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General construction

Let Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an
n-dimensional vector space V™. A submanifold X C Gr(d, n) gives rise to a
differential system (X ) that governs d-dimensional submanifolds of V" whose
Gaussian image is contained in X . Since d-dimensional submanifolds of V" are
parametrised by n — d functions of d variables, we will assume that the
codimension of X in Gr(d, n) also equals n — d: in this case (X ) will be a
determined system of n — d first-order PDEs for n — d unknown functions of d

independent variables.

Based on:

B. Doubrov, E.V. Ferapontov, B. Kruglikov and and V.S. Novikov, On the integrability in
Grassmann geometries: integrable systems associated with fourfolds in Gr(3,5),

arXiv:1503.02274.



Systems associated with fourfolds X C Gr(3,5)

Introducing in V'® coordinates :1:1, :1:2, x3, u, ¥ one can parametrise

three-dimensional submanifolds of V' in the form v = u(x!, 22, x3),

v = v(xt, 2%, 23). The corresponding system X (X) reduces to a pair of

first-order PDEs for «w and v,
F(u1,u2,us,v1,v2,v3) =0, G(u1,us2,us,vr,v2,v3) =0, (1)

u; = Ou/0x", v; = Ov/Ox". Here the Grassmannian Gr(3, 5) is identified with

the space of 2 X 3 matrices,

and equations (1) specify a fourfold X C Gr(3,5).



Example 1: dKP equation

The system

1, 1 4
vy—§vx—ux:O, vt—gvx—vxux—uy:(),

defines a Backlund transformation between the dKP equation,
Ugt — UgpUgy — Uyy — Oa

and the mdKP equation,

1
Vgt — (Vy — 5”2)’%% — Uy = 0.



Example 2: Veronese web equation

Let a1 + a2 + a3 = 0 and a1 + as + az = 0 be constants. The system
A1A2ULVy — A201UyV; = 0, a1a3UzV; — aza1uivy = 0,
defines a Backlund transformation between the equation for u,
A1 Uz Uyt + AUy Uzt + A3UL ULy = O,
and the analogous equation for v,



Equivalence group SL(5)
The linear action of SL(5) on the variables x1, 22, 22, u, v naturally extends to
Gr (3, 5), identified with 2 x 3 matrices U of partial derivatives u;, v;:

U — (AU + B)(CU + D)™,

note that the extended action is no longer linear. These transformations preserve
the class of equations (1), indeed, first-order derivatives transform through
first-order derivatives only. Moreover, they preserve the integrability. Two
SL(5)-related equations should be regarded as ‘the same’.



Four equivalent approaches to the integrability in 3D

(a) The method of hydrodynamic reductions.
(b) Dispersionless Lax pairs.
(c) Geometry ‘on solutions’: Einstein-Weyl geometry.

(c) Geometry ‘on equation’: GL(2) geometry.



The method of hydrodynamic reductions

Applies to quasilinear equations
A(u)u, + B(u)u, + C(u)u, = 0.

Consists of seeking N-phase solutions

The phases Ri(:zj, Y, t) are required to satisfy a pair of commuting equations

R, = (R)R,,  Ri=N(R)R.,
aj/,bi . 8j)\i

(called hydrodynamic reductions). Commutativity conditions: T N

Definition A 2+1 quasilinear system is said to be integrable if, for any N, it
possesses infinitely many N-component reductions parametrized by N arbitrary

functions of one variable.



Hydrodynamic reductions: continuation

First we represent system in evolutionary form,

U = [(Ug, Uy, Vg, Vy), Ve = G(Usg, Uy, Vg, Vy).

Next, we bring it into quasilinear form by choosing first-order derivatives of u and v
as the new dependent variables, and writing out all possible consistency conditions
among them. Applying the method of hydrodynamic reductions, one can write down

the integrability conditions in symbolic form,
d’f = R(df,dg,d’f,d*g), d°g=S(df,dg,d"f,d*g),

40 equations altogether (in involution!).

Theorem 1. The moduli space of non-degenerate integrable systems (1) is

30-dimensional.
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Dispersionless Lax pairs

System
1, 1 4
vy—?ux—ux =0, v — gvx—vxux—uy:(),
possesses the Lax pair

4

the compatibility condition .Sy,; = Sy, is satisfied identically.
In general:

Sy :P(Sx7u’i)vi)7 St :Q(Sx7ui7vi)-
Theorem 2. Every non-degenerate integrable system possesses a
dispersionless Lax pair.

Generic case is given by Odesskii-Sokolov construction.
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Geometry ‘on solutions’: conformal structure

Formal linearisation of system results upon setting u — u + €p, v — U + €q,

and keeping terms of order €. This gives linear system for p, q:

7 Guz G’Uz’ q .
xl
Dispersion relation/principal symbol is defined as
F, F,
det Z & i v = 0.

This gives a conic gij@fj = (. For nonlinear systems, the corresponding

conformal structure g*/ depends on a solution.
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Geometry ‘on solutions’: Einstein-Weyl geometry
Given conformal structure gij , introduce the covector w,

WE = QijDa;s (935) -+ ka (ln det gij)a
and the symmetric Weyl connection 1D such that Dy g;; = wig;;.

Theorem 3. System (1) is integrable if and only if on every solution the triple
D, g, w satisfies the Einstein-Weyl equations,

Drgi; = wrgij, R(z’j) — Agij-
Here R, ;) is the symmetrised Ricci tensor of ), and A is some function.

Einstein-Weyl geometry is integrable (Cartan, Hitchin). Thus, solutions to integrable

equations carry integrable geometry.
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Geometry ‘on equation’: GL(2) geometry

The tangent bundle to the Grassmannian Gr(3, 5) carries canonical generalised
conformal structure defined by the family of Segre cones du;dv; — du;dv; = 0.
Given a fourfold X C Gr(3,5), the intersection of its tangent space T X with the
Segre cone is a two-dimensional rational cone of degree three; its projectivisation is
a rational normal curve of degree three (twisted cubic). This is known as a GL(2)
structure on X. It was demonstrated by Bryant that every four-dimensional GL(2)
structure defines on X a canonical affine connection (with torsion).

Theorem 4. System is integrable if and only if X possesses infinitely many
holonomic 3-folds. This is equivalent to the condition that the curvature R and the
covariant derivative V1" of the torsion 1" of the Bryant connection are certain

invariant quadratic expressions in 1',

R= f(T%), VT =g(T").
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Linearisable systems

Systems of Monge-Ampére type are linear combinations of minors of the 2 X 3
matrix U':

a¥ (u;v; — ujv;) + blu; + cv; +m =0,

¥ (uv; — wvg) + Bu; +y'v; + p = 0.
Proposition. For non-degenerate system , the following conditions are
equivalent:
(a) System is linearisable by a transformation from the equivalence group SL(5).
(b) System belongs to the Monge-Ampeére class.

(c) System is invariant under an 8-dimensional subgroup of SL(5).

(d) The principal symbol defines conformal structure which is conformally flat on

every solution.
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Linearly degenerate systems: definition

The definition is inductive. Start with a 2D system,
F(U;x,’U;t,’Ux,”Ut) :()7 G(ux7utavx7vt) :O

Writing it in evolutionary form, u; = f(u,, vz), v+ = g(u,, v, ), differentiating by
x and setting u, = a, v, = b, we obtain a 2-component system of hydrodynamic
type, a; = f(a,b),, by = g(a,b),. The system is said to be linearly degenerate
if the corresponding characteristic speeds A\’ are constant in the direction of the
associated eigenvectors &;: L¢, A" = 0.

In 3D, system (1) is said to be linearly degenerate if every its travelling wave
reduction to 2D is linearly degenerate in the above sense.
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Linearly degenerate integrable systems: the Chasles
construction

Let V' be a vector space, and A € SL(5) a projective automorphism of V°.
Chasles considered a fourfold in Gr(2, 5) spanned by 2-dimensional subspaces
(€, AE) where £ € V. By duality, this gives a fourfold X C Gr(3,5).

Proposition. System is linearly degenerate and integrable if and only if the

associated fourfold X comes from the Chasles construction.

These fourfolds can also be characterised as images of quadratic maps

P* --5 Gr(3,5).

Different canonical forms are labelled by Jordan normal forms of A. Thus, the

generic case of semisimple A gives the Veronese web equation.
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Integrability in 4D

Consider 4D systems,

F(u’bvi) — 07 G(Ui,f(}@') = 0.

Theorem 5 The moduli space of non-degenerate integrable systems in 4D is
36-dimensional. Any such system is necessarily linearly degenerate. Furthermore,
the following conditions are equivalent:

(a) System is integrable by the method of hydrodynamic reductions.

(b) Conformal structure g defined by the principal symbol is anti-self-dual on every

solution.
No explicit description yet.

Particular integrable examples are provided by systems of Monge-Ampere type.
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Monge-Ampere systems in higher dimensions

Any such system is specified by a pair of differential d-forms in a

(d + 2)-dimensional vector space V' with coordinates :1;1, e ,:I:d, u, v. Utilising

the isomorphism between A% and A2, we can reduce the theory of normal forms of
Monge-Ampere systems to the classification of pencils of skew-symmetric 2-forms.

Proposition. In four dimensions, any non-degenerate system of Monge-Ampére
type is SL(6)-equivalent to one of the following normal forms:

1. uo —v1 =0, ug+wvy =0,

2. uo —v1 =0, usg+ vy + uvy —ugvy =0,

3. ug — vy =0, wusvy —ugvy —1=0,

4. ugs —v1 =0, wuy + vy + uzvy — ugvy = 0.

All these systems are integrable by the method of hydrodynamic reductions.

All of them are equivalent to various heavenly-type equations.

19



Some open problems

e For d = 3, the moduli space of non-degenerate integrable systems (X))
associated with submanifolds of codimension n — 3 > 2in Gr(3,n) is
finite-dimensional. Submanifolds X corresponding to ‘generic’ integrable

systems are not algebraic.

e In higher dimensions d > 4, any non-degenerate integrable system (X))
associated with a submanifold of codimension n — d > 2 in Gr(d, n) is
necessarily linearly degenerate. Submanifolds X corresponding to linearly
degenerate integrable systems are rational (generally, singular).

e It would be challenging to classify integrable systems that correspond to
algebraic fourfolds X C Gr(3,5). The homology class of any such X can be
represented as ac + bn where a, b are nonnegative integers, and o, 17 are the
standard four-dimensional Schubert cycles. Which values of a and b are
compatible with the requirement of integrability?
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