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Abstract

One of the main objects of the toric topology is
the moment-angle functor K → ZK .

It assigns to each simplicial complex K with m vertices
a space ZK with an action of a compact torus T m,
whose orbit space ZK/T m can be identified with
the cone CK over K .

In the case when K = ∂P∗, where P is an n-dimensional
convex simple polytope with m facets, the moment-angle
complex ZK has the structure of a smooth manifold ZP
with a smooth action of T m, and the orbit space ZP/T m

can be identified with P itself.
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Abstract

A mathematical fullerene is a three dimensional convex
simple polytope with all 2-faces being pentagons and
hexagons.
In this case the number p5 of pentagons is 12.
The number p6 of hexagons can be arbitrary except for 1.
Two combinatorially nonequivalent fullerenes with the
same number of p6 are called isomers. The number of
isomers of fullerenes grows fast as a function of p6 .
At that moment the problem of classification of fullerenes is
well-known and is vital due to the applications in chemistry,
physics, biology and nanotechnology.
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Abstract

Thanks to the toric topology, we can assign to each
fullerene P its moment-angle manifold ZP .
The cohomology ring H∗(ZP) is a combinatorial invariant
of the fullerene P.
We shall focus upon results on the rings H∗(ZP) and their
applications based on geometric interpretation of
cohomology classes and their products.
The multigrading in the ring H∗(ZP), coming from the
construction of ZP , and the multigraded Poincare duality
play an important role here.
The talks is based on joint works with Taras Panov and
Nikolay Erokhovets.
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Convex polytopes

A convex polytope P is a bounded set of the form

P = {x ∈ Rn : aix + bi > 0, i = 1, . . . ,m}

Let this representation be irredundant, that is a deletion of any
inequality changes the set. Then each hyperplane
Hi = {x ∈ Rn : aix + bi = 0} defines a facet Fi = P ∩Hi .
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Euler’s formula

Let f0, f1, and f2 be numbers of vertices, edges, and 2-faces of
a 3-polytope. Then

f0 − f1 + f2 = 2

f0 f1 f2
Tetrahedron 4 6 4

Cube 8 12 6
Octahedron 6 12 8

Dodecahedron 20 30 12
Icosahedron 12 30 20
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Simple polytopes

An n-polytope is simple if any its vertex is contained in exactly n
facets.

3 of 5 Platonic solids are simple.
7 of 13 Archimedean solids are simple.

7 / 65



k -belts

Let P be a simple convex 3-polytope. A k-belt is a cyclic
sequence (F1, . . . ,Fk ) of 2-faces, such that Fi1 ∩ · · · ∩ Fir 6= ∅ if
and only if {i1, . . . , ir} ∈ {{1,2}, . . . , {k − 1, k}, {k ,1}}.

W1

W2

Fi

Fj

Fk

Fl

4-belt of a simple 3-polytope.
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Flag polytopes

A simple polytope is called flag if any set of pairwise
intersecting facets Fi1 , . . . ,Fik : Fis ∩ Fit 6= ∅, s, t = 1, . . . , k, has
a nonempty intersection Fi1 ∩ · · · ∩ Fik 6= ∅.

Flag polytope Non-flag polytope
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Non-flag 3-polytopes

Simple 3-polytope P is not flag if and only if either P = ∆3, or P
contains a 3-belt.

W1

W2

Fi

Fj

Fk

If we remove the 3-belt from the surface of a polytope, we
obtain two parts W1 and W2, homeomorphic to disks.
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Non-flag 3-polytopes as connected sums

The existence of a 3-belt is equivalent to the fact that P is
combinatorially equivalent to a connected sum P = Q1#v1,v2Q2
of two simple 3-polytopes Q1 and Q2 along vertices v1 and v2.

PQ1 Q2

v1
v2

The part Wi appears if we remove from the surface of the
polytope Qi the facets containing the vertex vi , i = 1,2.
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Consequence of Euler’s formula for simple 3-polytopes

Let pk be a number of k -gonal 2-faces of a 3-polytope.

For any simple 3-polytope P

3p3 + 2p4 + p5 = 12 +
∑
k>7

(k − 6)pk

Corollary
If pk = 0 for k 6= 5,6, then p5 = 12.
There is no simple 3-polytopes with all faces hexagons.

f0 = 2

(∑
k

pk − 2

)
f1 = 3

(∑
k

pk − 2

)
f2 =

∑
k

pk
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Realization theorems

Theorem (Eberhard, 1891)

For every sequence (pk |3 6 k 6= 6) of nonnegative integers
satisfying

3p3 + 2p4 + p5 = 12 +
∑
k>7

(k − 6)pk ,

there exist values of p6 such that there is a simple 3-polytope
P3 with pk = pk (P3) for all k > 3.

For a fixed sequence (pk |3 6 k 6= 6)

There are infinitely many valued of p6.

There exist p6 6 3

(∑
k 6=6

pk

)
(J.C. Fisher, 1974)

If p3 = p4 = 0 then any p6 > 8 is suitable (B. Grunbaum,
1968).
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Fullerenes

A fullerene is a spherical-shaped molecule of carbon such that
any atom belongs to exactly three carbon rings, which are
pentagons or hexagons.

Fullerene C60
(f0, f1, f2) = (60,90,32)

(p5,p6) = (12,20)

Fullerenes have been the subject
of intense research, both for
their unique chemistry and for
their technological applications,
especially in materials science,
electronics, and nanotechnology.
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Fullerenes

Fullerenes were discovered by chemists-theorists Robert Curl,
Harold Kroto, and Richard Smalley in 1985 (Nobel Prize 1996).

Fuller’s Biosphere
USA Pavillion, Expo-67

Montreal, Canada

They were named after
Richard Buckminster Fuller
– a noted american
architectural modeler.

Are also called buckyballs
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Fullerenes

A (mathematical) fullerene is a simple 3-polytope with all
2-facets pentagons and hexagons.

Fullerene C60 Truncated icosahedron

For any fullerene p5 = 12,

f0 = 2(10 + p6), f1 = 3(10 + p6), f2 = (10 + p6) + 2

There exist fullerenes with any p6 6= 1.
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Fullerenes as flag polytopes

Theorem (E,15)
Any fullerene has no 3-belts, that is it is a flag polytope.

The proof is based on the following result about fullerenes.
Let the 3-belt (Fi ,Fj ,Fk ) divide the surface of a fullerene P into
two parts W1 and W2, and W1 does not contain 3-belts. Then P
contains one of the following fragments

Fi

Fj

Fk

Fs Fi

Fj

Fk

Fp Fq Fi

Fj

Fk

Fp
Fq Fi

Fj

Fk

Fp
FqFr Fr

(1,1,1) (1,2,2) (2,2,2) (1,2,3)

This is impossible since each fragment has a triangle or a
quadrangle.
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4-belts and 5-belts of fullerenes

Theorem
Any fullerene has no 4-belts.

Theorem
Any fullerene P has 12 + k belts, where 12 belts surround 12
pentagonal faces and k > 0. If k > 0, then P consists of two
"dodecahedral caps" and k hexagonal 5-belts between them,
where any hexagon in a belt is incident with neighboring
hexagons by opposite edges.
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Fullerene with 2 hexagonal 5-belts
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Schlegel diagrams of fullerenes

Dodecahedron
p6 = 0

Barrel
p6 = 2
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Endo-Kroto operations

The Endo-Kroto operation increases p6 by 1.
Starting from Barrel and applying a sequence of
Endo-Kroto operations it is possible to obtain
a fullerene with arbitrary p6 = k , k > 2.
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Number of combinatorial types of fullerenes

Two combinatorially nonequivalent fullerenes with the same
number p6 are called isomers.

Let F (p6) be the number of isomers with given p6.
It is known that F (p6) = O(p9

6).

There is an effective algorithm of combinatorial enumeration of
fullerenes using supercomputer (Brinkman, Dress, 1997).

p6 0 1 2 3 4 5 6 7 8 . . . 75
F (p6) 1 0 1 1 2 3 6 6 15 . . . 46.088.148
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IPR-fullerenes

Definition
An IPR-fullerene (Isolated Pentagon Rule) is a fullerene without
pairs of adjacent pentagons.

Let P be some IPR-fullerene. Then p6 > 20. An IPR-fullerene
with p6 = 20 is combinatorially equivalent to
Buckminsterfullerene C60.

The number FIPR(p6) of isomers of IPR-fullerenes also grows
fast as a function of p6.

p6 20 21 22 23 24 25 26 27 28 . . . 97
FIPR 1 0 0 0 0 1 1 1 2 . . . 36.173.081
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Toric topology

Canonical correspondence

Simple polytope P moment-angle manifold ZP
dim P = n −→ dimZP = m + n

number of facets = m canonical T m-action

P1 × P2 −→ ZP1 ×ZP2
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Applications of the canonical correspondence

The canonical correspondence gives a tool to build
manifolds important for algebraic topology and complex
geometry in terms of the combinatorics of polytopes.

Algebraic-topological invariants of moment-angle manifolds
ZP give combinatorial invariants of polytopes P.
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Moment-angle complex

Let L(P) be the face lattice of P and {F1, . . . ,Fm} – the set
of facets.

ZP =
⋃

F∈L(P)\{∅}

∏
i : Fi⊃F

D2
i ×

∏
j : Fj 6⊃F

S1
j ⊂ D2

1 × · · · × D2
m.

is the moment-angle complex of a simple polytope P.

ZP has a structure of an (m + n)-dimensional smooth
manifold and is also called a moment-angle manifold.
P = ∆n ⇐⇒ ZP = S2n+1.
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Stanley-Reisner ring of a simple polytope

Let {F1, . . . ,Fm} be the set of facets of a simple polytope P.
Then a Stanley-Reisner ring over Z is defined as

Z[P] = Z[v1, . . . , vm]/(vi1 . . . vik = 0, if Fi1 ∩ · · · ∩ Fik = ∅).

The Stanley-Reisner ring of a flag polytope is quadratic:
the relations have only the form vivj = 0: Fi ∩ Fj = ∅.
Two polytopes are combinatorially equivalent if and only if
their Stanley-Reisner rings are isomorphic.
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Multigraded complex

Let

R∗(P) = Λ[u1, . . . ,um]⊗ Z[P]/(uivi , v2
i ),

mdegui = (−1,2{i}),mdegvi = (0,2{i}),dui = vi ,dvi = 0

be a multigraded differential algebra.

Theorem (Buchstaber-Panov)
We have an isomorphism

H[R∗(P),d ] ' Tor∗,∗Z[v1,...,vm](Z[P],Z) ' H∗(ZP ,Z)

Moreover, this isomorphism defines the structure of a
multigraded algebras in Tor and H∗(ZP ,Z).
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Cohomology of moment-angle manifold

Let Pω =
⋃

i∈ω
Fi for a subset ω ⊂ [m].

Theorem (Buchstaber–Panov)
There are the isomorphisms:

H l(ZP ,Z)→
⊕
ω⊂[m]

H̃ l−|ω|−1(Pω,Z).

Set
β−i,2ω = rank H̃ |ω|−i−1(Pω,Z)

where H−1(∅,Z) = Z.

A multigraded Poincare duality implies

β−i,2ω = β−(m−n−i),2([m]\ω).
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Cohomology ring

Theorem (Buchstaber–Panov)
There is the ring isomorphism

H∗(ZP) '
⊕
ω⊂[m]

H̃∗(Pω)

where the ring structure on the right hand side is given by the
canonical maps

H̃k−|ω1|−1(Pω1)⊗ H̃ l−|ω2|−1(Pω2)→ H̃k+l−|ω1|−|ω2|−1(Pω1∪ω2)

for ω1 ∩ ω2 = ∅ and zero otherwise.
The canonical maps are given by the isomorphisms:

Hk−|ω|−1(Pω) ' Hk−|ω|(P,Pω).
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Examples

Let P be a simple-polytope

H1(ZP) = H2(ZP) = 0,

H3(ZP) '
⊕
|ω|=2

H̃0(Pω),

H4(ZP) '
⊕
|ω|=3

H̃0(Pω),

H5(ZP) '
⊕
|ω|=3

H̃1(Pω) +
⊕
|ω|=4

H̃0(Pω).

H6(ZP) '
⊕
|ω|=4

H̃1(Pω) +
⊕
|ω|=5

H̃0(Pω).
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3-polytopes

For a 3-polytope P 6= ∆3 nonzero Betti numbers are

β0,2∅ = β−(m−3),2[m] = 1,

β−i,2ω = rank H̃0(Pω,Z) = β−(m−3−i),2([m]\ω) = rank H̃1(P[m]\ω,Z),

|ω| = i + 1, i = 1, . . . ,m − 4

For |ω| = i + 1 the number β−i,2ω + 1 is equal to the number of
connected components of the set Pω ⊂ P.

Define β−i,2j =
∑
|ω|=j

β−i,2ω.

β−1,4 = m(m−1)
2 − f1 = (m−3)(m−4)

2 ;
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3-belts and 4-belts and Betti numbers

Theorem

β−1,6 is equal to the number of 3-belts.

There is a bijection (Fi ,Fj ,Fk )←→ [uivjvk ] between 3-belts and
elements of an additive basis in H−1,6.

Theorem

Let P be a simple 3-polytope without 3-belts, that is β−1,6 = 0.
Then β−2,8 is equal to the number of 4-belts.

There is a bijection (Fi ,Fj ,Fk ,Fl)←→ [uiujvkvl ] between
4-belts and elements of an additive basis in H−2,8.
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5-belts and Betti numbers

Theorem
Let P be a simple 3-polytope without 3-belts and 4-belts, that is
β−1,6 = β−2,8 = 0. Then β−3,10 is the number of 5-belts.

There is a bijection (Fi ,Fj ,Fk ,Fl ,Fr )←→ [uiujukvlvr ] between
5-belts and elements of an additive basis in H−3,10.
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Relations between Betti numbers

Theorem
For any simple polytope P with m facets

(1− t2)m−n(h0 + h1t2 + · · ·+ hnt2n) =
∑
−i,2j

(−1)iβ−i,2j t2j ,

where h0 + h1t + · · ·+ hntn = (t − 1)n + fn−1(t − 1)n−1 + · · ·+ f0.

Corollary

Set h = m − 3. For a simple 3-polytope P 6= ∆3 with m facets

(1− t2)h(1 + ht2 + ht4 + t6) =

1− β−1,4t4 +
h∑

j=3

(−1)j−1(β−(j−1),2j − β−(j−2),2j)t2j+

(−1)h−1β−(h−1),2(h+1)t2(h+1) + (−1)ht2(h+3)
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For any simple 3-polytope P we have
β−1,4 – the number of pairs (Fi ,Fj), Fi ∩ Fj = ∅;
β−1,6 – the number of 3-belts;
β−2,6 =

∑
i<j<k

si,j,k , where si,j,k + 1 is equal to the number

of connected components of the set Fi ∪ Fj ∪ Fk ;
β−3,8 =

∑
i<j<k<r

si,j,k ,r , where si,j,k ,r + 1 is equal to the

number of connected components of Fi ∪ Fj ∪ Fk ∪ Fr .

Theorem
For any simple 3-polytope P

β−1,4 = h(h−1)
2 ;

β−2,6 − β−1,6 = (h2−1)(h−3)
3 ;

β−3,8 − β−2,8 = (h+1)h(h−2)(h−5)
8 .

36 / 65



Theorem
For a fullerene P

β−1,6 = 0 – the number of 3-belts.
β−2,8 = 0 – the number of 4-belts.
β−3,10 = 12 + k, k > 0 – the number of 5-belts.
If k > 0, then p6 = 5k.

Corollary

The product map H3(ZP)⊗ H3(ZP)→ H6(ZP) is trivial.

Theorem
For any fullerene

β−1,4 = (8+p6)(9+p6)
2 ;

β−2,6 = (6+p6)(8+p6)(10+p6)
3 ;

β−3,8 = (4+p6)(7+p6)(9+p6)(10+p6)
8 .
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Addendum

Constructions of fullerenes.
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(s, k)-truncations

Let Fi be a k-gonal face of a simple 3-polytope P.
choose s subsequent edges of Fi ;
rotate the supporting hyperplane of Fi around the axis
passing through the midpoints of adjacent two edges (one
on each side);
take the corresponding hyperplane truncation.

We call it (s, k)-truncation.

(3,7)-truncation
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Construction of simple 3-polytopes

Theorem (Eberhard, Brückner, XIX)
Any simple 3-polytope is combinatorially equivalent to a
polytope that is obtained from the tetrahedron by a sequence of
vertex, edge and (2, k)-truncations.
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Straightening along the edge

Let E = Fi ∩ Fj be an edge such that p-gon Fi and q-gon Fj do
not belong together to any 3-belt. Then there is a combinatorial
operation of straightening along E .

E FkFi Fj

The result is a combinatorial polytope with a (p + q − 4)-gonal
face Fk obtained from Fi and Fj .

The straightening is an inverse operation to (p − 3,p + q − 4)-
or (q − 3,p + q − 4)-truncations along edges of Fk .
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Possibility of strengthening

Fi

Fis-1

Fis
Fq

Fj
Fj1

Fjt
Fi2

Fi1Fp

E

It is possible to apply the straightening along the edge
E = Fi ∩ Fj if and only if {Fi1 , . . . ,Fis} ∩ {Fj1 , . . . ,Fjt} = ∅.
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Construction of flag 3-polytopes

Proposition (V. Volodin, 2011)
A simple 3-polytope P is flag if and only if it admits the
straightening along any edge E of P.

Theorem (E, 15)
A simple 3-polytope is flag if and only if it is combinatorially
equivalent to a polytope obtained from the cube by a sequence
of edge truncations and (2, k)-truncations, k > 6.
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Realization of the Stasheff polytope

A realization of the Stasheff polytope using edge-truncations
(V. Buchstaber, 2007)
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Realization of the dodecahedron

(p4,p5,p6) = (3,6,0) (p4,p5,p6) = (2,8,1) (p4,p5,p6) = (0,12,0)

first apply 3 edge-truncations to the cube to obtain the
associahedron;
then apply 2 edge-truncations of bold edges;
at last apply (2,6)-truncation of two bold edges.
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Characterization of the Endo-Kroto operation

The Endo-Kroto operation is a (2,6)-truncation.
The only (s, k)-truncation that gives a fullerene from
a fullerene is an Endo-Kroto operation.

46 / 65



Graph-truncations of simple polytopes

For a simple 3-polytope P let

P = {x ∈ Rn : aix + bi > 0, i = 1, . . . ,m}
be an irredundant representation and G(P) be the 1-skeleton of
P. Then for a subgraph Γ ⊂ G(P) without isolated vertices
define a graph-truncation

PΓ,ε = P ∩ {x ∈ Rn : (ai + aj)x + (bi + bj) > ε,Fi ∩ Fj ∈ Γ}
The combinatorial type does not depend on ε, if ε > 0 is small
enough. Denote it by PΓ.

Different realizations of the associahedron. 47 / 65



Cutting off all edges

The polytope PG(P) is obtained from P by cutting off of all
the edges.

pk (PG(P)) =

{
pk (P), k 6= 6
pk (P) + f1(P), k = 6

(p3,p4,p5,p6) = (4,0,0,6)

Cutting off of all the edges of a simplex.
48 / 65



Properties of graph-truncations

The graph Γ ⊂ G(P) is admissible if any it’s vertex has
valency 1 or 3.

Theorem
For a simple 3-polytope P the polytope PΓ is simple if and only
Γ is admissible

Theorem
For a simple 3-polytope P and an admissible graph Γ ⊂ G(P)
the polytope PΓ is flag if and only if for any 3-belt (Fi ,Fj ,Fk ) in
P one of the edges Fi ∩ Fj , Fj ∩ Fk and Fk ∩ Fi belongs to Γ,
and for any triangular face Fi the induced subgraph Γ ∩ Fi has
isolates vertices.
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Graph-truncation and (s, k)-truncation

An edge-truncation (that is a (1, k)-truncation) is the only
operation that is simultaneously a graph-truncation and
an (s, k)-truncation.

A graph-truncation is a monotonic operation. That is, let P
be a simple polytope and Γ ⊂ P be an admissible graph.
Then pk (PΓ) > pk (P) for all k and there exists l such that
pl(PΓ) > pl(P).
(s, k)-truncation is not a monotonic operation. For
example, let Q be a polytope such that the dodecahedron
P is obtained from Q by a (2,6)-truncation. Then

p4(Q) = 2 > 0 = p4(P), p5(Q) = 8 6 12 = p5(P),

p6(Q) = 1 > 0 = p6(P).
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First nontrivial graph-truncations

Fi Fj Fi Fj The inverse operation
is applicable if and only if
Fi ∩ Fj = ∅

Fi

Fj

Fk

Fk

Fj

Fi

The inverse operation
is applicable if and only if
Fi ∩ Fj = Fi ∩ Fk = Fj ∩ Fk = ∅
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"Eberhard’s theorem for flag polytopes"

Theorem (E,14)

For every sequence (pk |4 6 k 6= 6) of nonnegative integers
satisfying

2p4 + p5 = 12 +
∑
k>7

(k − 6)pk ,

there exists an integer p6 and a flag simple 3-polytope P3 with
pk = pk (P3) for all k > 4.

If P has no triangles then the polytope PG(P) is flag.
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Construction of IPR-fullerenes

An Endo-Kroto operation can not give an IPR-fullerene.

For a fullerene P the polytope PG(P) is an IPR-fullerene
with p6(PG(P)) = p6(P) + f1(P).

For the dodecahedron the corresponding IPR-fullerene C80
has 80 vertices and is highly symmetric.
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Fullerenes obtained by a graph-truncation

The edge E is a shout of the 2-face F, if E ∩ F is a vertex.

Theorem
Let P be a simple 3-polytope and Γ ⊂ P be an admissible
graph. Then PΓ is a fullerene if and only if

Γ does not have isolated edges;
pk (P) = 0 for k > 7;
any triangular face of P has two or three shouts in Γ;
any quadrangular face of P has one or two shouts in Γ;
any pentagonal face of P has at most one shout in Γ;
any hexagonal face of P has no shouts in Γ;
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Graph-truncations of the permutohedron

Proposition
We can not obtain a fullerene as a graph-truncation of the
permutohedron.
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All graphs up to the symmetry on the associahedron
that give fullerenes

v

w

v

w

v

w

v

w

v

w

v

w

p6=0 p6=3 p6=3

p6=5 p6=6 p6=7
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Graph-truncations of fullerenes

Let P be a fullerene and Γ ⊂ P be an admissible graph.

Corollary
PΓ is a fullerene if and only if

Γ does not have isolated edges;
any hanging edge of Γ is a shout of a pentagon;
different hanging edges correspond to different pentagons;

If PΓ is not a fullerene, then we can not obtain a fullerene from it
by any sequence of graph-truncations.

57 / 65



Graph-truncations of fullerenes

The first nontrivial graph-truncation gives the following
operation on fullerenes, which is always defined in both
directions.
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Simple partitions of 2-surfaces

A polygonal partition of a compact 2-surface M2 (closed or
with boundary) is called simple, if the intersection of any two
polygons is either empty or their common edge.

Any vertex of a simple partition has valency
3 if it is an interior point of a surface;
2 or 3 if it lies on the boundary.

Let µi be the number of boundary vertices of valency i .

p4 = 3 p3 = 1,p4 = 2
µ2 − µ3 = 0, χ(M) = 1 µ2 − µ3 = −1, χ(M) = 1.

2 · 3 = 6 · 1 + 0 3 · 1 + 2 · 2 = 6 · 1 + 1
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Simple partitions of 2-surfaces

Let pk be a number of k -gons in a simple partition.

For any simple partition of M2

3p3 + 2p4 + p5 = 6χ(M2)− δ +
∑
k>7

(k − 6)pk , (∗)

where δ = µ2 − µ3

There are no hexagonal simple partitions of a closed
surface if χ(M2) 6= 0.
There exist hexagonal simple partitions of a torus and
a Klein bottle.
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Simple partitions of a disk into 5- and 6-gons

A disk D2 is a 2-surface homeomorphic to {z ∈ C : |z| 6 1}.

For a disk χ(D2) = 1 and the formula (∗∗) has the form

p5 = 6− δ.

p5 = 0⇔ δ = 6; p5 = 6⇔ δ = 0.
There exist simple partitions of D2 with arbitrary p5 and p6.

p5 = 1,p6 = 5, δ = 5; p5 = 0,p6 = 7, δ = 6; p5 = 7,p6 = 2, δ = −1
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Simple edge cycles on fullerenes

A simple cycle in G(P) divides a boundary of a fullerene P
into two disks W1 and W2 with induced simple partitions.
There is a bijection between the boundary vertices of W1
and W2 that maps the vertex of valency i to the vertex of
valency 5− i .
For each disk W1 and W2 we have µ2 6= 1 and µ3 6= 1.

A simple partition of a disk which can not appear as W1 or W2.
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Surgery of fullerenes

By a surgery of a fullerene we mean the operation
of replacement of W1 by a simple partition W ′

1 of D2 into
5- and 6-gons such that there exists a bijection between the
boundary vertices v ′1, . . . , v

′
p of W ′

1 and v1, . . . , vp of W1 ordered
cyclically that

preserves the valences of vertices;
has the form v ′i → v(s+i) mod p or v ′i → v(s−i) mod p for
some s.

The result is again a fullerene.

An Endo-Kroto operation gives
a surgery of fullerenes.
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Stone-Wales operation

A Stone-Wales operation can produce an isomer;
It is a flip;
It is an example of a surgery.
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