Exercise 1. Let \(j : \mathbb{C}^\times \longrightarrow \mathbb{C} \) be the open immersion and \(j_! \mathbb{C}^\times \) be the constant sheaf on \(\mathbb{C}^\times \). Compute the stalks of \(j_! \mathbb{C}^\times \) and \(j_\ast \mathbb{C}^\times \) at 0. Deduce that the direct image of a local system is not always a local system.

Exercise 2. Using the proper base change theorem, show that \(R\pi_!(k_X)_x \cong R\Gamma_c(\pi^{-1}(x), k) \). From the previous exercise, show that \(R\pi_*(k_X)_x \) is not isomorphic to \(R\Gamma(\pi^{-1}(x), k) \) in general.

Exercise 3. Consider the following cartesian square, with \(f \) proper:

\[
\begin{array}{ccc}
Z \times_Y X & \overset{g'}{\longrightarrow} & X \\
\downarrow f' & & \downarrow f \\
Z & \underset{g}{\longrightarrow} & Y
\end{array}
\]

Use the proper base change theorem to show that \(g_! \circ Rf_* \cong Rf'_* \circ (g')^! \).

Exercise 4. Let \(X = U \sqcup F \) be a decomposition with \(U \) open and \(F \) closed. Let \(j : U \longrightarrow X \) and \(i : Z \longrightarrow X \) be the open and closed embeddings. Given a sheaf \(F \), show that there is an exact sequence

\[
0 \longrightarrow j_! j^* F \longrightarrow F \longrightarrow i_! i^* F \longrightarrow 0.
\]

Show that there is a distinguished triangle in \(D^b_c(X) \)

\[
(*) \quad Rj_! j^* F \longrightarrow F \longrightarrow Ri_! i^* F \stackrel{\sim}{\longrightarrow}.
\]

Deduce that there is a long exact sequence

\[
\cdots \longrightarrow H^i_c(F, k) \longrightarrow H^i_c(U, k) \longrightarrow H^i_c(X, k) \longrightarrow H^{i+1}_c(F, k) \longrightarrow \cdots
\]

What triangle does one obtain by dualizing \((*)\)?

Exercise 5. Let \(X = \bigsqcup_{i=0}^n X_i \) be a decomposition into locally closed subvarieties such that:

- each \(X_i \) is isomorphic to an affine space
- the closure of \(X_i \) is a union of some \(X_j \)'s for \(j \geq i \).

Using the previous exercise, compute the cohomology of \(X \). As an example, compute the cohomology of \(\mathbb{P}_1, \mathbb{P}_n \) and \(G/B \).

Exercise 6. Let \(\mathcal{L} \) be a local system on \(\mathbb{C}^\times \). Compute the stalks of \(Rj_! \mathcal{L} \) and \(Rj_* \mathcal{L} \) in terms of the monodromy of \(\mathcal{L} \).

Exercise 7. Let \(G \) be a finite group acting freely on \(X \) and \(\pi : X \longrightarrow X/G \) be the canonical projection. Compute \(\pi_! \mathbb{C}_X \) (as an example, one can start with \(z \mapsto z^2 \) in \(\mathbb{C}^\times \)). What is the relation between \(R\Gamma(X/G, k) \) and \(R\Gamma(X, k)^G \) (one should work with \(k = \mathbb{C} \) here!).
Exercise 8. Let \(\pi : \overline{X} \to X \) be a surjective proper map. We say that \(\pi \) is \textit{semi-small} if \(\overline{X} \times_X \overline{X} \subset \overline{X} \times \overline{X} \) has dimension \(d_X = \dim_{\mathbb{C}} X \).

(i) If \(\pi \) is semi-small, prove the following inequality for all \(i \geq 0 \):
\[
\dim_{\mathbb{C}} \{ x \in X \mid \dim_{\mathbb{C}} \pi^{-1}(x) \geq i \} \leq d_X - 2i
\]

(ii) Assuming that \(X \) is smooth, show that \(R\pi_* \underline{C}_X[d_X] \) is perverse.

(iii) Can one give a condition to guarantee that \(R\pi_* \underline{C}_X[d_X] \) is an intersection cohomology complex?

Exercise 9. Ask Daniel Juteau for fun (yes!) exercises on

- \(t \)-structures:
- the Springer correspondence;
- computations with constructible complexes and the 6 operations.