ON SINGULAR CALOGERO-MOSER SPACES

GWYN BELLAMY

Abstract. Using combinatorial properties of complex reflection groups we show that if the group W is different from the wreath product $S_n \wr \mathbb{Z}/m\mathbb{Z}$ and the binary tetrahedral group (labelled $G(m,1,n)$ and G_4 respectively in the Shephard-Todd classification), then the generalised Calogero-Moser space X_c associated to the centre of the rational Cherednik algebra $H_{t,c}(W)$ is singular for all values of the parameter c. This result and a theorem of Ginzburg and Kaledin imply that there does not exist a symplectic resolution of the singular symplectic variety $h \times h^*/W$ when W is a complex reflection group different from $S_n \wr \mathbb{Z}/m\mathbb{Z}$ and the binary tetrahedral group. Conversely it has been shown by Etingof and Ginzburg that X_c is smooth for generic values of c when $W \cong S_n \wr \mathbb{Z}/m\mathbb{Z}$. We show that this is also the case when W is the binary tetrahedral group. A conjecture by Namikawa, if true, would imply the existence of a symplectic resolution in this case. Finally, we note that the above results together with work of Chlouveraki are consistent with a conjecture of Gordon and Martino on block partitions in the restricted rational Cherednik algebra.

1. Introduction

Let W be an irreducible complex reflection group and \mathfrak{h} its reflection representation. Etingof and Ginzburg [EG] associated to W a family of algebras, the rational Cherednik algebras $H_{t,c}(W)$, depending on parameters t and c. The definition is given in Section 2. When $t = 0$, these algebras have large centres and the geometry of the centre strongly influences the representation theory of the algebra. The affine variety X_c corresponding to the centre of the rational Cherednik algebra was called the generalised Calogero-Moser space at c by Etingof and Ginzburg. They showed [EG, Corollary 1.14], that for generic values of the parameter c, X_c is smooth when $W \cong G(m,1,n)$. However, Gordon [Go, Proposition 7.3] showed that, for many Weyl groups W not of type A or $B(= C)$, X_c is a singular variety for all choices of the parameter c. Using similar methods we extend this result to all irreducible complex reflection groups.

Theorem 1.1. Let W be an irreducible complex reflection group, not isomorphic to $G(m,1,n)$ or G_4, and X_c the generalised Calogero-Moser space associated to W. Then X_c is a singular variety for all choices of the parameter c. Conversely for $W \cong G_4$, X_c is a smooth variety for generic values of c.

This completes the classification of rational Cherednik algebras for which X_c is smooth for generic c.

In [GK, Corollary 1.21], Ginzburg and Kaledin show that the existence of a symplectic resolution of the symplectic singularity $\mathfrak{h} \times \mathfrak{h}^*/W$ implies that X_c is smooth for generic c. This result, together with Theorem 1.1 above implies the following corollary.
Corollary 1.2. Let W be an irreducible complex reflection group with reflection representation \mathfrak{h}. Then there does not exist a symplectic resolution of $\mathfrak{h} \times \mathfrak{h}^*/W$ when $W \not\cong G(m,1,n)$ or G_4.

A related conjecture by Namikawa [Na, page 2] states that a symplectic resolution of $\mathfrak{h} \times \mathfrak{h}^*/W$ exists if and only if it has a smoothing by a Poisson deformation. If true, this conjecture and [GK, Theorem 1.18] imply that $\mathfrak{h} \times \mathfrak{h}^*/W$ has a symplectic resolution if and only if X_c is smooth for generic values of c. Thus we conjecture

Conjecture 1.3. There exists a symplectic resolution of the singular symplectic variety $\mathfrak{h} \times \mathfrak{h}^*/G_4$.

In order to prove Theorem 1.1 we show that the restricted rational Cherednik algebra $\overline{H}_{0,e}(W)$ has irreducible representations of dimension $< |W|$ for all values of c when W is different from $G(m,1,n)$ and G_4. This implies that there exist blocks in $\overline{H}_{0,e}(W)$ with nonisomorphic irreducible modules. Therefore the corresponding block partition of $\text{Irr}(W)$, as described in [GM], is trivial for generic values of c if and only if W is $G(m,1,n)$ or G_4. A conjecture of Gordon and Martino [GM] then implies that the partitioning of $\text{Irr}(W)$ induced by the Rouquier families of the Hecke algebra $\mathcal{H}_q(W)$ should also be trivial for generic choices of c if and only if W is $G(m,1,n)$ or G_4. Work of Chlouveraki [Ch] on the cyclotomic Hecke algebras of exceptional complex reflection groups shows that this is indeed the case.

2. The rational Cherednik algebra at $t = 0$

2.1. Definitions and notation. Let W be a complex reflection group, \mathfrak{h} its reflection representation over \mathbb{C} with $\dim(\mathfrak{h}) = n$, and S the set of all complex reflections in W. Let $\omega : \mathfrak{h} \oplus \mathfrak{h}^* \to \mathbb{C}$ be the symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^*$ given by $\omega((f_1,f_2),(g_1,g_2)) = f_2(g_1) - g_2(f_1)$ and $c : S \to \mathbb{C}$ a W-invariant function. For $s \in S$, define $\omega_s : \mathfrak{h} \oplus \mathfrak{h}^* \to \mathbb{C}$ to be the restriction of ω on $\text{Im}(1-s)$ and the zero form on $\text{Ker}(1-s)$. The rational Cherednik algebra at parameter $t = 0$, as introduced by Etingof and Ginzburg [EG, page 250], is the quotient of the skew group algebra of the tensor algebra $T(\mathfrak{h} \oplus \mathfrak{h}^*)$ with W, $T(\mathfrak{h} \oplus \mathfrak{h}^*) \rtimes W$, by the ideal generated by the relations

$$[x, y] = \sum_{s \in S} c(s)\omega_s(x, y)s$$

$\forall x, y \in \mathfrak{h} \oplus \mathfrak{h}^*$

Let Z_c denote the centre of $H_{0,e}$ and $X_c = \text{maxspec}(Z_c)$ the affine variety corresponding to Z_c. The space X_c is called the generalised Calogero-Moser space associated to the complex reflection group W at parameter c. By [EG, Proposition 4.5], we have an inclusion $A = \mathbb{C}[\mathfrak{h}]^W \otimes \mathbb{C}[\mathfrak{h}^*]^W \subset Z_c$ and correspondingly a surjective morphism $\Upsilon_c : Z_c \to \mathfrak{h}/W \times \mathfrak{h}^*/W$. This allows us to define the restricted rational Cherednik algebra $\overline{H}_{0,e}(W)$ as

$$\overline{H}_{0,e}(W) = \frac{H_{0,e}(W)}{\langle A_+ \rangle}$$

where A_+ denotes the ideal in A of elements with zero constant term. From the defining relations (1) we see that putting \mathfrak{h}^* in degree 1, \mathfrak{h} in degree -1 and $\mathbb{C}W$ in degree 0 defines a \mathbb{Z}-grading on the rational Cherednik algebra $H_{t,e}(W)$. The ideal $\langle A_+ \rangle$ is generated by elements that are homogeneous with respect
to this grading, therefore $H_{0,e}$ is also a \mathbb{Z}-graded algebra.

We denote by $\mathbb{C}[h]^{\omega W}$ the coinvariant ring $\mathbb{C}[h]/\mathbb{C}[h]_+^W$, where $\mathbb{C}[h]_+^W$ is the ideal in $\mathbb{C}[h]$ generated by the elements in $\mathbb{C}[h]^W$ with zero constant term. We follow the notation introduced in [Ste] with regards to complex reflection groups, and set $M := H_{0,e}$-module associated to the irreducible W-module λ. This module is a graded $H_{0,e}$-module with $M(\lambda)_i = 0$ for $i < 0$. By [Go, Proposition 4.3], $M(\lambda)$ has a simple head which we denote $L(\lambda)$.

We follow the notation of [Ste] with regards to complex reflection groups, and set $d = m/p$ when considering the group $G(m, p, n)$. For an arbitrary \mathbb{Z}-graded vector space $M = \bigoplus_{i \in \mathbb{Z}} M_i$, the Poincaré polynomial of M will be denoted $P(M, t)$. We denote by $f_\lambda(t)$ the fake polynomial of the irreducible representation λ of W. This is defined as

$$f_\lambda(t) := \sum_{i \in \mathbb{Z}_{\geq 0}} (\mathbb{C}[h]^{\omega W}_i : \lambda)t^i$$

where $(\mathbb{C}[h]^{\omega W}_i : \lambda)$ is the multiplicity of λ in i^{th} degree of the coinvariant ring $\mathbb{C}[h]^\omega W$ (thought of here as a graded W-module).

Let $\text{Irr}(W)$ be a complete set of non-isomorphic irreducible representation of W. We will also require the surjective map $\Theta : \text{Irr}(W) \to \mathcal{Y}^{-1}(0)$, taking λ to the annihilator of $L(\lambda)$ in \mathbb{Z}_e, as defined in [Go, paragraph 5.4]. This map has the property that a fiber $\Theta^{-1}(m)$ is a singleton set if and only if m is a smooth closed point in X_e ([Go, Theorem 5.6]).

2.2. General results. Let $\{s_1, \ldots, s_k\}$ be a conjugacy class consisting of complex reflections in W and ζ the eigenvalue of s_1 (and hence all s_i) not equal to 1 when thinking of W as a subgroup of $GL(\mathfrak{h})$. For $1 \leq i \leq k$, let ω_{s_i} be the restricted symplectic form on $\mathfrak{h} \oplus \mathfrak{h}^*$ as defined above. Let $\pi_{s_i} : \mathfrak{h} \oplus \mathfrak{h}^* \to \text{Im}(1-s_i)$ be the projection map along $\text{Ker}(1-s_i)$, so that $\omega_{s_i} = \omega \circ \pi_{s_i}$, and define $\Omega = \sum_{i=1}^k \omega_{s_i}$.

Lemma 2.1. Let W, ω and Ω be as above. Then $\Omega = \frac{b}{n}(1-\zeta)^{-1}(1-\zeta^{-1})^{-1}(2-\zeta-\zeta^{-1})\omega$.

Proof. Since each ω_{s_i} is alternating and \mathbb{C}-linear, $\Omega \in \Lambda^2(\mathfrak{h} \oplus \mathfrak{h}^*)$. Let $x \in \mathfrak{h} \oplus \mathfrak{h}^*$. Then x decomposes uniquely as $x_1 + x_2$, with $x_1 \in \text{Im}(1-s_i)$ and $x_2 \in \text{Ker}(1-s_i)$. By definition, there exists $y \in \mathfrak{h} \oplus \mathfrak{h}^*$ such that $(1-s_i)y = x_1$. Then $(1-gs_1g^{-1})(gy) = g(1-s_i)g^{-1}gy = g(1-s_i)y = gx_1$ implying that $gx_1 \in \text{Im}(1-gs_1g^{-1})$. Also $(1-s_i)x_2 = 0$ implies that $(1-gs_1g^{-1})gx_2 = 0$ hence gx decomposes as $gx_1 + gx_2$ with $gx_1 \in \text{Im}(1-gs_1g^{-1})$ and $gx_2 \in \text{Ker}(1-gs_1g^{-1})$. Therefore $\pi_{gs_1g^{-1}} = g\pi_{s_i}g^{-1}$ and $\omega_{s_i}(g^{-1}x, g^{-1}y) = \omega_{gs_1g^{-1}}(x, y)$. Hence $\Omega \in (\Lambda^2(\mathfrak{h}^* \oplus \mathfrak{h}))^W$. By [EG, Lemma 2.23] $\dim(\Lambda^2(\mathfrak{h}^* \oplus \mathfrak{h}))^W = 1$, therefore there exists $\lambda \in \mathbb{C}$ such that $\Omega = \lambda \omega$. Consider $\Omega'(x, y) = \Omega((x, 0), (0, y))$, where $x \in \mathfrak{h}$ and $y \in \mathfrak{h}^*$. Recall that ζ is the eigenvalue of s_1 not equal to 1, then $\pi_{s_i}(x) = (1-\zeta)^{-1}(1-s_i)x$ and
\[\pi_{s_i}(y) = (1 - \zeta^{-1})^{-1}(1 - s_i)y. \] Expanding \(\Omega'(x, y) \)

\[
\Omega'(x, y) = \sum_{i=1}^{k} \omega((1 - \zeta)^{-1}(1 - s_i)x, (1 - \zeta^{-1})^{-1}(1 - s_i)y)
\]

\[
= (1 - \zeta)^{-1}(1 - \zeta^{-1})^{-1}\sum_{i=1}^{k} [\omega(x, y) - \omega(s_i x, y) - \omega(x, s_i y) + \omega(s_i x, s_i y)]
\]

\[
= (1 - \zeta)^{-1}(1 - \zeta^{-1})^{-1}\omega(x, (\sum_{i=1}^{k} 2 - s_i - s_i^{-1})y)
\]

Define \(\phi = (\sum_{i=1}^{k} 2 - s_i - s_i^{-1}) : \mathfrak{h}^* \to \mathfrak{h}^* \), a \(W \)-homomorphism. The trace of \(\phi \) is \(2nk - (n - 1)k - k\zeta - (n - 1)k - k\zeta^{-1} = k(2 - \zeta - \zeta^{-1}) \). Since \(\mathfrak{h}^* \) is irreducible, Schur’s lemma says that \(\phi(y) = \frac{k}{n} (2 - \zeta - \zeta^{-1})y \) and therefore \(\lambda = \frac{k}{n} (1 - \zeta^{-1})^{-1}(2 - \zeta - \zeta^{-1}) \).

We also require the notion of a generalised baby Verma module, which are baby Verma modules above points other than the origin in \(\mathfrak{h}/W \times \mathfrak{h}^*/W \).

Definition 2.2. Let \((p, q) \in \mathfrak{h}/W \times \mathfrak{h}^* \), \(W_q \) the stabiliser subgroup of \(q \in W \) and \(E \) an irreducible \(W_q \)-module. Then we define the **generalised baby Verma module**

\[
\Delta_c(E; p, q) := H_{0,c}(W) \otimes_{C[\mathfrak{h}]^W \otimes C[\mathfrak{h}^*]^W} W_q E
\]

where the action of \(C[\mathfrak{h}]^W \otimes C[\mathfrak{h}^*]^W \) on \(E \) is given by \((f \otimes g \otimes w) \cdot e = f(p)g(q)w \cdot e \) for all \(f \in C[\mathfrak{h}]^W \), \(g \in C[\mathfrak{h}^*] \), \(w \in W_q \).

Since \(C[\mathfrak{h}]^W \otimes C[\mathfrak{h}^*]^W \subseteq Z_c \), Schur’s lemma implies that, for every irreducible \(H_{0,c} \)-module \(L \), there exists \((p, r) \in \mathfrak{h}/W \times \mathfrak{h}^*/W \) such that \((f \otimes g) \cdot l = f(p)g(r)l \) for all \(l \in L \), \(f, g \in C[\mathfrak{h}]^W \otimes C[\mathfrak{h}^*]^W \). Choosing a point \(q \) in the orbit represented by \(r \) we write \((p, r) = (p, W_q) \) and say that the irreducible \(H_{0,c} \)-module \(L \) lies above \((p, W_q) \).

Lemma 2.3. Let \(L \) be an irreducible \(H_{0,c} \)-module lying above \((p, W_q) \). Then there exist \(E \in \text{Irr}(W_q) \) and a surjective \(H_{0,c} \)-homomorphism \(\phi : \Delta_c(E; p, q) \to L \).

Proof. The action on \(L \) of the commutative ring \(C[\mathfrak{h}]^* \) gives a decomposition \(L = \bigoplus_{q' \in \mathfrak{h}^*} L_{q'}^{gen} \) of \(L \) into generalised eigenspaces. That is, for each \(l \in L_{q'}^{gen} \) and \(f \in C[\mathfrak{h}]^* \), there exists an \(N \in \mathbb{N} \) such that \((f - f(q'))^N \cdot l = 0 \) (since \(L \) is finite dimensional, we can choose \(N \) to be independent of \(f \) and \(l \)).

Choose \(q' \) such that \(L_{q'}^{gen} \neq 0 \), so that \((f - f(q'))^N \) acts as zero on \(L_{q'}^{gen} \) for all \(f \in C[\mathfrak{h}]^* \). As \(L \) lies over \((p, W_q) \) we see that \((f - f(q')) \) also acts nilpotently on \(L_{q'}^{gen} \) and \(f(q) = f(q') \). Since \(W \) is a finite group, each orbit in \(\mathfrak{h}^* \) is closed, therefore \(q' \in W_q \) and we can find \(w \in W \) such that \(w \cdot q = q' \). Now let \(0 \neq L_q \subseteq L_{q'}^{gen} \) be the space of elements \(l \) in \(L_{q'}^{gen} \) such that \((f - f(q')) \cdot l = 0 \), for all \(f \in C[\mathfrak{h}]^* \). Then \(w^{-1}(L_q) \neq 0 \) and \(f \cdot (w^{-1}l) = (fw^{-1}) \cdot l = w^{-1} \cdot (w'f)(q')l = w^{-1} \cdot (fw^{-1}q')l = f(q)w^{-1}l \) implies that \(w^{-1}(L_q) \subseteq L_q \). Thus \(L_q \) is a nonzero \(W_q \)-submodule of \(L \) because \(f \cdot (v \cdot l) = (fv) \cdot l = v \cdot (v^{-1}f) \cdot l = v \cdot f(q)l = v \cdot f(q)l = f(q)l = f(q)(v \cdot l) \) for all \(f \in C[\mathfrak{h}]^* \), \(v \in W_q \) and \(l \in L_q \). Choose an irreducible \(W_q \)-submodule \(E \) of \(L_q \). The inclusion \(E \hookrightarrow L \) induces a \(H_{0,c} \)-homomorphism \(\phi : \Delta_c(E; p, q) \to L \). The fact that \(L \) is irreducible implies that this is a surjection. \(\square \)
3. Singular generalised Calogero-Moser Spaces

3.1. The main result.

Theorem 3.1. For all W not isomorphic to $G(m, 1, n)$ or G_4 and for all parameters c, the variety X_c is singular.

By [EG, Proposition 3.8] the statement of Theorem 3.1 is equivalent to the statement: for W not isomorphic to $G(m, 1, n)$ or G_4 and for all parameters c there exists an irreducible $H_{0,c}(W)$-module L with $\dim L < |W|$. Therefore Theorem 3.1 follows from

Proposition 3.2. For each W not isomorphic to $G(m, 1, n)$ or G_4, there exists an irreducible W-module λ such that for all parameters c, the irreducible $H_{0,c}(W)$-module $L(\lambda)$ has dimension $< |W|$.

The proof of Proposition 3.2 will occupy the remainder of Section 3. The irreducible complex reflection groups were classified by Shephard and Todd [ST] and either belong to an infinite family labelled $G(m, p, n)$, where $m, p, n \in \mathbb{N}$ and $p|m$, or to one of 34 exceptional groups $G_4, \ldots G_{37}$.

Lemma 3.3. Let W be a complex reflection group. Let $\lambda \in \text{Irr}(W)$ be the unique representation corresponding to a smooth point of $T^{-1}(0)$ in X_c i.e. $\Theta(\lambda)$ is smooth in X_c. Then the Poincaré polynomial of $L(\lambda)$ as a graded vector space is given by

\[
(2) \quad P(L(\lambda), t) = \frac{\dim(\lambda) t^{b_{\lambda^*}} P(\mathbb{C}[h]^\text{colW}; t)}{f_{\lambda^*}(t)}
\]

where λ^* is the irreducible W-module dual to λ, and b_{λ} the trailing degree of the fake polynomial $f_{\lambda}(t)$.

Proof. By [Go, Lemma 4.4, paragraphs (5.2) and (5.4)], the graded composition factors of $M(\lambda)$ are all of the form $L(\lambda)[i]$, for some $i \geq 0$. Therefore we can find a multiset $\{i_1, \ldots, i_k\}$ such that as a graded W-module

\[
M(\lambda) \cong L(\lambda)[i_1] \oplus L(\lambda)[i_2] \oplus \cdots \oplus L(\lambda)[i_k].
\]

Since $\Theta(\lambda)$ is a smooth point in X_c, [EG, Theorem 1.7] says that $L(\lambda) \cong CW$ as a W-module. Hence it contains a unique copy of the trivial representation T. Assume this copy occurs in degree a in $L(\lambda)$. Then it will occur in degree $a - i_j$ in $L(\lambda)[i_j]$. As a graded W-module, $M(\lambda) \cong \mathbb{C}[h^*]^{\text{colW}} \otimes \lambda$. The fact that $[\tau \otimes \lambda : T] = \delta_{s,\lambda^*}$ implies that the graded multiplicity of T in $M(\lambda)$ equals the graded multiplicity of λ^* in $\mathbb{C}[h^*]^{\text{colW}}$. The graded multiplicity of λ^* in $\mathbb{C}[h^*]^{\text{colW}}$ is $f_{\lambda^*}(t)$. Hence $P(M(\lambda), t) = t^{-a} f_{\lambda^*}(t) P(L(\lambda), t)$. The lowest nonzero term of $P(L(\lambda), t)$ occurs in degree zero implying that $a = b_{\lambda^*}$. The formula follows by noting that $P(M(\lambda), t) = \dim(\lambda) P(\mathbb{C}[h^*]^{\text{colW}})$. \qed

Since $L(\lambda)$ is a finite dimensional module, the above lemma shows that the right hand side of equation (2) is a polynomial in $\mathbb{Z}[t, t^{-1}]$ with integer coefficients. Moreover, [Go, Lemma 4.4] shows that it is actually in $\mathbb{Z}[t]$ and that the degree 0 coefficient is 1.
We give a description of the parameterization of irreducible $G(m, p, n) = G_2(2, 3)$ by Lemma 3.3 does not hold. Thus $L(\lambda)$ will have dimension $\langle G(m, p, n) \rangle$, proving Proposition 3.2 in this case. The group $G(2, 2, 3)$ is the Weyl group corresponding to the Dynkin diagram $D_3 = A_3$ and hence $G(2, 2, 3) \cong S_4$. By [EG, Corollary 16.2], X_c is smooth for generic and hence all non-zero c in this case.

Let $(t)_{(n)} = (1 - t) \cdots (1 - t^{n-1})(1 - t^n)$ and for λ a partition of n, denote by $n(\lambda) = \sum i(i - 1)\lambda_i$ the partition statistic. The young diagram D_λ of a partition λ is the finite subset of $\mathbb{N} \times \mathbb{N}$, justified to the south west (in the French style), representing λ. For $(i, j) \in D_\lambda$, we denote by $h(i, j)$ the hook length at (i, j). The hook polynomial is defined to be

$$H_\lambda(t) = \prod_{(i, j) \in D_\lambda} (1 - t^{h(i, j)})$$

[Ste, Corollary 6.4] states that the fake polynomial of the irreducible representation labelled by $(\{\Delta\}, \epsilon)$ is

$$f_\Delta(t) = \frac{1 - t^{dn}}{1 - t^{mn}} R_\Delta(t) I_\Delta(t^m)$$

where

$$R_\Delta(t) = \sum_{\mu \in \Delta} t^{r(\mu)} \text{ with } r(\mu) = \sum_{i=0}^{m-1} i|\mu^i| \text{ and } I_\Delta(t) = (t)_{(n)} \prod_{i=1}^{m} \frac{t^{\mu_i(\lambda)}}{H_{\lambda_i}(t)}$$

Note that the formula only depends on the orbit and not on the choice of stabiliser.

We wish to calculate the rational function (2) for a well chosen representation $(\{\mu\}, \epsilon)$ of the irreducible representations of $G(m, p, n)$. By [Hu, Theorem 3.15], the Poincaré polynomial of the coinvariant ring of W is given by

$$P(\mathbb{C}[h^1]^{G W}, t) = \prod_{i=1}^{n} \frac{1 - t^{d_i}}{1 - t}$$
where \(d_1, \ldots, d_n\) are the degrees of a set of fundamental homogeneous invariant polynomials of \(W\) \((d_1, \ldots, d_n\) are independent, up to reordering, of the polynomials chosen). By [ST, page 291], \(d_1, \ldots, d_n = m, 2m, \ldots, (n-1)m, dn\) when \(W = G(m, p, n)\).

Hence, if the dual representation of \(\{\mu\}, \epsilon\) is \(\{\lambda\}, \eta\), equation (2) becomes

\[
P(L(\{\mu\}, \epsilon), t) = \frac{\dim(\{\mu\}, \epsilon) t^m (1-t)^{(n-1)m} \prod_{i=0}^{m-1} H_{\lambda_i}(t^m) (1-t^{mn})}{(1-t)^n R_{\{\lambda\}}(t) \prod_{i=0}^{m-1} t^{n(\lambda_i)m}}
\]

(4)

Let \(k \in \mathbb{N}\) such that \(t^k | R_{\{\lambda\}}(t)\) but \(t^{k+1} \nmid R_{\{\lambda\}}(t)\) in \(\mathbb{Z}[t]\) and write \(R_{\{\lambda\}}(t) = t^k R_{\{\lambda\}}(t)\). Then rearrange equation (3) as

\[
f_{\{\lambda\}}(t) = \left(t^k \prod_{i=0}^{m-1} t^{n(\lambda_i)m}\right) \tilde{R}_{\{\lambda\}}(t) \left(\frac{1-t^{dn}}{1-t^{mn}} \prod_{i=1}^{m} \frac{1}{H_{\lambda_i}(t^m)}\right)
\]

(5)

Since each \(H_{\lambda_i}(t^m)\) is a product of factors of the form \((1-t^j)\), the product in the right most bracket consists entirely of factors of the form \((1-t^i)\). Therefore

\[
t^k = t^k \prod_{i=0}^{m-1} t^{n(\lambda_i)m}
\]

and equation (4) becomes

\[
P(L(\{\mu\}, \epsilon), t) = \frac{\dim(\{\mu\}, \epsilon) \prod_{i=1}^{m} H_{\lambda_i}(t^m)}{(1-t)^n R_{\{\lambda\}}(t)}.
\]

(6)

To contradict Lemma 3.3 and hence prove Proposition 3.2 we have

Lemma 3.4. Let \(p \neq 1\) and \(W = G(m, p, n)\) with \(W \neq G(2, 2, 3)\). Then there exists \((\{\mu\}, \epsilon) \in \text{Irr}(W)\) such that the right hand side of equation (6) is not an element of \(\mathbb{C}[t]\).

Proof. We consider the cases \(n = 2, 3\) and \(n > 3\) separately. For \(n > 3\) choose \((\{\mu\}, \epsilon)\) such that its dual representation is \(\lambda = (\lambda^0, 0, \ldots, 0)\), where \(\lambda^0 = (2, 2, 1, 1, \ldots, 1)\). Then

\[
\tilde{R}(t) = R(t) = 1 + t^{dn} + t^{2dn} + \cdots + t^{(p-1)dn} = \frac{1-t^{mn}}{1-t^{dn}}
\]

and for this particular \(m\)-multipartition we have
\[
\prod_i H_{\lambda_i}(t^m) = H_{\lambda}(t^m) = (1 - t^{2m})(1 - t^m)(1 - t^{(n-1)m})(1 - t^{(n-2)m}) \prod_{i=1}^{n-4} (1 - t^{im})
\]

Equation (6) becomes

\[
P(L(\{\mu\}, \epsilon), t) = \frac{\dim(\{\mu\}, \epsilon)(1 - t^{2m})(1 - t^m)(1 - t^{(n-1)m})(1 - t^{(n-2)m}) \prod_{i=1}^{n-4} (1 - t^{im})}{(1 - t^{im})(1 - t)^n}.
\]

The numerator of (7) factorises over \(\mathbb{C} \) as a product of factors \((1 - \omega t)\), where \(\omega \) is a primitive \(k \)th root of unity with \(1 \leq k < mn \), whereas the denominator contains at least one factor of the form \((1 - \sigma t)\), where \(\sigma \) is a primitive \(mn \)th root of unity. Therefore, since \(\mathbb{C}[t] \) is an Euclidean domain, the right hand side of (7) cannot lie in \(\mathbb{C}[t] \).

For \(n = 2 \) and \(m \geq n \), take \(\lambda = ((1), (1), \emptyset \ldots \emptyset) \). Then

\[
\prod_i H_{\lambda_i}(t^m) = (1 - t^m)^2 \quad \text{and} \quad R(t) = \frac{t(1 - t^2m)}{1 - t^2d} \quad \text{and} \quad \tilde{R}(t) = \frac{1 - t^{2m}}{1 - t^{2d}}.
\]

Substituting into (6)

\[
P(L(\{\mu\}, \epsilon), t) = \frac{\dim(\{\mu\}, \epsilon)(1 - t^{2m})^2(1 - t^{2d})}{(1 - t^{2m})(1 - t)^2}.
\]

By the same reasoning as above, since \(2m > 2d, m \), this rational function is not a polynomial.

Similarly, for \(n = 3 \) and \(m \geq n \), take \(\lambda = ((1), (1), (1), \emptyset \ldots \emptyset) \). Then

\[
\prod_i H_{\lambda_i}(t^m) = (1 - t^m)^3 \quad \text{and} \quad R(t) = \frac{t^3(1 - t^3m)}{1 - t^3d} \quad \text{and} \quad \tilde{R}(t) = \frac{1 - t^{3m}}{1 - t^{3d}}.
\]

Substituting into (6)

\[
P(L(\{\mu\}, \epsilon), t) = \frac{\dim(\{\mu\}, \epsilon)(1 - t^m)^3(1 - t^{3d})}{(1 - t^3m)(1 - t)^3}.
\]

Once again, this rational function is not a polynomial because \(3m > 3d, m \).

Therefore, for all \(W = G(m, p, n), p > 1 \), and with \(W \not\cong G(2, 2, 3) \), we have found an irreducible representation \((\{\mu\}, \epsilon)\) of \(W \) such that the Poincaré polynomial of the corresponding irreducible \(\tilde{H}_0, c(W) \)-module \(L(\{\mu\}, \epsilon) \) cannot be of the form given in Lemma 3.3. Hence the dimension of \(L(\{\mu\}, \epsilon) \) must be less than \(|W| \). Our argument is independent of the parameter \(c \), therefore we have proved Proposition 3.2 in this case.

3.3. The Exceptional Groups. Using the computer algebra program [GAP, GAP] together with the package [CHE, CHEVIE] we calculate for each exceptional complex reflection group \(W \) (excluding \(G_4 \)), the number of irreducible representations \(\lambda \) for which the polynomial \(t^{-b} f_{\lambda^*}(t) \) does not divide \(P(\mathbb{C}[t]/\mathfrak{co}W, t) \)
in \(\mathbb{C}[t] \). Table (3.3) gives the results of these calculations. For each of these \(\lambda \), Lemma 3.3 does not hold and hence \(\dim L(\lambda) < |W| \) for all values of \(c \). Since this number is always positive, Proposition 3.2 is proved for the exceptional groups.

Table 1. Number of irreducibles that fail Lemma 3.3

<table>
<thead>
<tr>
<th>Group</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td># failures</td>
<td>3</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>16</td>
<td>15</td>
<td>43</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>18</td>
<td>15</td>
<td>43</td>
<td>1</td>
<td>18</td>
<td>15</td>
<td>43</td>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

The code used to produce the data in Table (3.3) is available on the author’s website [Be]. For every exceptional group, the fake polynomials of the irreducible characters are listed there. The remainder of \(P(\mathbb{C}[\mathfrak{h}]^{coW}, t) \) on division by \(t - b^* f_\lambda(t) \) is also listed. In addition, this information is available for many of the groups \(G(m, p, n) \) of rank \(\leq 5 \).

4. **The exceptional group \(G_4 \)**

The group \(G_4 \), as labelled in [ST], is the binary tetrahedral group. It can be realised as a finite subgroup of the group of units in the quaternions

\[
G_4 = \{ \pm 1, \pm i, \pm j, \pm k, \frac{1}{2}(\pm 1 \pm i \pm j \pm k) \}
\]

and has order 24. It is generated by the elements \(s_1 = \frac{1}{2}(-1 + i + j - k) \) and \(s_2 = \frac{1}{2}(-1 + i - j + k) \) and has presentation \(G_4 = \langle s_1, s_2 | s_1^3 = s_2^3 = (s_1s_2)^6 = 1 \rangle \). It has seven conjugacy classes which we label \(Cl_1 = \{ 1 \}, Cl_2, Cl_3, Cl_4, Cl_5, Cl_6, \) and \(Cl_7 \). The character table is

<table>
<thead>
<tr>
<th>Class</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Order</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>(T)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(V_1)</td>
<td>1</td>
<td>1</td>
<td>(\omega^2)</td>
<td>(\omega)</td>
<td>1</td>
<td>(\omega^2)</td>
<td>(\omega)</td>
</tr>
<tr>
<td>(V_2)</td>
<td>1</td>
<td>1</td>
<td>(\omega)</td>
<td>(\omega^2)</td>
<td>1</td>
<td>(\omega)</td>
<td>(\omega^2)</td>
</tr>
<tr>
<td>(W)</td>
<td>2</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\mathfrak{h})</td>
<td>2</td>
<td>-2</td>
<td>-(\omega^2)</td>
<td>-(\omega)</td>
<td>0</td>
<td>(\omega^2)</td>
<td>(\omega)</td>
</tr>
<tr>
<td>(\mathfrak{h}^*)</td>
<td>2</td>
<td>-2</td>
<td>-(\omega)</td>
<td>-(\omega^2)</td>
<td>0</td>
<td>(\omega)</td>
<td>(\omega^2)</td>
</tr>
<tr>
<td>(U)</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

where \(\omega \) is a primitive cube root of unity. Note that the reflection representation \(\mathfrak{h} \) has dimension 2, therefore \(G_4 \) is a rank 2 complex reflection group.

The group \(G_4 \) has two classes which consist of complex reflections and we label these reflections as

\[
Cl_3 = \{ s_1, s_2, s_3, s_4 \}
\]
Theorem 4.1. For generic values of c, the generalised Calogero-Moser space X_c associated to G_4 is a smooth variety.

Proof. The theorem is proved by showing that each irreducible $H_{0,c}$-module is isomorphic to the regular representation of G_4. By [EG, Proposition 3.8], this is equivalent to the statement of the theorem. Let $E = T \oplus V_1 \oplus V_2 \oplus 3U$ and $F = \mathfrak{g} \oplus \mathfrak{h}^* \oplus W$, two G_4-modules.

Claim 1
Let L be a finite dimensional $H_{0,c}$-module, then $L \cong aE \oplus bF$, for some $a, b \in \mathbb{Z}_{\geq 0}$.

To prove Claim 1 we use an argument similar to that of [EG, Proposition 16.5]. Let $\rho : H_{0,c} \to \text{End}_C(L)$ realise the action of $H_{0,c}$ on L. Then, for all $x, y \in \mathfrak{g} \oplus \mathfrak{h}^*$, we have the commutation relation

$$[\rho(x), \rho(y)] = c_1 \sum_{i=1}^{4} \omega_{s_i}(x, y) \rho(s_i) + c_2 \sum_{j=1}^{4} \omega_{t_j}(x, y) \rho(t_j)$$

By Lemma 2.1, $\sum_{i=1}^{4} \omega_{s_i} = \sum_{j=1}^{4} \omega_{t_j} = 2\omega$. Taking traces on both sides of equation (8)

$$0 = c_1 2\omega(x, y)Tr_{L}(s_1) + c_2 2\omega(x, y)Tr_{L}(t_1) \quad \forall x, y \in \mathfrak{g} \oplus \mathfrak{h}^*$$

Since c_1 and c_2 are generic i.e. take values in a dense open subset of \mathbb{C}^2, and equation (9) is linear, we have $0 = 2\omega(x, y)Tr_{L}(s_1) = 2\omega(x, y)Tr_{L}(t_1)$. The fact that ω is nondegenerate implies that Tr_{L} is zero on Cl_3 and Cl_4.

Using the fact that s_1 is a complex reflection and $\dim \mathfrak{h}^* = 2$, we can choose a nonzero $x_1 \in \mathfrak{h}^*$ such that $s_1(x_1) = x_1$. Then $s_1[x_1, y] = [x_1, s_1(y)]$ for all $y \in \mathfrak{g}$. Since $s_1(x_1) = x_1$, $x_1 \in \text{Ker}(1 - s_1)$ and hence $\omega_{s_i}(x_1, y) = 0$ for all $y \in \mathfrak{g}$. Similarly, $s_1 t_1 = 1$ implies that $x_1 \in \text{Fix}(t_1)$ and hence $\omega_{t_1}(x_1, y) = 0$. Therefore, multiplying both sides of equation (8) on the left by $\rho(s_1)$ and taking traces

$$0 = c_1 \sum_{i=2}^{4} \omega_{s_i}(x_1, y)Tr_{L}(s_1 s_i) + c_2 \sum_{j=2}^{4} \omega_{t_j}(x_1, y)Tr_{L}(s_1 t_j)$$

Unlike all other exceptional irreducible complex reflection groups we have

$$= \{ \frac{1}{2}(-1 + i + j - k), \frac{1}{2}(-1 + i - j + k), \frac{1}{2}(-1 - i + j + k), \frac{1}{2}(-1 - i - j - k) \}$$

and

$$Cl_4 = \{ t_1, t_2, t_3, t_4 \}$$

$$= \{ \frac{1}{2}(-1 - i - j + k), \frac{1}{2}(-1 + i - j - k), \frac{1}{2}(-1 - i + j - k), \frac{1}{2}(-1 + i + j + k) \}$$
Again, using the fact that c_1, c_2 are generic, we get
\[0 = \sum_{i=2}^{4} \omega_{s_i}(x_1, y) Tr_L(s_1 s_i) = \sum_{j=2}^{4} \omega_{t_j}(x_1, y) Tr_L(s_1 t_j) \]

Since $s_1 s_2, s_1 s_3$ and $s_1 s_4$ all belong to Cl_7 and $s_1 t_2, s_1 t_3, s_1 t_4$ all belong to Cl_5 we have
\[0 = \sum_{i=2}^{4} \omega_{s_i}(x_1, y) Tr_L(s_1 s_i) = 2\omega(x_1, y) Tr_L(s_1 s_2) \]
\[0 = \sum_{j=2}^{4} \omega_{t_j}(x_1, y) Tr_L(s_1 t_j) = 2\omega(x_1, y) Tr_L(s_1 t_2) \]

Therefore Tr_L is zero on Cl_7 and Cl_5.

We can also multiplying both sides of equation (8) on the left by $\rho(t_1)$ instead of $\rho(s_1)$. Noting that $t_1^2 \in Cl_3, t_1 t_2, t_1 t_3, t_1 t_4 \in Cl_6$ and repeating the above argument shows that Tr_L is also zero on Cl_6.

Therefore any element of G_4 that has nonzero trace on L must belong to Cl_1 or Cl_2. Hence the character associated to L must take values $(n, m, 0, 0, 0, 0, 0)$, for some $n \in \mathbb{Z}_{\geq 0}, m \in \mathbb{Z}$, on the classes Cl_1, Cl_2, \ldots, Cl_7.

Taking inner products shows that
\[L \cong \frac{1}{|G_4|} (n + m) E \oplus \frac{2}{|G_4|} (n - m) F \]

Setting $a = \frac{1}{|G_4|} (n + m)$ and $b = \frac{2}{|G_4|} (n - m)$ proves Claim 1.

Claim 2

Let L be an irreducible representation of $H_{0,e}$, with e generic. Then L must be isomorphic to $E \oplus F$ or CG_4 as a G_4-module.

If L is irreducible then $\dim L \leq 24$. Therefore Claim 1 implies that $L \cong E, 2E, nF, 1 \leq n \leq 4, E \oplus F$ or CG_4. Assume that L is isomorphic to E as a G_4-module. The action of h^* on L defines a linear map $\phi : h^* \rightarrow \text{End}_C(E)$. For $w \in G_4$ and $x \in h^*$, $wxw^{-1} = wx$ in $H_{0,e}$. Therefore $\phi(wx)(e) = wx^e = wxw^{-1}e = w(x)(w^{-1}e) = w(\phi(x)(w^{-1}e))$. The action of $w \in G_4$ on $f \in \text{End}_C(E)$ is defined by $(wf)(e) = w(f(w^{-1}e))$. Therefore the map $\phi : h^* \rightarrow \text{End}_C(E)$ is G_4-equivariant. The G_4-module $\text{End}_C(E)$ decomposes as

\[\text{End}_C(E) \cong (T \otimes T) \oplus 2(T \otimes V_1) \oplus 2(T \otimes V_2) \oplus 6(T \otimes U) \oplus (V_1 \otimes V_1) \oplus 2(V_1 \otimes V_2) \oplus 6(V_1 \otimes U) \oplus (V_2 \otimes V_2) \oplus 6(V_2 \otimes U) \oplus 9(U \otimes U) \cong 12T \oplus 12V_1 \oplus 12V_2 \oplus 36U \]

This shows that h^* is not a summand of $\text{End}_C(E)$. Therefore ϕ must be the zero map. Similarly, the action of h^* must also be zero on E. Therefore the right hand side of equation (8) must also act as zero on E. In particular, it must act as zero on $T \subset E$. This means that
\[
0 = c_1 \sum_{i=1}^{4} \omega_{s_i}(x,y) + c_2 \sum_{j=1}^{4} \omega_{t_j}(x,y) = 2(c_1 + c_2)\omega(x,y)
\]

This is a contradiction because \(c_1, c_2\) are generic and \(\omega\) is nondegenerate. Hence \(L\) cannot be isomorphic to \(E\). Repeating the above argument for \(F\) we have

\[
\text{End}_{\mathbb{C}}(F) \cong (\mathfrak{h} \otimes \mathfrak{h}) \oplus 2(\mathfrak{h} \otimes W) \oplus \\
(\mathfrak{h}^* \otimes \mathfrak{h}^*) \oplus 2(\mathfrak{h}^* \otimes W) \oplus (W \otimes W) \cong 3T \oplus 3V_1 \oplus 3V_2 \oplus 9U
\]

Therefore \(\mathfrak{h}^*\) and \(\mathfrak{h}\) must act as zero on \(F\). If we consider the right hand side of equation (8), this time restricted to \(W \subset F\) then we have

\[
0 = c_1 \sum_{i=1}^{4} \omega_{s_i}(x,y)\rho|_{W}(s_i) + c_2 \sum_{j=1}^{4} \omega_{t_j}(x,y)\rho|_{W}(t_j)
\]

Taking the trace of this equation gives \(0 = -2(c_1 + c_2)\omega(x,y)\), which is a contradiction because \(c_1, c_2\) are generic and \(\omega\) is nondegenerate. Therefore \(L \not\cong F\). The same reasoning shows that \(L\) cannot be isomorphic to \(2E\) or \(nF, 2 \leq n \leq 4\) either. This proves Claim 2.

Claim 3

Let \(L\) be an irreducible \(H_{0,c}\)-module. Then \(L\) cannot be isomorphic to \(E \oplus F\) as a \(G_4\)-module.

By Lemma 2.3, there exists a generalised Verma module \(\Delta_c(M; p, q)\) and a surjective homomorphism \(\phi : \Delta_c(M; p, q) \to L\). As a \(G_4\)-module we have

\[
\Delta_c(M; p, q) = H_{0,c}(W) \otimes \mathbb{C}[\mathfrak{h}]^w \otimes \mathbb{C}[\mathfrak{h}^*] \rtimes W_q M \cong \mathbb{C}G_4 \otimes \operatorname{Ind}_{(G_4)_q}^{G_4} M \cong kCG_4
\]

where \((G_4)_q\) is the stabiliser of \(q \in \mathfrak{h}^*\) and \(k = [G_4 : (G_4)_q]\dim M\). The generalised Verma module \(\Delta_c(M; p, q)\) has a finite composition series. Each factor of this series must have dimension \(\leq 24\). Therefore, by Claim 2, each factor is isomorphic to either \(CG_4\) or \(E \oplus F\) as a \(G_4\)-module. Hence there exist \(m, n \in \mathbb{N}\) such that \(kCG_4 \cong mCG_4 \oplus n(E \oplus F)\) with \(n \geq 1\). But then \(n(E \oplus F) \cong (k - m)CG_4\), which is a contradiction. This completes the proof of Claim 3 and the theorem.

Acknowledgements

The research described here was done at the University of Edinburgh with the financial support of the EPSRC. This material will form part of the author’s PhD thesis for the University of Edinburgh. The author would like to thank Iain Gordon for suggesting this problem and for his help, encouragement and patience. He would also like to thank Maurizio Martino for help with the proof of Lemma 2.1 and many useful conversations.
References

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, James Clerk Maxwell Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland
E-mail address: G.E.Bellamy@sms.ed.ac.uk