanding the extension to their proof.

. Preliminaries

.1. Geometric set-up

We consider a multiply connected domain Ω ⊂ R3 that is a bounded open connected set with Lipschitz

ontinuous boundary ∂Ω and unit outer normal n. Let g > 0 be the first Betti number, or genus, of Ω . Then

2
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Fig. 1. An illustration of cutting surfaces (shaded areas) and cycles (coloured paths) for a 2-fold torus. The notation is as described
in the main text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. An illustration of cutting surfaces (shaded areas) and cycles (coloured paths) for a toroidal shell (cut in half). (a) shows the
utting surfaces of Ω′ and their associated cycles. (b) shows the same but for Ω. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

he first Betti number of ∂Ω is 2g. We can consider 2g non-bounding cycles on ∂Ω , {γi}g
i=1 ∪ {γ′

i}
g
i=1, that

epresent the generators of the first homology group of ∂Ω . The {γi}g
i=1 represent the generators of the first

omology group of Ω . The tangent vector on γi is denoted ti. Similarly, the {γ′
i}

g
i=1 represent the generators

f the first homology group of Ω ′, where Ω ′ = B \Ω and B is an open ball containing Ω . The tangent vector
n γ′

i is denoted t′
i.

In Ω there exist g ‘cutting surfaces’ {Σi}g
i=1 that are connected orientable Lipschitz surfaces satisfying

i ⊂ Ω . Each cutting surface in Ω satisfies ∂Σi = γ′
i and Σ i ‘cuts’ the corresponding cycle γi in exactly one

oint. Each cutting surface Σi has a unit normal vector nΣi
oriented as γi. An equivalent definition applies

or the cutting surfaces {Σ ′
i}g

i=1 of Ω ′. In particular, ∂Σ ′
i = γi.

Two examples of the geometric set-up are displayed in Fig. 1 for a 2-fold torus and in Fig. 2 for a toroidal
hell.

.2. Required function spaces

Using the basic Hilbert spaces listed in Alonso Rodŕıguez et al. [14, Sect. 2], the space of harmonic
eumann fields is defined by

K := H(curl0;Ω) ∩ H (div0;Ω).
T 0

3
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Remember that if v ∈ H0(div0;Ω) satisfies v ⊥ KT (where orthogonality has to be intended in (L2(Ω))3)
hen it follows that

∫
Σi

v · nΣi
dS = 0 for i = 1, . . . , g, and viceversa. Thus, if we denote

Q := ∇H1(Ω)
⊥
⊕ KT ,

e have

Q = H(curl0;Ω),

Q⊥ =
{

v ∈ H0(div0;Ω) :
∫
Σi

v · nΣi
= 0 for i = 1, . . . , g

}
,

H0(div0;Ω) = Q⊥ ⊥
⊕ KT .

nalogous spaces can be defined for Ω ′, e.g., K′
T := H(curl0;Ω ′)∩H0(div0;Ω ′). For the ease of the reader, let

s also recall that the notation in Faraco and Lindberg [10] is different: precisely, L2
σ(Ω ;R3) = H0(div0;Ω),

2
H(Ω ;R3) = KT , L2

Σ (Ω ;R3) = Q⊥.

.3. Integral identities

Let the basis functions of KT and K′
T be denoted by ρi and ρ′

i, i = 1 . . . g, respectively. These functions
re defined by imposing that

∮
γk

ρi · tk = δki and
∮

γ′
k

ρ′
i · t′

k = δki.
Let us recall that, given v ∈ H0(div0;Ω), it holds that∫

Ω

v · ρi =
∫
Σi

v · nΣi
. (2)

Given w ∈ X := {w ∈ H(curl;Ω) : curl w · n = 0 on ∂Ω}, as in Alonso Rodŕıguez et al. [14] we define∮
γi

w · ti := −
∫

∂Ω

n × w · ρ′
i,

∮
γ′

i

w · t′
i :=

∫
∂Ω

n × w · ρi

(as in [14] the generators of the first homology group of Ω are denoted γ′
i and those of the first homology

group of Ω ′ are denoted γi). Note that, with these definitions and taking into account (2), Stokes’ theorem
holds on Σi, i.e.,

∮
γ′

i
w · t′

i =
∫
Σi

curl w · nΣi
.

As in Lemma 7 of [14], for w, v ∈ X we find

∫
∂Ω

(w × n) · v =
g∑

i=1

(∮
γi

w · ti

)(∮
γ′

i

v · t′
i

)

−
g∑

i=1

(∮
γ′

i

w · t′
i

)(∮
γi

v · ti

)
.

(3)

or more details on the derivation of this result, the reader is directed to [14].

.4. Leray–Hopf solutions of viscous, resistive MHD

In [10], the domains studied have a C1,1 regular boundary. This smoothness condition implies, in
particular, that XT (Ω) := H(curl;Ω) ∩ H0(div;Ω) ↪→ H1(Ω) ↪→ L6(Ω), and this chain of embeddings
llows one to prove the existence of Leray–Hopf solutions for the velocity u ∈ L∞(0, T ; H0(div0(Ω))) ∩
2(0, T ; H1

0 (Ω)) and magnetic field B ∈ L∞(0, T ; H0(div0(Ω))) ∩ L2(0, T ; H1(Ω)) by standard arguments
see [10, Appendix A]).
4
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In fact, Lipschitz regularity of ∂Ω is also a strong enough assumption for the existence of Leray–Hopf
olutions, as long as the definition of Leray–Hopf solutions is modified in the manner described below. First
ecall that in bounded Lipschitz domains, the weaker embedding result XT (Ω) ↪→ H1/2(Ω) ↪→ L3(Ω)
olds. We relax the smoothness requirements on the magnetic field to B ∈ L∞(0, T ; H0(div0(Ω))) ∩
2(0, T ; XT (Ω)). Whereas in C1,1 regular domains the weak formulation of the Cauchy momentum equation

ays that, for viscosity ν, ⟨∂tu, φ⟩+
∫
Ω

(u ·∇u−B ·∇B) ·φ+ν
∫
Ω

∇u : ∇φ = 0 holds for almost all t ∈ [0, T )
or every φ ∈ H(div0(Ω))∩H1

0 (Ω), in bounded Lipschitz domains the formula ⟨∂tu, φ⟩+
∫
Ω

(u ·∇u−curl B×
) · φ + ν

∫
Ω

∇u : ∇φ = 0 needs to be used instead; note that ∥curl B × B · φ∥L1 ≤ ∥curl B∥L2∥B∥L3∥φ∥L6

or almost all t ∈ [0, T ) by Hölder’s inequality. Under these modifications, the main result [10, Theorem 1.5]
olds and the proof only requires minor adjustments.

. Main result

Suppose that B, u ∈ L∞(0, T ; H0(div0;Ω)) (therefore, with B · n = u · n = 0 on ∂Ω and no other
oundary condition) form a weak solution of ideal MHD with initial data B0, u0 ∈ H0(div0;Ω), where u is
he velocity. Assume, furthermore, that (B, u) arises as an ideal (inviscid, non-resistive) limit of Leray–Hopf
olutions (Bk, uk) (in particular, satisfying the boundary conditions uk = 0, Bk ·n = 0 and curl Bk ×n = 0).
sing the notation from [10] we denote

B = BΣ + BH , BΣ ∈ Q⊥ and BH ∈ KT . (4)

et us recall that for almost all time, BH is the unique element of KT such that
∫
Σi

BH · nΣi
=
∫
Σi

B · nΣi

or each i = 1, . . . , g. Further, we decompose the vector potential as

A = AΣ + AH , (5)

here, for almost all time, AH is the unique element of Q⊥ such that curl AH = BH (for these existence
esults see, e.g., [15, Sect. 2.2, and in particular Remark 1]). Similar notation is used for B0 and A0.

The generalized expression for magnetic helicity in multiply connected domains is defined as

Υ(B) :=
∫
Ω

A · B −
g∑

i=1

∮
γi

A · ti

∫
Σi

B · nΣi
(6)

(see MacTaggart and Valli [13]). It is important to note that this definition is gauge invariant, i.e., it is
independent of the vector potential A ∈ X .

Using this gauge invariant expression for magnetic helicity we are now in a position to write an adapted
version of Theorem 1.5 of Faraco and Lindberg [10], which describes the convergence of magnetic helicity;
clearly, no dependence on the vector potential appears.

Theorem 1. In a domain Ω ⊂ R3 with the properties described previously, suppose that (u, B) is a weak
ideal limit of Leray–Hopf solutions (uk, Bk), k ∈ N. The initial data of B and Bk are denoted B0 and Bk,0,
respectively. Then it holds that

Υ(Bk, t) − Υ(Bk,0) = −2ηk

∫ t

0

∫
Ω

Bk · curl Bk, (7)

where ηk > 0 is the resistivity, for all k ∈ N and t ∈ [0, T ). Furthermore

Υ(B, t) − Υ(B0) = 0, (8)
for almost all t ∈ [0, T ). 36
5
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Proof. Let us define

Z(Bk, Ak; t) :=
∫
Ω

Ak(t) · Bk(t) −
∫

∂Ω

AΣ
k (t) × n · AH

k (t)

nd similarly for Bk,0 and Ak,0, B and A, B0 and A0. In [10, Lemma 4.3] it is shown that for Leray–Hopf
olutions (and their weak limits) the harmonic part of the magnetic field is stationary, i.e.,

BH
k (t) = BH

k,0, BH(t) = BH
0 ,

nd consequently AH
k (t) = AH

k,0, AH(t) = AH
0 . Therefore, Theorem 1.5 in [10] (having corrected for a minus

ign that is a misprint) says that

Z(Bk, Ak; t) − Z(Bk,0, Ak,0) = −2ηk

∫ t

0

∫
Ω

Bk · curl Bk, (9a)

Z(B, A; t) − Z(B0, A0) = 0. (9b)

et us compute
∫

∂Ω
AΣ

k (t) × n · AH
k (t). By (3) we have∫

∂Ω

AΣ
k (t) × n · AH

k (t) =
g∑

i=1

(∮
γi

AΣ
k (t) · ti

)(∮
γ′

i

AH
k,0 · t′

i

)

−
g∑

i=1

(∮
γ′

i

AΣ
k (t) · t′

i

)(∮
γi

AH
k,0 · ti

)
.

sing the decomposition in (4), we know that∫
Σi

BΣ
k (t) · nΣi

=
∫
Σi

BΣ
k,0 · nΣi

= 0. (10)

ince curl AΣ
k (t) = BΣ

k (t), curl AH
k,0 = BH

k,0 and γ′
i = ∂Σi, applying Stokes’ theorem gives∮

γ′
i
AΣ

k (t) · t′
i =

∫
Σi

BΣ
k (t) · nΣi

= 0,∮
γ′

i
AH

k,0 · t′
i =

∫
Σi

BH
k,0 · nΣi

=
∫
Σi

Bk,0 · nΣi
,

nd also ∫
Σi

Bk(t) · nΣi
=
∫
Σi

BH
k (t) · nΣi

=
∮

γ′
i
AH

k (t) · t′
i =

∮
γ′

i
AH

k,0 · t′
i =

∫
Σi

Bk,0 · nΣi
,

(11)

or t ∈ [0, T ), i = 1, . . . , g, k ∈ N. In conclusion, repeating the same computation for
∫

∂Ω
AΣ

k,0 × n · AH
k,0, we

nd
Z(Bk, Ak; t) − Z(Bk,0, Ak,0)

=
∫
Ω

Ak(t) · Bk(t) −
∫
Ω

Ak,0 · Bk,0

−
∑g

i=1

(∮
γi

[AΣ
k (t) − AΣ

k,0] · ti

)(∫
Σi

Bk,0 · nΣi

)
=
∫
Ω

Ak(t) · Bk(t) −
∫
Ω

Ak,0 · Bk,0

−
∑g

i=1

(∮
γi

[Ak(t) − Ak,0] · ti

)(∫
Σi

Bk,0 · nΣi

)
= Υ(Bk, t) − Υ(Bk,0),

aving used again that AH
k (t) = AH

k,0 and moreover (11). By combining the computation above with (9a)
e get (7).
By analogous reasoning, Z(B, A; t)−Z(B0, A0) = Υ(B, t)−Υ(B0). Now (9b) leads to (8), and Theorem 1

s proved. □

emark 1. The right-hand side of (7) is bounded by 3
2
√

tηk(∥uk,0∥2
L2 + ∥Bk,0∥2

L2) for all k ∈ N and
∈ [0, T ). This is seen exactly as in [10, Lemma 4.6] by using Young’s inequality and then appealing to the
nergy inequality.
6
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4. Conclusion

This extension to the proof in Faraco and Lindberg [10] of Taylor’s conjecture allows for the extra
consideration of defining magnetic helicity in multiply connected domains with arbitrary vector potentials,
rather than a specific subset which may impose unwanted conditions on the magnetic field, e.g., forcing zero
flux through cutting surfaces. This closes a long-standing conjecture that was posed by Taylor in [2] (see
also [3, p. 744] where the multiply connected case is discussed explicitly).
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